Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'żarłacz czarnopłetwy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Dzięki ujęciom z drona, nagranym u wybrzeży południowo-wschodniej Florydy, po raz pierwszy uwieczniono jedyne w swoim rodzaju zachowanie unikowe żarłaczy czarnopłetwych (Carcharhinus limbatus), które próbują umknąć dużym drapieżnikom. Okazuje się, że spotykając głowomłoty Sphyrna mokarran, dorosłe C. limbatus wpływają na płytkie wody. Wiele gatunków rekinów wykorzystuje płytkie wody jako rodzaj podwodnej szkółki, w której można spokojnie rosnąć i ćwiczyć różne umiejętności przy zmniejszonym ryzyku ataku ze strony większych drapieżników. Przed upublicznieniem tych nagrań takiej strategii szukania ochrony nie odnotowano jednak u dorosłych rekinów. Nagrania stanowią część badania, którego wyniki ukazały się w Journal of Fish Biology. Posługiwanie się dronem pozwoliło obserwować naturalne zachowanie ofiar i drapieżników (statek badawczy mógłby wpłynąć na ich aktywność). Żarłacz czarnopłetwy osiąga maksymalnie 2,6 m, przy wadze ok. 123 kg (zwykle jednak dorosłe osobniki mają ok. 1,5 m długości). Dziewięćdziesiąt procent jego diety stanowią ryby, m.in. sardynki, śledziowate czy sardelowate. Na C. limbatus polują z kolei większe drapieżniki, takie jak głowomłoty. S. mokarran osiągają maksymalnie 6,1 m długości. Odżywiają się płaszczkami, a także innymi rekinami. Wabią je duże grupy żarłaczy czarnopłetwych, które stanowią dla nich doskonały posiłek. Nagrania z drona uchwyciły 3 sytuacje, gdy głowomłot zbliżał się do skupiska żarłaczy czarnopłetwych u wybrzeży hrabstwa Palm Beach (zdobyto je 28 lutego 2018 r., 28 lutego 2019 r. i 3 marca 2019 r.). We wszystkich trzech przypadkach, by uniknąć drapieżników, żarłacze wycofywały się na płytsze wody. Okazało się, że żarłacze niemal wypływają na plażę, podczas gdy głowomłot ma problemy z pływaniem w coraz płytszej wodzie. W dwóch przypadkach na trzy głowomłot aktywnie ścigał jednego bądź więcej żarłaczy w kierunku brzegu, ale nie udawało mu schwytać ofiary. Pogonie kończyły się tym, że głowomłot wykonywał ostry zwrot od ofiary i brzegu w kierunku głębszej wody. Widać było, że głowomłot walczy, bo podążając za żarłaczem na płycizny, napotyka na trudności - opowiada prof. Stephen Kajiura z Florida Atlantic University. Średnia długość nagranych żarłaczy wynosiła ok. 1,8 m. Dane te zostały wykorzystane przez biologów do skalibrowania skali w nagraniach wideo i oszacowania, w jakiej odległości od brzegu dochodziło do interakcji. Bazując na tych oszacowaniach, naukowcy stwierdzili, że wszystkie wideo nakręcono w odległości mniej niż 45 m od plaży, w wodzie sięgającej co najwyżej do pasa. Za każdym razem żarłacz wykorzystywał płycizny jako azyl. Głowomłoty z nagrań były co najmniej 2-krotnie większe od żarłaczy (mierzyły ok. 3,6 m). Głowomłoty są znane z wyjątkowo wysokiej pierwszej płetwy grzbietowej, dłuższej od płetw piersiowych. Duża płetwa grzbietowa ma generować siłę nośną podczas pływania na boku. Jak jednak widać na filmach, podczas pościgów na płyciznach górny płat płetwy ogonowej, która zwykle zapewnia rybie siłę ciągu, i płetwa grzbietowa wystawały nad wodę. Płytka woda ogranicza zatem ruch głowomłota, a dzięki mniejszym rozmiarom żarłacz może nadal skutecznie płynąć i manewrować, by oddalić się od drapieżnika - wyjaśnia Kajiura. Niektóre z przeanalizowanych przez biologów filmów zostały nagrane przez miłośnika nauki obywatelskiej Joshuę Jorgensena.   « powrót do artykułu
  2. Dzikie żarłacze czarnopłetwe (Carcharhinus melanopterus) często mają rany, ale rzadko kiedy widuje się wokół nich oczywiste objawy zakażenia. By lepiej zrozumieć ten fenomen, naukowcy z Uniwersytetu Nauki i Techniki Króla Abdullaha (KAUST) zajęli się badaniem mikrobiomu skóry rekinów. Zespół z Centrum Badania Morza Czerwonego KAUST pobrał próbki śluzu z grzbietu i skrzeli 44 żarłaczy czarnopłetwych zamieszkujących wody wokół Seszeli. Następnie próbki poddano sekwencjonowaniu amplikonu 16s RNA; w ten sposób można było zidentyfikować gatunki bakterii. Potem, by wykryć ewentualne zmiany związane z reakcją na zranienie, porównano społeczności bakteryjne z różnych próbek. Generalnie społeczności bakteryjne były bardzo różnorodne; wykryto bowiem aż 5971 taksonów. Dominowali przedstawiciele 3 rodzin: Rhodobacteraceae, Alteromonadaceae i Halomonadaceae. Rdzeń mikrobiomu (ang. core microbiome), definiowany jako taksony występujące w ≥50% próbek, składał się z 12 taksonów, które są często obserwowane u organizmów morskich. Część z nich może się wiązać ze stanem zdrowia gospodarzy. Autorzy artykułu z pisma Animal Microbiome podkreślają, że o ile stwierdzono znaczące różnice dot. składu mikrobiomu skóry rekinów z poszczególnych lokalizacji, o tyle nie było już różnic między próbkami zdrowej i zranionej skóry oraz między skórą z okolic skrzeli i z grzbietu. Byliśmy zaskoczeni, że zranienie nie skutkowało znaczącą zmianą społeczności bakteryjnych. To sugeruje, że rekinia skóra nie ulega łatwemu zainfekowaniu i że oryginalne społeczności mogą być zachowane nawet po urazie [...] - opowiada Claudia Pogoreutz. Tłumacząc różnice dot. społeczności bakteryjnych ze skóry rekinów z poszczególnych lokalizacji, naukowcy dodają, że choć miejsca te są oddalone o zaledwie parę kilometrów, mogą być dość mocno izolowane przez takie czynniki, jak prądy morskie. W grę wchodzą też opory rekinów dot. przemieszczania między habitatami czy pokonywania głębszych cieśnin. Różnice mikrobiomu skóry mogą odzwierciedlać różnice otoczenia, np. temperatury, zagęszczenia populacji, dostępności składników odżywczych czy zanieczyszczenia. Niewykluczone także, że zapewniają one żarłaczom jakieś korzyści. Biolodzy podkreślają, że rodzi się wiele pytań. Trzeba np. ustalić, jaki jest wkład mikrobiomu w gojenie ran i oporność na infekcje. « powrót do artykułu
  3. Grupa biologów morskich stwierdziła, że wśród rekinów żyjących w pobliżu wschodnich wybrzeży Australii rozpowszechnione jest krzyżowanie dwóch gatunków. To pierwszy udokumentowany przypadek rekiniej hybrydyzacji. Obszary występowania Carcharhinus tilstoni i żarłaczy czarnopłetwych (C. limbatus) pokrywają się wzdłuż północnych i wschodnich wybrzeży Australii. Za pomocą testów genetycznych, m.in. sekwencjonowania mitochondrialnego DNA, i pomiarów ciała (długości osobnika dojrzałego płciowo, długości po urodzeniu i liczby kręgów) zespół pracujący pod przewodnictwem naukowców z University of Queensland zidentyfikował 57 hybryd w 5 lokalizacjach. Chociaż blisko spokrewnione, wymienione gatunki osiągają inne maksymalne rozmiary i są różne genetycznie. Dr Jennifer Ovenden uważa, że inne blisko spokrewnione rekiny i płaszczki z całego świata mogą zachowywać się podobnie. Dzikie hybrydy spotyka się zazwyczaj bardzo rzadko, dlatego znalezienie krzyżówek i ich potomstwa jest czymś niezwykłym. Hybrydyzacja może pozwalać rekinom przystosować się do zmian środowiskowych, ponieważ mniejsze C. tilstoni wolą obecnie tropikalne wody na północy, a większe żarłacze czarnopłetwe występują liczniej w subtropikalnych i umiarkowanych wodach wzdłuż południowo-wschodniej linii brzegowej Australii. Teraz naukowcy badają zasięg strefy krzyżowania oraz sprawność fizyczną hybryd.
  4. Trzymana w niewoli samica rekina doczekała się potomstwa pomimo braku kontaktu z jakimkolwiek samcem. To dopiero drugi taki przypadek w historii badań nad tymi rybami. Samica żarłacza czarnopłetwego (Carcharhinus limbatus) o wdzięcznym imieniu Tidbit (z ang. "smakołyk") zmarła dość dawno, bo w maju 2007 roku, lecz jej perypetie do dziś budzą zainteresowanie badaczy. Okazało się bowiem, że w momencie zgonu nosiła w swoim ciele potomstwo płci żeńskiej, którego materiał genetyczny nie zawierał śladów DNA pochodzącego od samca. Niezwykła ryba zdechła wraz z matką noszącą ją w swojej macicy (to nie pomyłka - niektóre ryby posiadają ten organ). Autorem odkrycia jest dr Demian Chapman, badacz rekinów pracujący dla Instytutu Nauk o Ochronie Mórz wchodzącego w skład Uniwersytetu Stanu Nowy Jork. Niezwykła ciąża Tidbit jest drugim w historii nauki udokumentowanym przypadkiem dzieworództwa (partenogenezy), czyli rozmnażania bez udziału samca. Poprzednio podobnej obserwacji dokonano w maju u samicy rekina młota. Jej autorem był ten sam naukowiec. Zdaniem niektórych badaczy przypadki dzieworództwa u rekinów mogą wynikać z długotrwałej izolacji od samców. Zgodnie z tą hipotezą do nietypowej formy rozrodu dochodzi, gdy liczebność określonej populacji drastycznie spada. Samica decyduje się wówczas na wydanie potomstwa identycznego pod względem genetycznym z samą sobą, by zwiększyć szanse gatunku na przetrwanie. Im więcej jest bowiem osobniczek, tym większą mają szansę na znalezienie samca gotowego do "normalnego" rozrodu. Dr Chapman proponuje inną hipotezę, związaną ze sposobem odbywania aktu seksualnego przez rekiny. Jest on wyjątkowo niebezpieczny dla samicy i często kończy się jej śmiercią. Zdaniem naukowca, nie można ich winić za rozmnażanie się w sposób bezpłciowy, ponieważ seks [rekinów - red.] jest często dość brutalny. Jakie wnioski na temat partenogenezy rekinów można wysunąć z tej niezwykłej historii? Jestem pewny, że to dzieje się także w warunkach naturalnych, lecz wciąż nie jestem w stanie tego udowodnić - powiedział Chapman w wywiadzie dla amerykańskiej prasy. Czy ma rację, pokażą zapewne dalsze badania.
×
×
  • Create New...