Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' wulkanizm' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Martin Peterson z Uniwersytetu w Montrealu odkrył egzoplanetę wielkości Ziemi, która prawdopodobnie pokryta jest wulkanami. LP 791-18 d znajduje się w odległości 90 lat świetlnych od Ziemi, a badania za pomocą Teleskopu Spitzera, TESS oraz teleskopów naziemnych sugerują, że do erupcji wulkanicznych dochodzi nań równie często jak na Io – księżycu Jowisza – najbardziej aktywnym pod tym względem obiekcie w Układzie Słonecznym. LP 971-18 d obraca się synchronicznie ze swoją gwiazdą, a to oznacza, że jedna jej połowa wciąż jest zwrócona w stronę gwiazdy. Strona dzienna jest prawdopodobnie zbyt gorąca, by na jej powierzchni mogła istnieć woda w stanie ciekłym. Jednak intensywna działalność wulkaniczna do której, jak podejrzewamy, dochodzi na całej planecie, może podtrzymywać istnienie atmosfery, a to z kolei może pozwalać na kondensację wody po stronie nocnej, mówi profesor Björn Benneke, który zaplanował i nadzorował badania. Planeta LP 791-18 d krąży wokół niewielkiego czerwonego karła znajdującego się w Gwiazdozbiorze Pucharu. Dotychczas znaliśmy tam dwie planety, LP 791-18 b oraz c. Położona bliżej gwiazdy planeta b jest o około 20% większa od Ziemi, z kolei c jest 2,5-krotnie większa i 7-krotnie bardziej masywna od naszej planety. Nowo odkryta d jest tylko nieco większa i bardziej masywna od Ziemi. Podczas każdego okrążenia gwiazdy planety d i c mijają się w niewielkiej odległości. Bardziej masywna c przyciąga do siebie d, przez co jej orbita jest nieco eliptyczna. I za każdym razem, gdy mija c, oddziaływanie grawitacyjne bardziej masywnej planety powoduje deformacje planety d. Deformacje te prowadzą do pojawienia się wewnętrznego tarcia i uwalniania olbrzymich ilości energii, która znajduje ujście w aktywności wulkanicznej na jej powierzchni. Planeta d znajduje się w ekosferze swojej gwiazdy, zatem w takiej odległości od niej, w której może istnieć woda w stanie ciekłym. Jeśli rzeczywiście jest ona geologicznie aktywna, to może posiadać atmosferę, a temperatury na stronie nocnej powinny być na tyle niskie, że dochodzi tam do kondensacji pary wodnej. Odkrywcy LP 917-18 d uważają, że jest ona bardzo dobrym celem badawczym dla Teleskopu Webba. Tym bardziej, że planeta c będzie za jego pomocą badana. Bardzo ważne pytanie na polu astrobiologii brzmi, czy aktywność tektoniczna lub wulkaniczna jest niezbędna do pojawienia się życia. Procesy takie mogą nie tylko zapewniać atmosferę, ale również dostarczać na powierzchnię planet materiał, który w innym wypadku by zatonął i zostałby uwięziony w skorupie. Takim materiałem jest np. węgiel, który uważany jest za ważny dla pojawienia się życia, mówi Jessie Christiansen z Exoplanet Science Institute. « powrót do artykułu
  2. Nie od dzisiaj wiemy, że na Wenus są wulkany. Naukowcy spierali się jednak o to, czy nadal są one aktywne. To bardzo istotne pytanie, gdyż Wenus jest planetą bliską Ziemi, miała niegdyś wodę na powierzchni, więc warto odpowiedzieć sobie na pytanie, dlaczego na Ziemi kwitnie życie, podczas gdy na Wenus panują temperatury z piekła rodem. Ustalenie czy wulkany Wenus są aktywne pozwoliłoby nam lepiej określić ewolucję planety. Właśnie poznaliśmy odpowiedź na to pytanie. Wczoraj, podczas Lunar and Planetary Science Conference oraz na łamach Science przedstawiono wnioski z analiz obrazów radarowych powierzchni Wenus, uzyskanych przez misję Magellan w latach 1990–1992. Naukowcy zauważyli, że na obszarze Atla Regio, gdzie znajdują się dwa z największych wenusjańskich wulkanów, komin jednego z nich zmienił kształt. Widoczna jest różnica na dwóch obrazach wykonanych w odstępie 8 miesięcy. To zaś sugeruje, że w międzyczasie doszło do erupcji lub wypływu lawy. Odkrycie przyszło w samą porę. W czerwcu 2021 roku NASA ogłosiła, że w latach 2028–2030 wyśle dwie misje na Wenus. Będą to pierwsze od ponad 30 lat misje NASA poświęcone wyłącznie tej planecie. Każdej z nich przyznano już finansowanie. W ramach misji DAVINCI+ będzie zbadanie składu atmosfery i sprawdzenie, czy na Wenus istniał ocean. Misja wyśle też próbnik, który wleci w atmosferę planety i dotrze do jej powierzchni. Ma on przysłać pierwsze zdjęcia Wenus w wysokiej rozdzielczości. Z kolei w ramach misji VERITAS wysłany zostanie orbiter, który wykona trójwymiarową rekonstrukcję topografii planety, zbada czy występują tam zjawiska tektoniczne i wulkanizm oraz określi typy skał na powierzchni Wenus. Wiadomo jednak, że zdobycie jakichkolwiek danych nie będzie proste. Wenus ma bardzo gęstą atmosferę, panuje na niej ciśnienie 92-krotnie wyższe niż na Ziemi, a temperatury na jej powierzchni sięgają 450 stopni Celsjusza. Takie warunki to olbrzymie wyzwanie dla wszelkich próbników czy łazików. Dotychczas najdokładniejszych danych na temat powierzchni planety dostarczyła misja Magellan z lat 1989–1994. W jej trakcie za pomocą radaru trzykrotnie obrazowano te obszary Wenus, na których podejrzewano istnienie aktywnych wulkanów. Za każdym razem obrazy były uzyskiwane pod innym kątem. Ponadto obrazy mają niską rozdzielczość. Stąd też olbrzymie problemy w jednoznacznym stwierdzeniu, czy rzeczywiście widać na nich zmiany komina wulkanicznego. Część specjalistów uważa, że tak. Inni twierdzą, że nie. Spór może ostatecznie rozstrzygnąć misja VERITAS. « powrót do artykułu
  3. Paleoceńsko-Eoceńskie Maksimum Termiczne (PETM) jest uznawane za okres, który pod względem emisji węgla do atmosfery jest najbliższy czasom współczesnym. Już przed PETM klimat Ziemi był znacznie cieplejszy niż obecnie. W wyniku masowego wulkanizmu w okresie PETM średnie temperatury na Ziemi wzrosły o kolejnych 5–8 stopni Celsjusza. Jednak najnowsze badania pokazują, że natura nawet nie zbliża się do tego, co robimy obecnie. Okazuje się, że ludzie wprowadzają do atmosfery węgiel w tempie 3 do 8 razy szybszym, niż działo się to w PETM. Wysokie stężenie węgla w atmosferze w czasie PETM spowodowało, że oceany wchłonęły olbrzymie ilości tego pierwiastka, co zapoczątkowało reakcję chemiczną prowadzącą do znacznego zakwaszenia wody i wyginięcia wielu zwierząt morskich. Obecnie nie ma jednoznacznej odpowiedzi, skąd nagle uwolniły się olbrzymie ilości węgla, które doprowadziły do PETM. Jedne hipotezy mówią o masywnym wulkanizmie, inne o rozpuszczeniu się klatratów metanu zalegających na dnie morskim, jeszcze inne nie wykluczają uderzenia komety. Badania przeprowadzone właśnie przez należące do Columbia University Lamont-Doherty Earth Observatory wzmacniają hipotezie o masowym wulkanizmie i dostarczają bardziej precyzyjnych danych na temat ilości emitowanego węgla. Chcemy zrozumieć, jak cały system ziemski zareaguje na obecną szybką emisję CO2. PETM nie jest przykładem idealnym, ale jest najlepszym, jaki mamy. Dzisiaj emisja jest znacznie szybsza, mówi główna autorka badań, Laura Hayes. Dotychczasowe badania PETM opierały się na nielicznych danych pozyskanych z oceanów, które następnie poddawano modelowaniu komputerowemu. Autorzy najnowszych badań podeszli do nich nieco inaczej. Hodowali oni otwornice w morskiej wodzie, której skład dobrali tak, by przypominał wodę z czasów PETM. Odnotowywali, jak w czasie wzrostu otwornice absorbowały do muszli bor. Następnie porównali tak uzyskane dane z danymi na temat boru w muszlach skamieniałych otwornic, znalezionych na dnie Pacyfiku i Atlantyku. To pozwoliło im na zidentyfikowanie specyficznych sygnatur izotopów węgla związanych z ich pochodzeniem. Tak przeprowadzone badania wykazały, że w czasie PETM źródłem większości węgla w oceanach była aktywność wulkaniczna. Prawdopodobnie centrum tej aktywności stanowiły okolice obecnej Islandii. W tym czasie na północnym Atlantyku powstała duża prowincja magmatyczna NAIP. Jak wiemy z wcześniejszych badań, na przestrzeni co najmniej 4–5 tysięcy lat wulkany intensywnie wyrzucały węgiel do atmosfery. Autorzy najnowszych badań obliczyli, że w tym czasie do oceanów przedostało się nawet 14,9 biliarda ton węgla, czyli o 2/3 więcej, niż było go wcześniej. Obecnie oceany również pochłaniają coraz więcej węgla, a dowody wskazują, że dzieje się to znacznie szybciej niż poprzednio. Poziom dwutlenku węgla w atmosferze wzrósł z 280 ppm w epoce przedprzemysłowej do 415 obecnie. Byłby jeszcze wyższy, gdyby węgiel nie był wchłaniany przez oceany. Jako, że trafia on do wody, ta staje się coraz bardziej kwaśna, a rosnąca kwasowość wpływa na organizmy żyjące w oceanach. Jeśli dodaje się węgla powoli, organizmy żywe mają czas się zaadaptować. Gdy jednak jest to bardzo szybki proces, to pojawia się problem. W przeszłości zwiększanie ilości węgla w oceanach miało niedobre konsekwencje, mówi współautorka badań, Bärbel Hönish. Uczona przypomina, że mimo wolniejszego zakwaszania oceanów w czasie PETM doszło do wymierania wielu gatunków. Teraz dodajemy go do oceanów znacznie szybciej i konsekwencje naszych działań będą prawdopodobnie bardzo poważne. « powrót do artykułu
×
×
  • Dodaj nową pozycję...