Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' woda pitna' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. W górnych 2 kilometrach skorupy ziemskiej znajduje się około 24 milionów kilometrów sześciennych wody. To w większości woda pitna. Jednak poniżej tego rezerwuaru, zamknięte w skałach, znajdują się kolejne rozległe zasoby wodne, złożone głównie z solanki liczącej sobie setki milionów, a może nawet ponad miliard lat. Najnowsze szacunki pokazują, że zasoby te, wraz z położoną powyżej wodą, stanowią największy rezerwuar wody na Ziemi. Dotychczas uważano, że największymi, poza oceanami, rezerwuarami wody na Ziemi są lodowce i lądolody, których objętość wynosi około 30 milionów km3. Okazuje się jednak, że prawdopodobnie musimy zweryfikować swoje przekonania. Dość dobrze wiemy, ile wody znajduje się w górnej 2-kilometrowej warstwie skorupy ziemskiej. Jednak zasoby położone poniżej, na głębokości nawet do 10 kilometrów, są znacznie słabiej poznane. Ich oszacowania podjęli się naukowcy z międzynarodowego zespołu, w skład którego wchodzili uczeni z USA, Kanady, Wielkiej Brytanii i Hongkongu. Uczeni zbadali strefę „głębokich wód podziemnych”, położonych na głębokości 2–10 kilometrów. W swojej pracy uwzględnili rozkład skał osadowych oraz skrystalizowanych oraz szacunki dotyczące związku porowatości skał z głębokością, na jakiej się znajdują. Szacunki wykazały, że na głębokości poniżej 2 kilometrów znajduje się około 20 milionów km3 wody. Jeśli szacunki te są prawidłowe, to w skorupie ziemskiej, na głębokości do 10 kilometrów zamkniętych jest 44 miliony km3 wody. To zaś oznacza, że wody tej jest więcej, niż wody zamkniętej w lądolodach. Odkrycie takie pozwoli lepiej zrozumieć budowę planety i procesy geochemiczne zachodzące na Ziemi. Szacunki te zwiększają nasze rozumienie ilości wody na Ziemi i dodają nowy wymiar do rozumienia cyklu hydrologicznego, mówi Grant Ferguson, hydrolog z University of Saskatchewan. Te głęboko położone zasoby wody nie mogą być co prawda wykorzystane w celach spożywczych czy do nawadniania, ale dokładne szacunki ilości wody oraz tego, czy i w jaki sposób jest ona włączona w obieg wody na powierzchni, są potrzebne do planowania takich działań jak produkcja wodoru, składowanie odpadów atomowych czy pobieranie z powietrza i bezpieczne składowanie dwutlenku węgla. Jeśli bowiem chcemy np. bezpiecznie składować pod ziemią odpady atomowe, musimy znaleźć takie miejsce, do którego nie ma dostępu woda, trafiająca później na powierzchnię lub do płytko położonych zbiorników podziemnych. Unikniemy w ten sposób zanieczyszczenia wód, z których korzystamy. Głęboko położone zbiorniki wody, te znajdujące się na głębokości poniżej 2 kilometrów, mogą być izolowane od setek milionów czy miliarda lat. Mogą nie mieć żadnego połączenia ze światem zewnętrznym. Są więc kapsułami czasu, dzięki którym możemy lepiej poznać warunki panujące na Ziemi w przeszłości. Mogą też zawierać wciąż aktywne mikroorganizmy sprzed setek milionów lat. Naukowcy mogą szacować głęboko położone zasoby wodne obliczając, jak wiele wody może być zamkniętych w skałach. To zaś zależy od porowatości skał. Wcześniejsze szacunki skał znajdujących się na głębokości 2–10 kilometrów skupiały się na skałach krystalicznych, jak granit, które charakteryzują się niską porowatością. Jednak autorzy najnowszych badań dodali do tych szacunków skały osadowe, znacznie bardziej porowate. I stwierdzili, że mogą one przechowywać dodatkowo 8 milionów kilometrów sześciennych wody. Jako, że woda ta jest położona głęboko i często wśród skał o niskiej przepuszczalności, w dużej mierze nie jest włączona w cykl hydrologiczny planety. Tym bardziej, że to głównie solanka, która może być o 25% bardziej gęsta od wody morskiej. A to jeszcze bardziej utrudnia jej przedostanie się do wyżej położonych warstw skorupy ziemskiej. Nie jest to jednak całkowicie wykluczone. Różnica ciśnień w obszarach położonych na różnych wysokościach może powodować, że obieg wody sięga naprawdę głęboko. W kilku miejscach Ameryki Północnej udokumentowano obieg wody, w ramach którego woda z powierzchni trafia nawet głębiej niż 2 kilometry w głąb skorupy ziemskiej. Najnowsze szacunki bardzo zainteresowały specjalistów badających biosferę. Dotychczas odkryliśmy mikroorganizmy na głębokości 3,6 kilometra. Jeśli gdzieś jest woda w stanie ciekłym, jest też spora szansa na obecność mikroorganizmów. Mogą one żyć dzięki reakcjom chemicznym. Jeśli wokół nich znajdują się odpowiednie pierwiastki, mogą je wykorzystać do wytwarzania energii, mówi mikrobiolog Jennifer Biddle z University of Delaware. Badanie tych głęboko położonych wód może też powiedzieć nam sporo o potencjalnym życiu w innych miejscach Układu Słonecznego. Jeśli i na Marsie znajdują się głęboko położone zbiorniki wodne, może tam być życie. Zatem tego typu habitaty na Ziemi mogą być bardzo dobrymi analogiami innych ciał niebieskich, jak Mars czy Enceladus, księżyc Saturna, który na pewno zawiera wodę w swoim wnętrzu, dodaje Biddle. « powrót do artykułu
  2. Podczas tworzenia mapy struktur geologicznych pod dnem oceanu u północno-wschodnich wybrzeży USA naukowcy dokonali zaskakującego odkrycia. Zauważyli gigantyczne pokłady relatywnie słodkiej wody uwięzionej w porowatych osadach pod dnem oceanicznym. Wydaje się, że to największy taki zbiornik na świecie. Rozciąga się on pomiędzy Massachusetts po New Jersey. Gdyby zbiornik znajdował się na lądzie, utworzyłby jezioro o powierzchni około 39 000 kilometrów kwadratowych. Badania sugerują, że tego typu zbiorników może być znacznie więcej, a to dobra wiadomość dla świata, w którym coraz częściej mamy do czynienia z niedoborami wody pitnej. Wiedzieliśmy, że w izolowanych miejscach pod dnem uwięziona jest woda pitna. Nie znaliśmy jednak rozmiarów złóż. Mogą się one okazać niezwykle cenne w wielu cierpiących na niedobory wody częściach planety, mówi główna autorka badań, doktorantka Chloe Gustafson z Columbia University. Pierwsze wskazówki, że pod dnem jest słodka woda, pojawiły się w latach 70. kiedy firmy poszukujące ropy naftowej czasami trafiały na wodę pitną. Od tamtej pory naukowcy zastanawiali się, czy mamy do czynienia z izolowanymi kieszeniami z wodą, czy też z czymś większym. Przed 20 laty współautor obecnych badań, Kerry Key, rozpoczął w firmami naftowymi współpracę przy rozwoju technologii elektromagnetycznego obrazowania struktur pod dnem morskim. Przed kilku laty uczony zaczął się zastanawiać, czy nie można tej technologii zmodyfikować tak, by poszukiwać za jej pomocą słodkiej wody. Niedawno przeprowadzone badania i pomiary pól elektromagnetycznych. Wykorzystano przy tym wiatr słoneczny, wyładowania atmosferyczne oraz fakt, że słona woda jest lepszym przewodnikiem fal elektromagnetycznych niż woda słodka. Analizy wykazały, że mamy do czynienia z bardziej lub mniej ciągłym złożem słodkiej wody, rozciągającym się na odległość nawet 120 kilometrów i znajdujących się średnio na głębokości 180 metrów pod dnem, a głębokość zbiornika wynosi również około 180 metrów. Znajduje się tam około 2800 km3 słodkiej wody. Naukowcy przypuszczają, że zbiornik mógł powstać pod koniec ostatniej epoki lodowej, gdy roztapiały się lodowce. Poziom oceanów był wówczas znacznie niższy, osady niesione przez roztapiające się słodkie wody uformowały potężne delty rzeczne i uwięziły pod sobą wodę. Ponadto nowe badania sugerują, że zbiornik może być nadal zasilany przez wody opadowe. Wskazuje na to fakt, że woda w zbiorniku jest bardziej słodka bliżej brzegów, a bardziej słona w głąb oceanu. To sugeruje, że powoli dochodzi do mieszania się wody pitnej z wodą oceanu. Jeśli ludzie chcieliby wykorzystywać wodę z tego zbiornika, to do większości zastosowań musiałaby ona zostać poddana procesowi odsalania. Byłby on jednak mniej kosztowny niż odsalanie wody morskiej. Prawdopodobnie nie będziemy potrzebowali tej wody, jeśli jednak podobne zbiorniki występują w innych regionach świata, mogą tam stać się ważnym źródłem wody pitnej, mówią naukowcy. Takie regiony to np. Kalifornia, Australia, Środkowy Wschód czy Sahara. « powrót do artykułu
  3. Laboratorium Narodowe Gran Sasso, główne laboratorium fizyczne Włoch i jedno z największych tego typu na świecie, ma poważne kłopoty. Prokuratura z pobliskiego Teramo oskarżyła 10 osób o narażenie na niebezpieczeństwo lokalnego źródła wody pitnej. Wśród oskarżonych jest 3 menedżerów laboratorium – Fernando Ferroni, prezes Narodowego Instytutu Fizyki Jądrowej, do którego laboratorium należy, Stefano Ragazzi, szef laboratorium oraz Raffaele Adinolfi Falcone, dyrektor ds. środowiskowych w Gran Sasso. Ponadto oskarżonych jest 3 dyrektorów z firmy Strada dei Parchi, odpowiedzialnej za pobliskih 10-kilometrowy tunel drogowy i czterech dyrektorów Ruzzo Reti, operatora wodociągu dostarczającego wodę. Laboratorium Narodowe Gran Sasso znajduje się 1400 metrów pod górą Gran Sasso. Warstwy skał izolują je od świata zewnętrznego i promieniowania kosmicznego, które mogą zakłócać prowadzone w laboratorium eksperymenty nad ciemną materią czy neutrino. W bezpośrednim sąsiedztwie laboratorium znajdują się zasoby wody pitnej, z której korzystają setki tysięcy ludzi, a które są narażone na zanieczyszczenie chemikaliami wykorzystywanymi w Gran Sasso. Śledztwo rozpoczęto po skardze złożonej przez Augusto De Sanctisa, prezesa niedochodowej organizacji ekologicznej Stacja Ornitologiczna Abruzzo. Złożył on doniesienie w sprawie serii niewielkich wypadków, do których doszło w laboratorium w 2016 roku, w tym i do takiego, w czasie którego niewielka ilość rozpuszczalników organicznych zanieczyściła wodę pitną. De Sanctis twierdzi, że największy z eksperymentów prowadzonych w Gran Sasso stanowi poważne zagrożenie dla źródeł wody pitnej. Eksperyment ten, Borexino, w ramach którego badane są neutrino pochodzące ze Słońca, wykorzystuje 1300 ton węglowodoru aromatycznego o nazwie pseudokumen, a w Large Volume Detector, który również bada neutrino, znajduje się 1000 ton spirytusu mineralnego. De Sanctis wniósł oskarżenie na podstawie przepisów z 2006 roku, które mówią, że tego typu substancje nie mogą znajdować się w odległości mniejszej niż 200 metrów od źródeł wody pitnej, co – jego zdaniem – ma miejsce w Gran Sasso. Narodowy Instytut Fizyki Jądrowej już w listopadzie ubiegłego roku wynajął firmę, która do końca 2020 roku ma rozebrać Borexino i LVD. Jednak w ubiegłym miesiącu pojawiły się niespodziewane trudności. Otóż firma Strada dei Parchi, która została oskarżona, że nie potrafi zapobiec zanieczyszczeniu źródeł wody pitnej przez samochody poruszające się zarządzanym przez nią tunelem, wysłała do Ministerstwa Transportu, Narodowego Instytutu Fizyki Jądrowej i innych zainteresowanych informację, że od 19 maja tunel będzie zamknięty. To odcięłoby Laboratorium Gran Sasso od świata. W wyniku negocjacji ustalono, że tunel będzie tymczasowo otwarty. W sprawę włączył się rząd, który oznajmił, że powoła komisarza nadzorującego prace nad odpowiednim odizolowaniem zbiornika, w tym nad izolacjami laboratorium i części tunelu. Prace mają pochłonąć około 170 milionów euro. Jednak De Sanctis nie wierzy, by to przyniosło jakiekolwiek efekty. Przypomina sprawę z 2002 roku, kiedy to po wycieku chemikaliów z Borexino powołano specjalnego komisarza i przyznano mu 84 miliony euro na przeprowadzenie odpowiednich prac izolacyjnych. Prac tych nigdy nie wykonano. Potrzebujemy kogoś, kto będzie koordynował prace różnych instytucji i zmusi je do wypełnienia swoich obowiązków, mówi De Sanctis. Antonio Zoccoli z Uniwersytetu w Bolonii i członek komitetu wykonawczego Narodowego Instytutu Fizyki Jądrowej twierdzi, że Instytut nie łamie prawa prowadząc prace w Borexino i LVD. Argumentuje, że jako iż laboratorium jest otoczone przez zbiornik, to nie wiadomo dokładnie, w którym miejscu jest źródło wody. Twierdzi też, że przestrzegane są wszelkie przepisy, a nikt z rządu nigdy nie twierdził, że laboratorium łamie przepisy z 2006 roku. De Sanctis odpowiada, że to nieprawda, gdyż w 2013 roku Narodowy Instytut Zdrowia poinformował, iż laboratorium powinno drastycznie ograniczyć swoją działalność. « powrót do artykułu
  4. Autorzy globalnego studium zauważyli niezwykły paradoks – w miarę postępów globalnego ocieplenia zwiększa się ilość opadów, a jednocześnie zmniejszają się zasoby wody pitnej. Badania, najszerzej na świecie zakrojone studium opadów i rzek, zostały przeprowadzone przez zespół profesora Ashisha Sharmy z australijskiego Uniwersytetu Nowej Południowej Walii. Naukowcy wykorzystali dane z 43 000 stacji monitorujących opady i 5300 stacji monitorujących rzeki w 160 krajach. To coś, co przegapiono. Spodziewaliśmy się, że ilość opadów będzie rosła, gdyż cieplejsze powietrze może przechować więcej wilgoci. To samo przewidują tez modele klimatyczne. Nie przewidzieliśmy jednak, że w obliczu zwiększonych opadów rzeki będą wysychały, mówi Sharma. Sądzimy, że przyczyną tego stanu rzeczy jest wysychanie gleby w zlewniach rzek. Tam, gdzie kiedyś przed opadami było wilgotno, dzięki czemu nadmiar wody z opadów spływał do rzek, jest teraz bardziej sucho. Więcej wody wsiąka w glebę, a mniej trafia do rzek. Mniej wody w rzekach oznacza mniej wody dla miast i rolnictwa. Tymczasem bardziej sucha gleba to konieczność zwiększonego nawadniania pól. Co gorsza, ten schemat obserwujemy na całym świecie, dodaje uczony. Już w tej chwili na każde 100 kropli opadów do rzek i jezior trafia 36 kropli. To woda dostępna dla człowieka. Pozostałe 64 krople zostają zatrzymane w glebie. Im bardziej sucha gleba, tym mniej kropli spłynie do rzek i jezior. Mniej wody trafia tam, gdzie możemy ją później wykorzystać. W tym samym czasie pojawia się więcej opadów, co przeciąża infrastrukturę kanalizacyjną w miastach, prowadząc do większej liczby podtopień, stwierdza Sharma. Profesor Mark Hoffman chwali badania Sharmy. Zmiana klimatu wciąż dostarcza nam niemiłych zaskoczeń. Naszą rolą, jako inżynierów, jest zidentyfikowanie problemu i znalezienie rozwiązania, mówi. Sharma i jego zespół zauważyli już wcześniej, że pomimo zwiększenia się liczby ekstremalnych opadów, nie dochodzi do zwiększenia liczby ekstremalnych powodzi. Przyczynę tego stanu rzeczy upatrują w bardziej suchej glebie oraz mniejszym zasięgu terytorialnym ekstremalnych opadów. Jednak ekstremalne powodzie to zjawiska, które są zbyt potężne, by napełnić zbiorniki przeznaczone na wodę pitną dla ludzi. Mogą być one za to napełnione przez słabsze powodzie. Problem w tym, że, zdaniem Sharmy, ogólna liczba powodzi się zmniejsza. Uczony wskazuje tutaj na wcześniejsze badania Amerykanów, którzy stwierdzili, że przy ekstremalnie dużych opadach, jeśli gleba była wilgotna przed opadami, to 62% wody opadowej składa się na powódź. Jeśli zaś gleba była wcześniej sucha, to powódź tworzy 13% wody opadowej. To sprzeczne z tym, co czytamy w raportach IPCC, w których przewiduje się rosnącą liczbę powodzi. Jednocześnie jednak wskazuje nam to na potencjalnie groźny scenariusz. Niewielkie powodzie są bardzo ważne, gdyż napełniają zbiorniki, z których czerpiemy wodę. Jednak powodzi jest coraz mniej, bo gleba wchłania wodę. Nawet jeśli pojawi się naprawdę duży deszcz, to gleby są tak suche, że pochłaniają więcej wody niż wcześniej. Mniej więc trafia tam, skąd możemy ją czerpać, wyjaśnia Sharma. Dotychczas wszyscy mieli obsesję na punkcie powodzi i nie zwracali uwagę na znacznie ważniejszy element równania, wodę trafiającą do zbiorników, dodaje. Zdaniem Sharmy, mamy dwa wyjścia. Możemy poczekać, aż ludzie zmniejszą emisję gazów cieplarnianych i klimat się ochłodzi, co jednak zajmie dużo czasu. Możemy też przebudować infrastrukturę przechowującą i dostarczającą wodę, dostosować systemy kanalizacyjne w miastach i przenieść uprawy wymagające dużych ilości wody w tereny, gdzie ta woda będzie. Konieczne będą prace inżynieryjne na masową skalę. Jednak jest to możliwe. W miejscach takich jak Arizona czy Kalifornia roczne opady wynoszą zaledwie około 400 milimetrów, a mimo to, dzięki odpowiedniej infrastrukturze, zamieniono niegościnne tereny w miejsca, gdzie żyje olbrzymia liczba ludzi. Popatrzmy chociażby na infrastrukturę w australijskich Snowy Mountains. Składa się ona z szesnastu głównych zapór, siedmiu elektrowni wodnych, stacji pomp i 225 kilometrów tuneli. Woda z topniejącego śniegu jest wykorzystywana tam zarówno do generowania energii jak i do nawadniania pól. « powrót do artykułu
×
×
  • Dodaj nową pozycję...