Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' urządzenie'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. Oliwia Raniszewska ze Świecia znalazła się gronie 50 najlepszych uczniów na świecie. Świeżo upieczona maturzystka i przyszła studentka Gdańskiego Uniwersytetu Medycznego trafiła do finału konkursu Global Student Prize. Jest on organizowany przez Varkey Foundation, a biorą w nim udział uczniowie i studenci, którzy angażują się w inicjatywy społeczne, badawcze oraz rozpoczynają karierę naukową. Oliwia od dziecka interesuje się biologią. „Winnymi” jej pasji są w dużej mierze rodzice, z którymi od najmłodszych lat jeździła w Tatry. Dzięki styczności z naturą w coraz większym stopniu interesowała ją przyroda. Gdy w szkole podstawowej zaczęły się zajęcia o człowieku, zauważyłam, że najbardziej interesuje mnie część medyczna, stwierdziła Oliwia. W liceum mogłam się rozwinąć w dużo szerszym stopniu, zaczęłam brać udział w różnych programach, inicjować własne projekty i tak się rozwijała moja medyczna pasja. Podczas nauki w Uniwersyteckim LO w Toruniu brała udział w Olimpiadzie Wiedzy Ekologicznej, Programie Adamed StartUp czy Konkursie Naukowym Explory. W ramach Explory w 2020 roku wraz ze swoim zespołem stworzyła Aquacollector, urządzenie do zbierania z wody syntetycznych zanieczyszczeń, w tym mikroplastiku. Zdobyło ono uznanie i 3. miejsce w konkursie. Rok później Oliwia wraz z kolegami z liceum, Wiktorią Sadowską i Bogdanem Jabłońskim, opracowali urządzenie o nazwie Skin Preventer, służące do wspomagania diagnostyki zmian skórnych. To proste i tanie urządzenie wykorzystuje system maszynowego uczenia się oparty na sieciach neuronowych. Wynalazek został w ubiegłym roku zakwalifikowany do ogólnopolskiego etapu Olimpiady Innowacji Technicznych i Wynalazczości. W bieżącym zaś roku zakwalifikowano go do Konkursu Naukowego Explory, którego finał będzie miał miejsce w październiku. Obecnie trwają prace nad udoskonaleniem urządzenia. Niedawno Oliwia, Wiktora i Bogdan przez podpatrywali pracę dermatologów z Gdańskiego Uniwersytetu Medycznego i chodzili na zajęcia wraz ze studentami. Założyli też zrzutkę na rozwój projektu. Zbudowali też prototyp swojego urządzenia. W przyszłości chcą opatentować i skomercjalizować swój wynalazek, zdają sobie jednak sprawę, że w przypadku urządzeń medycznych jest to długa i skomplikowana droga. Oliwia rozpoczyna wraz z wolontariuszami akcję społeczną, której celem jest uświadamianie odnośnie profilaktyki zmian skórnych i zasad zdrowego korzystania ze słońca. W październiku Oliwa rozpocznie studia na Uniwersytecie Medycznym w Gdańsku. Jeszcze nie zdecydowała o specjalizacji. Myśli o dermatologii, psychiatrii lub ewentualnie pediatrii. Na pewno chce zostać lekarzem i łączyć ten zawód z pracą naukową. « powrót do artykułu
  2. Urządzenie wielkości zegarka może monitorować chemię organizmu, by pomóc w poprawie osiągów sportowych czy zidentyfikować ewentualne problemy zdrowotne. Jego twórcy uważają, że potencjalnych zastosowań jest wiele: od wykrywania odwodnienia po monitorowanie regeneracji organizmu. Technologia pozwala prowadzić w czasie niemal rzeczywistym testy pod kątem szerokiej gamy metabolitów - opowiada prof. Michael Daniele z Uniwersytetu Stanowego Karoliny Północnej. W tym weryfikującym koncepcję badaniu wykorzystaliśmy pot ochotników. Monitorowaliśmy poziom glukozy, mleczanów, a także pH oraz temperaturę. Wymienialny pasek mocowany z tyłu urządzenia wyposażono w czujniki chemiczne. Pasek styka się ze skórą użytkownika i jego potem. Dane z czujników są interpretowane przez urządzenie, które zapisuje wyniki i przekazuje je np. do smartfona czy smartwatcha. Urządzenie ma wielkość przeciętnego zegarka, ale zawiera elementy analityczne stanowiące odpowiednik 4 pokaźnych aparatów elektrochemicznych, stosowanych obecnie do pomiaru metabolitów w laboratorium. Opracowaliśmy coś przenośnego, by można tego było używać w terenie. Autorzy artykułu z pisma Biosensors and Bioelectronics dodają, że paski można dostosować, tak by monitorować różne markery zdrowotne i sportowe, np. elektrolity. Mamy nadzieję, że [kiedyś] nasz sprzęt sprawi, że nowe technologie ograniczą urazy odnoszone podczas treningów wojskowych i sportowych; problemy zdrowotne zostaną bowiem wykryte, nim osiągną punkt krytyczny. Za jego pomocą można by też śledzić osiągi w czasie i, na przykład, ustalać, jaka kombinacja diety i innych zmiennych jest korzystna. Obecnie prowadzone są dalsze testy w różnych warunkach. Chcemy potwierdzić, że urządzenie może zapewniać stały monitoring podczas wykorzystania przez dłuższy czas. Daniele mówi, że trudno określić cenę dla klienta. Wiadomo jednak, że cena paska, który może wytrzymać co najmniej dobę, powinna być podobna jak dla pasków do glukometrów. Naukowcy szukają partnerów przemysłowych, by ocenić opcje komercjalizacji rozwiązania. « powrót do artykułu
  3. Amerykańscy naukowcy stworzyli pierwsze żywe maszyny. Zbudowali je z komórek żaby szponiastej (Xenopus laevis), bezogonowego płaza zamieszkującego Afrykę. Roboty poruszają się i można je dostosowywać do swoich potrzeb. Jednym z najbardziej udanych jest miniaturowa maszyna wyposażona w dwie nogi. Z kolei inny projekt zawiera wewnątrz otwór, w którym może transportować niewielkie ładunki. Jak zapewnia Michael Levin, dyrektor Allen Discovery Center na Tufts University, to całkowicie nowe formy życia. Nigdy wcześniej nie istniały one na Ziemi. To żywe, programowalne organizmy. Tego typu rozwiązanie ma olbrzymie zalety w porównaniu z tradycyjnymi robotami. Po pierwsze, żywe roboty potrafią samodzielnie się naprawić. Po drugie zaś, można je zaprogramować tak, by po wykonaniu zadania ginęły, ulegając naturalnemu rozkładowi, jak inne organizmy żywe. Ich twórcy uważają, że w przyszłości tego typu roboty mogą np. oczyszczać oceany z mikroplastiku, samodzielnie lokalizować i przetwarzać toksyczne substancje, dostarczać leki do wyznaczonego miejsca w organizmie czy w końcu oczyszczać ze złogów ściany naczyń krwionośnych. Projektowaniem robotów zajmuje się specjalny „algorytm ewolucyjny” działający na superkomputerze. Projektowanie zaczyna się od symulacji przypadkowego połączenia 500 do 1000 komórek skóry i serca. Następnie każdy z takich robotów jest wirtualnie testowany. Te projekty, które najlepiej odpowiadają oczekiwaniu naukowców, mają największą szansę wykonać założone zadania, są dalej rozwijane i na ich podstawie tworzy się nowe roboty. Urządzenia są napędzane przez komórki serca, które spontanicznie kurczą się i rozszerzają, działając jak niewielkie silniki. Robotów nie trzeba niczym zasilać. Komórki mają na tyle dużo energii, że żyją przez 7-10 dni. Grupa Levina poczekała na 100. generację robotów stworzonych przez algorytm i z niej wybrała niektóre projekty do zbudowania ich w laboratorium. Jako, że do stworzenia maszyn użyto komórek Xenopus, urządzenia zyskały miano „xenobotów”. Architektura xenobotów jest, jak zapewniają twórcy, skalowalna. Podczas eksperymentów z prawdziwymi robotami powstały takie, które poruszały się w wodzie po linii prostej, inne krążyły w kółko, jeszcze inne tworzyły grupy. Można je wyposażyć w naczynia krwionośne, układ nerwowy czy komórki odbierające np. bodźce świetlne i stworzyć w ten sposób proste oczy. Jeśli do zbudowania robotów użyjemy komórek ssaków, urządzenia będą mogły pracować na suchym lądzie. Głównym celem prac zespołu Levina jest zrozumienie życia i tego, jak ono powstaje i funkcjonuje. Oczywiście rodzi to wiele pytań etycznych, chociażby o status xenobotów. Czy należy uznawać je za roboty, czy za organizmy żywe. I do jakiego stopnia złożony powinien być ich układ nerwowy. Xenoboty zostały szczegółowo opisane na łamach PNAS, w artykule A scalable pipeline for designing reconfigurable organisms. « powrót do artykułu
  4. Od około 10 lat wiadomo, że możliwe jest włamanie się do rozrusznika serca czy pompy insulinowej i zaszkodzenie użytkownikowi tych urządzeń, a nawet jego zabicie. Teraz inżynierowie z Purdue University znacząco zwiększyli bezpieczeństwo takich urządzeń. Podłączamy coraz więcej urządzeń do ludzkiego organizmu, od inteligentnych zegarków po wyświetlacze do rzeczywistości wirtualnej. Wyzwaniem jest nie tylko zapewnienie komunikacji tak, by nikt nie mógł jej przechwycić, ale również uzyskanie większych przepustowości przy mniejszym zużyciu energii, wyjaśnia profesor Sheryas Sen. Płyny ustrojowe bardzo dobrze przenoszą sygnały elektryczne. Dotychczas te swoiste sieci lokalne organizmu (body area networks) wykorzystywały technologię Bluetooth to przesyłania sygnałów. Jednak jej użycie oznaczało, że sygnał można było przechwycić z odległości co najmniej 10 metrów. Zespół Sena opracował technologię, dzięki której sygnały wędrują po organizmie znacznie bardziej bezpiecznie, nie wychodząc na odległość większą niż centymetr poza powierzchnię skóry, a jednocześnie technologia ta zużywa 100-krotnie mniej energii niż Bluetooth. Nowa technologia wykorzystuje specjalne urządzenie, które sprzęga sygnały w zakres kwazistatyczny. To bardzo niski stan spektrum elektromagnetycznego. Grupa Sena już współpracuje z rządem i przemysłem w celu wykorzystanie swojego pomysłu w układach scalonych wielkości ziarna piasku. Prototypowy zegarek opracowany przez naukowców, wysyła sygnały po całym ciele. Grubość skóry czy włosów w żaden sposób nie wpływają na sprawność przesyłania danych, zapewnia Sen. Po raz pierwszy wykazaliśmy, jak można wykorzystać właściwości fizyczne organizmu do przesyłania sygnałów tak, by nikt nie mógł tych sygnałów podsłuchać, mówi profesor Sen.   « powrót do artykułu
  5. W Japonii, bo gdzie by indziej, powstało ręczne urządzenie Kurasa Wash do mycia naczyń bez dotykania i brudzenia dłoni. Po umieszczeniu obiektu w 2 regulowanych uchwytach wystarczy nacisnąć guzik, a naczynie zacznie się obracać, a gąbki i szczotki zrobią swoje. Na końcu użytkownik musi po prostu odkręcić wodę do płukania. Kurasa Wash waży 650 g. Producent - firma Thanko - twierdzi, że dzięki ergonomicznemu uchwytowi ręka się nie męczy. Po pełnym załadowaniu, które trwa ok. 120 min, z urządzenia można korzystać nieprzerwanie przez godzinę. Myjka "współpracuje" z naczyniami o średnicy do 220 mm i głębokości do 60 mm, można jej więc używać do czyszczenia zarówno talerzy, jak i misek. Radzi też sobie ze sztućcami i pałeczkami, które wystarczy przełożyć pomiędzy włosami szczotek i gąbkami. Kurasa Wash zadebiutowało 31 lipca i kosztuje 8800 jenów (ok. 79 dolarów).   « powrót do artykułu
×
×
  • Create New...