Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' trening' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Urządzenie wielkości zegarka może monitorować chemię organizmu, by pomóc w poprawie osiągów sportowych czy zidentyfikować ewentualne problemy zdrowotne. Jego twórcy uważają, że potencjalnych zastosowań jest wiele: od wykrywania odwodnienia po monitorowanie regeneracji organizmu. Technologia pozwala prowadzić w czasie niemal rzeczywistym testy pod kątem szerokiej gamy metabolitów - opowiada prof. Michael Daniele z Uniwersytetu Stanowego Karoliny Północnej. W tym weryfikującym koncepcję badaniu wykorzystaliśmy pot ochotników. Monitorowaliśmy poziom glukozy, mleczanów, a także pH oraz temperaturę. Wymienialny pasek mocowany z tyłu urządzenia wyposażono w czujniki chemiczne. Pasek styka się ze skórą użytkownika i jego potem. Dane z czujników są interpretowane przez urządzenie, które zapisuje wyniki i przekazuje je np. do smartfona czy smartwatcha. Urządzenie ma wielkość przeciętnego zegarka, ale zawiera elementy analityczne stanowiące odpowiednik 4 pokaźnych aparatów elektrochemicznych, stosowanych obecnie do pomiaru metabolitów w laboratorium. Opracowaliśmy coś przenośnego, by można tego było używać w terenie. Autorzy artykułu z pisma Biosensors and Bioelectronics dodają, że paski można dostosować, tak by monitorować różne markery zdrowotne i sportowe, np. elektrolity. Mamy nadzieję, że [kiedyś] nasz sprzęt sprawi, że nowe technologie ograniczą urazy odnoszone podczas treningów wojskowych i sportowych; problemy zdrowotne zostaną bowiem wykryte, nim osiągną punkt krytyczny. Za jego pomocą można by też śledzić osiągi w czasie i, na przykład, ustalać, jaka kombinacja diety i innych zmiennych jest korzystna. Obecnie prowadzone są dalsze testy w różnych warunkach. Chcemy potwierdzić, że urządzenie może zapewniać stały monitoring podczas wykorzystania przez dłuższy czas. Daniele mówi, że trudno określić cenę dla klienta. Wiadomo jednak, że cena paska, który może wytrzymać co najmniej dobę, powinna być podobna jak dla pasków do glukometrów. Naukowcy szukają partnerów przemysłowych, by ocenić opcje komercjalizacji rozwiązania. « powrót do artykułu
  2. Trenowanie systemów sztucznej inteligencji trwa obecnie wiele tygodni. Firma Cerebras Systems twierdzi, że potrafi skrócić ten czas do kilku godzin. Pomysł polega na tym, by móc testować więcej pomysłów, niż obecnie. Jeśli moglibyśmy wytrenować sieć neuronową w ciągu 2-3 godzin, to rocznie możemy przetestować tysiące rozwiązań, mówi Andrew Feldman, dyrektor i współzałożyciel Cerebras. Jeśli chcemy wytrenować sieć sztucznej inteligencji, która np. ma zarządzać autonomicznym samochodem, potrzebujemy wielu tygodni i olbrzymiej mocy obliczeniowej. Sieć musi przeanalizować olbrzymią liczbę zdjęć czy materiałów wideo, by nauczyć się rozpoznawania istotnych obiektów na drodze. Klienci Cerebras skarżą się, że obecnie trenowanie dużej sieci neuronowej może trwać nawet 6 tygodni. W tym tempie firma może wytrenować około 6 sieci rocznie. To zdecydowanie zbyt mało dla przedsiębiorstw, które chcą sprawdzić wiele nowych pomysłów za pomocą SI. Rozwiązaniem problemu ma być komputer CS-1, a właściwie jego niezwykły procesor. Maszyny CS-1 mają wysokość 64 centymetrów, a każda z nich potrzebuje do pracy 20 kW. Jednak 3/4 obudowy każdego z komputerów zajmuje układ chłodzenia, a tym, co najbardziej rzuca się w oczy jest olbrzymi układ scalony. Zajmuje on powierzchnię 46 255 milimetrów kwadratowych, czyli około 50-krotnie więcej niż tradycyjny procesor. Zawiera 1,2 biliona tranzystorów, 400 000 rdzeni obliczeniowych i 18 gigabajtów pamięci SRAM. Procesor o nazwie Wafer Scale Engine (WSE) wypada znacznie lepiej niż podobne systemy. Jak zapewniają przedstawiciele Cerebras, ich maszyna, w porównaniu z klastrem TPU2 wykorzystywanym przez Google'a do trenowania SI, zużywa 5-krotnie mniej energii i zajmuje 30-krotnie mniej miejsca, a jest przy tym 3-krotnie bardziej wydajna. Takie zestawienie brzmi imponująco, a na ile rzeczywiście WSE jest lepszy od dotychczasowych rozwiązań powinno ostatecznie okazać się w bieżącym roku. Jak zauważa analityk Mike Demler, sieci neuronowe stają się coraz bardziej złożone, więc możliwość szybkiego ich trenowania jest niezwykle ważna. Trzeba jednak przyznać, że w twierdzeniach Cerebras musi być ziarno prawdy. Wśród klientów firmy jest m.in. Argonne National Laboratory, które ma już maszyny CS-1 u siebie. Zapewne już wkrótce dowiemy się, czy rzeczywiście zapewniają one tak wielką wydajność i pozwalają tak szybko trenować sieci neuronowe. Twórcami Cerebras są specjaliści, którzy pracowali w firmie Sea Micro, przejętej przez AMD. Pomysł stworzenia komputera wyspecjalizowanego w sztucznej inteligencji zaczął kiełkować w ich głowach w 2015 roku. Stwierdzili, że odpowiedni procesor musi być w stanie szybko przesyłać duże ilości danych, układy pamięci muszą znajdować się blisko rdzenia, a same rdzenie nie powinny zajmować się danymi, którymi już zajmują się inne rdzenie. To zś oznaczało, że tego typu układ musi składać się z olbrzymiej liczby niewielkich rdzeni wyspecjalizowanych w obliczeniach z zakresu sieci neuronowych, połączenia między rdzeniami muszą być szybkie i zużywać niewiele energii, a wszystkie dane muszą być dostępne na procesorze, a nie w osobnych układach pamięci. Twórcy Cerebras uznali, że tym, czego potrzebują, jest chip niemalże wielkości całego plastra krzemowego. Udało im się taki układ skonstruować, chociaż nie było to łatwe zadanie i wciąż muszą poradzić sobie z licznymi problemami. Jednym z nich było poradzenie sobie z filozofią tworzenia współczesnych plastrów krzemowych. Obecnie z pojedynczego plastra tworzy się wiele procesorów. Po ich przygotowaniu, plaster, zawierający wiele identycznych układów, jest cięty. W procesie przygotowywania plastra do produkcji tworzy się na nim specjalne linie, wzdłuż których przebiegają cięcia. Tymczasem Cerebras potrzebowało takiego plastra w całości, z połączeniami pomiędzy poszczególnymi rdzeniami. To zaś wymagało nawiązania współpracy z TSMC i opracowania metody przeprowadzenia połączeń przez linie. Wysiłek się opłacił. Poszczególne rdzenie komunikują się między sobą z prędkością 1000 Pb/s, a komunikacja pomiędzy pamięcią a rdzeniami przebiega w tempie do 9 PB/s. To nie jest trochę więcej. To o cztery rzędy wielkości więcej, gdyż wszystko odbywa się w ramach tego samego plastra, cieszy się Feldman. Jednak przeprowadzenie połączeń przez linie nie był jedynym problemem. Trzeba było zmodyfikować cały proces projektowania i produkcji układów. Nawet oprogramowanie do projektowania procesorów jest przygotowane pod niewielkie układy. Każda zasada, każde narzędzie i każde urządzenie jest obecnie dostosowana do produkcji układów scalonych o zwyczajowych rozmiarach. My zaś potrzebujemy czegoś znacznie większego, dlatego też musieliśmy na nowo opracować każdy element, dodaje Feldman. Jeszcze innym problemem okazało się zasilanie takiego układu. Każdy z 1,2 biliona tranzystorów potrzebuje 0,8 wolta. To standardowe napięcie, ale tranzystorów jest tak dużo, że do układu należy doprowadzić prąd o natężeniu 20 000 amperów. Uzyskanie w całym plastrze 20 000 amperów bez znacznego spadku napięcia było kolejnym wyzwaniem inżynieryjnym, mówią przedstawiciele Cerebras. Doprowadzenie prądu do krawędzi WSE nie wchodziło w rachubę, gdyż opory spowodowałyby spadek napięcia do zera zanim prąd osiągnąłby środek układu. Rozwiązaniem okazało się prostopadłe podłączenie od góry. Inżynierowie Cerebras zaprojektowali specjalny zestaw składający się z setek układów wyspecjalizowanych w kontrolowaniu przepływu prądu. Za pomocą miliona miedzianych połączeń dostarcza on zasilanie do WSE. Cerebras nie podaje żadnych danych odnośnie testów wydajności swojego rozwiązania w porównaniu z innymi systemami. Zamiast tego firma zachęca swoich klientów, by po prostu sprawdzili, czy  CS-1 i WSE sprawują się lepiej w zadaniach, których ci klienci potrzebują. Nie ma w tym jednak nic dziwnego. Każdy korzysta z własnych modeli dostosowanych do własnych potrzeb. To jedyne co się liczy dla klienta, mówi analityk Karl Freund. Jednym z takich klientów jest właśnie Argonne National Laboratory. Ma ono dość specyficzne potrzeby. Wykorzystuje sieci neuronowe do rozpoznawania różnych rodzajów fal grawitacyjnych w czasie rzeczywistym. Pracujący tam specjaliści wolą więc samodzielnie przekonać się, czy nowe urządzenie lepiej sprawdzi się w tych zastosowaniach niż dotychczas stosowane superkomputery. « powrót do artykułu
  3. Pacjenci z nowotworami powinni mieć ściśle dostosowany program ćwiczeń, który pomoże ochronić serce przed skutkami ubocznymi terapii (kardiotoksycznością). Pacjenci onkologiczni są często mniej aktywni niż dorośli bez nowotworów. Bez względu na rodzaj terapii ćwiczenia mają jednak [dla nich] zasadnicze znaczenie - podkreśla dr Flavio D'Ascenzi z Uniwersytetu w Sienie. Jak tłumaczą autorzy publikacji z European Journal of Preventive Cardiology, zarówno trening wytrzymałościowy, jak i oporowy stymulują odżywienie mięśnia sercowego. Trening wytrzymałościowy jest uznawany za skuteczniejszy, jeśli chodzi o właściwości przeciwzapalne czy sprawność krążeniową, ale jego uprawianie może być dla pacjentów onkologicznych trudne. Bardziej odpowiednim punktem wyjścia wydaje się więc dla nich trening oporowy (zwłaszcza jeśli weźmie się pod uwagę jego większy potencjał anaboliczny). Trening mięśni wdechowych (ang. inspiratory muscle training, IMT) pomaga wzmocnić mięśnie wdechowe i w ten sposób ograniczyć duszność, szczególnie u pacjentów z nowotworami klatki piersiowej. Konkretne ćwiczenia powinny być dobierane indywidualnie - wyjaśnia D'Ascenzi. Choroby sercowo-naczyniowe (ChSN) są częstymi powikłaniami leczenia onkologicznego; terapia upośledza funkcję i budowę serca albo przyspiesza rozwój choroby sercowo-naczyniowej, zwłaszcza gdy występują czynniki ryzyka ChSN, np. nadciśnienie. Należy też pamiętać, że choroby sercowo-naczyniowe i nowotwory dzielą czynniki ryzyka. Z tego względu pacjentom onkologicznym zaleca się, by zdrowo się odżywiali, rzucili palenie, ćwiczyli i kontrolowali wagę. Włosi podkreślają, jak ważne jest ustalenie indywidualnego planu ćwiczeń dla każdego pacjenta. Program ćwiczeń powinien się zaczynać tak szybko, jak to możliwe, nawet przez wdrożeniem leczenia, np. chemioterapii. D'Ascenzi i inni twierdzą, że formułowanie programu ćwiczeń to zadanie dla multidyscyplinarnego zespołu, złożonego z onkologów, kardiologów, fizjoterapeutów, pielęgniarek, dietetyków i psychologów. Na początku, by ocenić reakcję na aktywność fizyczną, trzeba by przeprowadzić np. badania spiroergometryczne czy określić próg mleczanowy. Później określa się odpowiednią dawkę ćwiczeń (tak jak się to robi w odniesieniu do leków), w tym intensywność, typ treningu oraz jego objętość (liczbę godzin bądź minut treningu tygodniowo). Zdefiniowanie intensywności i objętości ćwiczeń jest ważne dla zmaksymalizowania korzyści wynikających z aktywności i jednoczesnego ograniczenia zmęczenia mięśni, zmęczenia ogólnego i zaburzeń snu. Trwająca terapia nie jest, wg Włochów, przeciwwskazaniem do ćwiczeń, ale przed podjęciem nowej aktywności pacjenci powinni się skonsultować z lekarzem. Należy też pamiętać, że chorzy z niskim poziomem hemoglobiny powinni unikać aktywności o dużej intensywności, osobom z małopłytkowością nie zaleca się zaś uprawiania sportów kontaktowych. W grupach zagrożonych łamliwością kości trzeba, oczywiście, unikać aktywności zwiększających ryzyko złamań. Duszności czy zmęczenie wymagają dogłębniejszego zbadania. Jeśli wykluczy się problemy zdrowotne, warto pamiętać, że ćwiczenia mogą pomóc w walce ze zmęczeniem, czyli objawem często występującym u chorych z nowotworami. Aktywność fizyczna przed, w trakcie i po terapii przeciwnowotworowej może przeciwdziałać negatywnemu wpływowi leczenia na układ sercowo-naczyniowy. Dodatkowo może usunąć takie objawy, jak mdłości i zmęczenie, a także zapobiec niepożądanym zmianom w zakresie wagi. « powrót do artykułu
  4. Wieczorna aktywność fizyczna nie powoduje problemów ze snem - donoszą naukowcy z Politechniki Federalnej w Zurychu. Szwajcarzy przejrzeli literaturę przedmiotu i przeanalizowali 23 badania, które spełniały ich standardy jakości. Ustalili, że ćwiczenie w ciągu 4 godzin poprzedzających udanie się na spoczynek nie ma negatywnego wpływu na sen. Jeśli uprawianie sportu w godzinach wieczornych ma w ogóle jakiś wpływ na jakość snu, to raczej pozytywny (ale niewielki) - podkreśla Christina Spengler. Analiza wykazała, że po wieczornym uprawianiu sportu sen głęboki stanowił 21,2% ogólnego czasu uśpienia. Po wieczorze bez ćwiczeń średnia wynosiła zaś 19,9%. Mimo że różnica jest niewielka, jest istotna statystycznie. Wyjątkiem od reguły wydaje się intensywny wysiłek w godzinie poprzedzającej pójście do łóżka. Wg Szwajcarów, to jedyna sytuacja, gdy wieczorne ćwiczenia mogą negatywnie wpłynąć na jakość snu. To jednak wstępna obserwacja, bazująca na zaledwie jednym badaniu - dodaje Spengler. Generalnie intensywny trening jest definiowany jako trening, podczas którego ćwiczący nie może mówić [dobrym przykładem jest trening przedziałowy o wysokiej intensywności, ang. high intensity interval training, HIIT]. Trening umiarkowany jest na tyle wymagający, że dana osoba nie może już śpiewać, ale nadal jest w stanie mówić [chodzi np. o dłuższy bieg wytrzymałościowy czy jazdę na rowerze szosowym] - tłumaczy specjalistka. Autorzy publikacji z pisma Sports Medicine ustalili, że ludzie, którzy krótko przed snem intensywnie ćwiczyli, dłużej zasypiali. Wg zespołu z ETZ Zürich, w ciągu godziny przed snem nie mogli się wystarczająco zregenerować; ich serca nadal wykonywały o ponad 20 uderzeń na minutę więcej niż w stanie spoczynku. Ludzie powinni bez oporów ćwiczyć wieczorami. Dane pokazują, że umiarkowane ćwiczenia nie stanowią żadnego problemu - zaznacza Jan Stutz, doktorant z zespołu Spengler. W żadnym z analizowanych badań umiarkowane ćwiczenia nie powodowały kłopotów ze snem, nie przeszkadzały w niczym nawet wtedy, gdy sesja treningowa kończyła się na 30 min przed pójściem spać. Intensywny trening czy zawody powinny jednak być planowane na wcześniejszą porę. Stutz i Spengler dodają, że podczas analiz brali pod uwagę średnie wartości, a ponieważ nie każdy reaguje tak samo, powinniśmy się bacznie przyglądać własnemu organizmowi. « powrót do artykułu
×
×
  • Dodaj nową pozycję...