Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' rzadkie zjawiska w CERN' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. CERN informuje, że eksperymenty ATLAS i CMS zdobyły pierwsze dowody wskazujące, że bozon Higgsa rozpada się na dwa miony. Mion to cięższa kopia elektronu, jednej z podstawowych cząstek, z których zbudowany jest cała materia. O ile jednak elektrony są cząstkami pierwszej generacji, to miony należą do generacji drugiej. Rozpad bozonu Higgsa do mionów to rzadkie zjawisko, zachodzące w 1 na 5000 rozpadów. To ważne odkrycie, gdyż wskazuje, że bozon Higgsa wchodzi w interakcje z cząstkami drugiej generacji. Według Modelu Standardowego cała materia zbudowana jest z fermionów. Jest ich 12 i dzielą się na 6 kwarków i 6 leptonów. Otaczającą nas materię trwałą tworzą cząstki pierwszej generacji: elektron, neutrino elektronowe, kwark dolny i kwark górny. Druga generacja cząstek to mion, neutrino mionowe, kwark dziwny i kwark powabny. Istnieje jeszcze trzecia generacja fermionów (taon, neutrino taonowe, kwark spodni i kwark szczytowy) oraz 4 bozony cechowania przenoszące oddziaływania i bozon Higgsa, nadający masę cząstkom, z którymi oddziałuje. Bozon Higgsa jest przedmiotem intensywnych badań od czasu jego wykrycia w 2012 roku. Jego znalezienie było głównym zadaniem Wielkiego Zderzacza Hadronów. Jedną z podstawowych metod badań jest obserwacja jego rozpadu. Eksperyment CMS wykazał, że bozon Higgsa rozpada się na dwa miony a prawdopodobieństwo takiego wydarzenia wynosi 3 sigma. Oznacza to, że jeśli taki rozpad nie istnieje, to pojawienie się takich danych w CMS wynosi mniej niż 1:700. Z kolei ATLAS wskazał na istnienie rozpadu Higgsa do dwóch mionów z prawdopodobieństwem 2 sigma. Tutaj szanse na otrzymanie fałszywego sygnału to 1:40. Razem z pewnością znacznie przekraczającą 3 sigma można mówić o istnieniu opisanego mechanizmu. Odkrycie ogłasza się przy 5 sigma. Wydaje się, że bozon Higgsa wchodzi w interakcje z cząstkami elementarnymi drugiej generacji w sposób zgodny z Modelem Standardowym. Podczas kolejnej kampanii badawczej będziemy uściślali te wyniki, mówi Roberto Carlin, rzecznik prasowy CMS. Bozon Higgsa to kwantowa manifestacja pola Higgsa, które nadaje masę cząstkom elementarnym. Mierząc tempo rozpadu bozonu Higgsa w różne cząstki fizycy mogą obliczyć siłę ich interakcji z polem Higgsa. Im szybszy rozpad, tym silniejsze interakcje. Dotychczas Wielki Zderzacz Hadronów wykazał, że bozon Higgsa rozpada się w różne bozony, jak W i Z czy cięższe fermiony, jak leptony tau. Zmierzono też interakcje z najcięższymi kwarkami, górnym i spodnim. Miony są znacznie lżejsze, więc słabiej reagują z polem Higgsa. Pomiary bozonu Higgsa osiągnęły wyższy poziom precyzji, dzięki czemu możemy badać rzadsze sposoby rozpadu, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS. Poważnym problemem w prowadzeniu opisywanych tutaj badań jest fakt, że na każdy bozon Higgsa rozpadający się na dwa miony przypadają tysiące par mionów powstających w wyniku innych procesów. Charakterystyczną sygnaturą bozonu Higgsa po rozpadzie do mionów jest niewielki nadmiar mas par mionów przy energii 125 GeV, czyli masie bozonu Higgsa. Wyizolowanie tego rozpadu nie jest łatwe. By to zrobić naukowcy musieli mierzyć energię, pęd oraz moment pędu mionów. Specjaliści spodziewają się, że dzięki kolejnym kampaniom badawczym oraz wykorzystaniu w przyszłości High-Luminosity LHC można będzie mówić o osiągnięciu pewności (5 sigma) i odkryciu, że bozon Higgsa rozpada się do mionów. « powrót do artykułu
×
×
  • Dodaj nową pozycję...