Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' rozmnażanie'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami. Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości. Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie. Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran. Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla. Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3). Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3. Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki. Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania. Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła. Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%. Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej. Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu. Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię. Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych). « powrót do artykułu
  2. Dzikie jelenie szlachetne z wyspy Rum na Morzu Hebrydzkim ewoluują, by rodzić wcześniej z powodu ocieplenia klimatu. Wcześniejsze badania wykazały, że jelenie rodzą wcześniej od lat 80. XX w.; tempo zmian to ok. 3 dni przesunięcia na dekadę. Wykazano, że po części odpowiada za to wpływ wyższych temperatur na zachowanie i fizjologię zwierząt. Ostatnio naukowcy ujawnili, że w grę wchodzą także zmiany genetyczne spowodowane doborem naturalnym. Studium, którego wyniki ukazały się w piśmie PLoS Biology, demonstruje rzadki przykład ewolucji zachodzącej na tyle szybko, że da się ją wykryć na przestrzeni paru dekad. Zespół, w którego skład wchodzili m.in. akademicy z Uniwersytetu w Edynburgu, dokonał odkrycia, analizując dane terenowe i genetyczne, zebrane na Rum przez 45 lat (od 1972 r.). Samice rozmnażające się wcześniej w ciągu roku mają na przestrzeni życia więcej potomstwa. Ponieważ geny odpowiadające za wcześniejsze rodzenie wiążą się z większym sukcesem reprodukcyjnym, z czasem stały się one częstsze w populacji. W przesłanym Kopalni Wiedzy mailu prof. Josephine Pemberton z Uniwersytetu w Edynburgu wyjaśniła, że dzieje się tak, gdyż mając cielę wcześniej, samice mogą się zregenerować latem, co zwiększa prawdopodobieństwo zarówno ponownego poczęcia w październiku, jak i przeżycia zimy. To jeden z tych rzadkich przypadków, kiedy udało się udokumentować ewolucję w działaniu. Tutaj pomaga ona zwierzętom przystosować się do zmiany klimatu - podkreśla dr Timothée Bonnet z Australijskiego Uniwersytetu Narodowego (ANU). « powrót do artykułu
  3. Chwytanie słoni do niewoli ma długofalowy wpływ na ich rozmnażanie, a także na przeżywalność ich młodych do wieku 5 lat. Naukowcy z międzynarodowego zespołu badali grupę 2685 samic słoni indyjskich, wykorzystywanych przez przemysł drzewny w Mjanmie. Część z nich złapano (1362), a część urodziła się w niewoli (1323). Okazało się, że sukces reprodukcyjny złapanych samic był niższy. Odnotowano znacząco mniejsze prawdopodobieństwo rozmnożenia w ciągu życia, niższe szanse na rozmnożenie w szczycie możliwości reprodukcyjnych, a także starszy wiek pierwszego rozrodu. Ekipa z Uniwersytetu w Sheffiled, Uniwersytetu w Turku i Myanma Timber Enterprise (MTE) podkreśla, że po raz pierwszy zademonstrowano, że u długowiecznych ssaków schwytanie ma utrzymujący się negatywny wpływ na reprodukcję w ciągu życia. Alternatywne wyjaśnienie mogłoby być takie, że słonie urodzone w niewoli czerpią korzyści z ludzkiej opieki, co poprawia kondycję ich organizmów i wspiera rozród (w porównaniu do dzikich osobników) i że schwytane słonie dopiero po jakimś czasie dorównują im pod tym względem. Autorzy publikacji z Proceedings of the Royal Society B zauważają jednak, że schwytane i urodzone w niewoli słonice doświadczają w półniewoli takich samych warunków i cechują je zbliżone wzorce wzrostu czy wagi. Ponadto słonie urodzone w niewoli mają podobne wskaźniki śmiertelności i dzietności co dzikie słonie, a u słoni schwytanych tuż po złapaniu i poskramianiu występują duże spadki przeżywalności, które utrzymują się ponad dekadę. Wygląda więc na to, że stwierdzone różnice reprodukcyjne są najprawdopodobniej skutkiem negatywnego wpływu samego procesu łapania. Naukowcy stwierdzili, że niekorzystne efekty były silniejsze u słonic, które schwytano w starszym wieku oraz tuż po złapaniu. Utrzymywały się one ponad 10 lat. Proces łapania ma więc swoje natychmiastowe i długoterminowe skutki. W takich krajach jak Mjanma, Indie czy Tajlandia w niewoli trzyma się ok. 16 tys. słoni indyjskich. Pracują one przy transporcie drzewa lub w turystyce. By utrzymać te gałęzie przemysłu, słonie są stale chwytane. Długoterminowy wpływ tego procederu nie był jednak dobrze zbadany. Akademicy dodają, że by np. chronić zagrożone gatunki, w niewoli trzyma się wiele zwierząt. Programy ochrony, które zakładają rozmnażanie w niewoli [...], muszą [zatem] uwzględniać fakt, że łapanie zwierząt na wolności może na nie wpływać przez wiele lat i że może to utrudniać przyszłe wysiłki konserwacyjne - podkreśla John Jackson, doktorant z Uniwersytetu w Sheffield. "Odkrycie długofalowych skutków łapania zwierząt jest ważnie nie tylko dla utrzymania populacji słoni, ale także dla wielu innych chwytanych gatunków". Kluczową rzeczą, jaką zauważyliśmy, jest to, że negatywne skutki zabierania zwierząt z ich środowiska utrzymują się na przestrzeni dziesięcioleci. Efekt domina dotyczy pokoleń. Specjaliści powinni to brać pod uwagę, łapiąc zwierzęta, bo nawet jeśli w niewoli stworzy im się dobre warunki, nadal mogą mieć problemy z rozrodem - dodaje prof. Virpi Lummaa z Uniwersytetu w Turku. Ekipa dodaje, że chwytanie wpływa na rozmnażanie na wiele różnych sposobów, zarówno bezpośrednio, jak i pośrednio. Zastosowane w niewłaściwej dawce leki do usypiania dużych ssaków mają np. niekorzystny wpływ na płodność samic. Schwytanie ciężarnych samic może prowadzić do urazów i zmian rozwoju płodowego, a nawet poronienia. Stres upośledza wszelkie aspekty płodności: zaburza zagnieżdżenie zarodka czy wywołuje trwały brak cyklu rujowego. Poza tym kontrakty z ludźmi zmieniają system społeczny, warunki życia, a także współzawodnictwo wewnątrz- i międzygatunkowe, co także może oddziaływać na funkcjonowanie rozrodcze. « powrót do artykułu
×
×
  • Create New...