Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' metapowierzchnia' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Współpraca naukowców z Princeton University i University of Washington zaowocowała powstaniem aparatu fotograficznego wielkości kryształu soli. Miniaturowe aparaty powstawały już wcześniej, jednak rejestrowały rozmyte obrazy o ograniczonym polu widzenia. Amerykanie poradzili sobie z tymi problemami i zapewniają, że ich aparat jest w stanie rejestrować pełnokolorowe obrazy o takiej jakości, jaką rejestrują standardowe aparaty o 500 tysięcy razy większych obiektywach. Nowe urządzenie może zostać wykorzystane do minimalnie inwazyjnej endoskopii czy jako systemy wizualne dla miniaturowych robotów. A tysiące takich aparatów umieszczonych na dużej powierzchni pozwoli na zmienienie jej w wielki aparat fotograficzny. W tradycyjnych aparatach fotograficznych stosuje się odpowiednio wyprofilowane szklane lub plastikowe soczewki skupiające światło. Miniaturowy aparat korzysta zaś z metapowierzchni. Ma ona wymiary zaledwie 0,5 x 0,5 milimetra ale zmieszczono na niej 1,6 miliona cylindrycznych słupków. Każdy z nich ma unikatową geometrię i działa jak antena optyczna. Dzięki indywidualnemu dobraniu kształtu każdego ze słupków możliwe było odpowiednie skorygowanie powierzchni falowej docierającego doń światła. Słupki zaprojektowano tak, by ich interakcja ze światłem skutkowała najostrzejszym obrazem o największym polu widzenia wśród wszystkich w pełni kolorowych aparatów fotograficznych wykorzystujących metapowierzchnie. Głównym osiągnięciem naukowców z Princeton i Seattle jest zintegrowanie projektu powierzchni optycznej i algorytmu przetwarzania sygnałów. To znakomicie zwiększyło możliwości aparatu w naturalnym świetle. Wcześniej, by w aparatach wykorzystujących metapowierzchnie uzyskać wysokiej jakości obraz, konieczne było zastosowanie lasera lub stworzenie w laboratorium innych idealnych warunków. Naukowcy porównali swój aparat z innymi wykorzystującymi metapowierzchnie oraz z tradycyjnymi aparatami. Nie licząc nieco rozmytego obrazu na krawędziach, jakość zdjęć z ich miniaturowego aparatu jest porównywalna z jakością zdjęć z aparatu o obiektywie o 500 000 razy większej objętości. Udało się też uniknąć najpoważniejszych problemów trapiących dotychczas miniaturowe aparaty korzystające z metapowierzchni: małego pola widzenia, ograniczonych możliwości rejestracji pełnego spektrum światła widzialnego czy dużych deformacji obrazu. Olbrzymim osiągnięciem jest odpowiednia współpraca setek tysięcy nanoanten z algorytmem przetwarzającym obraz. Dotychczas nie wiedziano, jak to zrobić. Ze względu na wielką liczbę nanoanten, ich różną konfigurację i złożone interakcje pomiędzy nimi a światłem, opracowanie odpowiedniego algorytmu wymagało długiego czasu i olbrzymich zasobów pamięci. Współautor badań, Shane Colburn, poradził sobie z tym problemem tworząc efektywne przybliżenie interakcji pomiędzy światłem a metapowierzchnią. Autorem samej metapowierzchni jest zaś James Whitehead, który stworzył ją na bazie azotku krzemu. To materiał kompatybilny ze współczesnymi technologiami stosowanymi w przemyśle półprzewodnikowych, co oznacza, że można go będzie masowo produkować i będzie tańszy niż tradycyjne soczewki. Zaprezentowane tutaj podejście nie jest niczym nowym, jednak jest to pierwszy system, w którym połączono metapowierzchnię i oparty na sieciach neuronowych system przetwarzania informacji. Najważniejszym osiągnięciem jest tutaj osiągnięcie kompatybilności pomiędzy rozmiarami, kształtem i lokalizacją milionów punktów na metapowierzchni, a parametrami używanymi przez algorytmy przetwarzające dane i uzyskanie dzięki temu obrazu o wymaganej jakości, chwali autorów badań Joseph Mait, były główny naukowiec w U.S. Army Research Laboratory. Obecnie uczeni z Princeton i Seattle pracują nad wyposażeniem swojego aparatu w większe możliwości obliczeniowe. Chcą w ten sposób nie tylko poprawić jakość obrazu, ale również wyposażyć go w możliwość wykrywania obiektów oraz inne cechy przydatne w obrazowaniu medycznym i robotyce. Takie ultrakompaktowe aparaty pozwolą też na zamianę powierzchni w duże aparaty. Cały tył smartfona mógłby być jednym dużym aparatem fotograficzym. Już teraz możemy zacząć myśleć o zupełnie nowej architekturze urządzeń przyszłości, mówi Felix Heide z Princeton University. « powrót do artykułu
  2. Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters. Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL. Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości. Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies. Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach. Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp. Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii. « powrót do artykułu
×
×
  • Dodaj nową pozycję...