Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' komórka nowotworowa'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. Specjaliści z Medical Research Council (MRC) Weatherall Institute of Molecular Medicine na Oxford University opracowali nową technikę, która pozwala śledzić błędy genetyczne w indywidualnych komórkach nowotworowych i wyłapywać te, które mogą prowadzić do niekontrolowanego wzrostu. Wcześniejsze próby śledzenia błędów w indywidualnych komórkach były albo bardzo nieprecyzyjne, albo pozwalały na jednoczesne śledzenie niewielkiej liczby komórek. Teraz powstała metoda pozwalająca na jednoczesne śledzenie mutacji w tysiącach komórek oraz mierzenie, w jaki sposób mutacje te wpływają na dekodowanie DNA. Technika TARGET-seq działa ponadto na całym transkryptomie. Możliwość śledzenia mutacji i ich konsekwencji jest niezwykle ważne, gdyż mimo postępów współczesnej medycyny jest niezwykle trudno całkowicie pozbyć się komórek nowotworowych. Ponadto w pojedynczym guzie istnieje wiele rodzajów komórek nowotworowych i mogą one różnie się zachowywać i różnie reagować na leczenie. Zrozumienie genetyki indywidualnych komórek jest zatem niezwykle ważne przy doborze leczenia indywidualnego. Bez wiedzy, jakiego rodzaju komórki nowotworowe znajdują się w ciele pacjenta, trudno jest przewidzieć, w jaki sposób pacjent zareaguje na leczenie. To zaś oznacza, że u pacjentów nowotworowych często dochodzi do nawrotów, gdyż terapia zabiła tylko niektóre rodzaje komórek nowotworowych, mówi profesor Adam Mead. Podczas testów przeprowadzonych na próbkach pobranych od 15 pacjentów okazało się, że TARGET-seq przekazuje tak szczegółowe informacje o błędach genomu i transkryptomu, iż możliwe jest odtworzenie całej „historii życia” każdej komórki w całym guzie, dzięki czemu możemy poznać kolejność, w jakiej zachodziły kolejne mutacje. Tym, co bardzo zdziwiło badaczy było odkrycie, że nawet pacjenci, którzy mieli bardzo podobne nowotwory i byli leczeni w ten sam sposób posiadali w guzach komórki o bardzo różnych „dziejach życiowych”. Zespół Meada chce teraz zastosować nową technikę do zbadania próbek pobranych od setek pacjentów i w ten sposób zidentyfikować najbardziej rozpowszechnione sekwencje wydarzeń. Zdobycie takiej informacji jest bardzo ważne, gdyż nie tylko daje nam wiedzę o tym, jak z czasem zmienia się guz, ale i o tym, jak może zareagować w przyszłości na leczenie. Nie ma dwóch pacjentów o identycznej populacji komórek nowotworowych i identycznym wzorcu ewolucji. Nasza technika pozwala lekarzom na monitorowanie tego, co dzieje się z nowotworem w trakcie leczenia i dobrania terapii pod kątem populacji komórek u każdego z pacjentów. « powrót do artykułu
  2. Jednoczesne wykorzystanie trzech zaawansowanych metod walki z czerniakiem – celowanej terapii molekularnej, blokady punktów kontrolnych oraz użycie wirusów onkolitycznych – może poprawić efekty leczenia. Stwierdziliśmy, że wirus onkolityczny T-VEC działa znacznie lepiej i skuteczniej zabija komórki nowotworowe, gdy zostanie połączony z inhibitorem MEK i blokerem PD-1. Wszystkie trzy terapie są już zatwierdzone przez FDA, zatem nasze badania pokazują tylko, że można ich łącznie używać. Teraz priorytetem powinno stać się rozpoczęcie badań klinicznych nad taką terapią, mówi główny autor badań, doktor Howard Kaufman. Wirus onkolityczny T-VEC zabija komórki nowotworowe. Co prawda zaraża on też zdrowe komórki, ale nie może się w nich namnażać, nie powoduje więc ich śmierci. Z kolei inhibitor MEK (kinaza kinazy aktywowanej mitogenem) wycisza szlak MAPK/ERK, który jest nadaktywny w niektórych nowotworach. Wspomniana cząsteczka PD-1 to białko, które hamuje odpowiedź układu odpornościowego, chroniąc nowotwór przed atakiem z jego strony. Około 50% przypadków czerniaka jest spowodowanych mutacjami w genie BRAF. Inhibitory BRAF i MEK znacząco poprawiają wyniki leczenia. Jednak często dochodzi do pojawienia się oporności na te leki, szczególnie wtedy, gdy podczas terapii wykorzystywanych jest wiele inhibitorów. Dobre wyniki leczenia zapewniają też inhibitory punktów kontrolnych, biorących na cel PD-1. Jednak łączenie inhibitorów punktów kontrolnych prowadzi do zwiększenia toksyczności leków. Podczas omawianych badań Kaufman i jego zespół najpierw połączyli inhibitor BRAF o nazwie vemurafenib z wirusem T-VEC. Badania prowadzili w laboratorium na ludzkich komórkach i na myszach z mutacją BRAF. Okazało się, że połączenie takie zwiększa liczbę zabitych komórek nowotworowych z mutacją BRAF. Jednak nie to zwróciło uwagę naukowców. Ze zdumieniem stwierdzili oni bowiem, że – użyte do porównania – połączenie T-VEC i inhibitora MEK o nazwie trametinib, zabija komórki czerniaka z mutacją BRAF i bez tej mutacji. Po bliższym przeanalizowaniu zaobserwowanego zjawiska okazało się, że dużą rolę odgrywa w nim m.in. reakcja zapalna związana ze zwiększoną ekspresją PD-1. Uczeni postanowili spróbować nowej kombinacji. Połączyli T-VEC, trametinib oraz przeciwciało monoklonalne blokujące PD-1. Taki potrójny atak okazał się niezwykle skuteczny. Podczas badań na myszach użycie samego T-VEC lub samego inhibitora MEK wywoływało pozytywną odpowiedź u około 20% zwierząt. Połączeni tych dwóch środków doprowadziło do pojawienia się pozytywnych wyników leczenia u 50% zwierząt, a dodanie do nich blokera PD-1 spowodowało, że niemal u 100% myszy zauważono, iż komórki nowotworowe giną. Połączenie trzech leków testowano też na myszach z rakiem jelita grubego. Terapia znacząco wydłużyła życie zwierząt, doprowadzając do zaniku guzów. Wciąż nie znamy mechanizmu odpowiedzialnego za skutki leczenia wszystkimi trzema terapiami. Badania nad myszami z rakiem jelita grubego sugerują, że nowa terapia może być pomocna nie tylko w przypadku czerniaka. Musimy przeprowadzić badania kliniczne, by przekonać się, czy terapia taka rzeczywiście pomaga ludziom, stwierdza doktor Kaufman. « powrót do artykułu
  3. Immunoterapia przeciwnowotworowa odgrywa coraz większą rolę w walce z nowotworami. To metoda, która polega na zaprzęgnięciu układu odpornościowego do zwalczania nowotworów. Na University of California San Diego właśnie powstała nowa metoda walki z komórkami nowotworowymi. Tamtejsi naukowcy wykorzystali limfocyty B do produkcji pęcherzyków zawierających mikroRNA. Gdy pęcherzyk zostanie wchłonięty przez komórkę nowotworową, uwalnia gen, który zaburza wzrost guza. U leczonych tą metodą myszy guzy były znacząco mniejsze i było ich mniej niż u zwierząt nieleczonych. Sądzimy, że w przyszłości metoda ta może posłużyć do leczenia pacjentów, u których zawiodły inne terapie. Dużą zaletą tego podejścia jest fakt, że jest ono zlokalizowane, więc potencjalnie wystąpi tutaj mniej skutków ubocznych. Działa też przed długi czas, zatem pacjent mógłby otrzymać mniej injekcji lub infuzji. Prawdopodobnie też metoda ta będzie działała przeciwko różnym typom nowotworów, w tym nowotworom piersi, jajników, układu pokarmowego, trzustki i rakowi wątrobowokomórkowemu, stwierdził główny autor badań, profesor Maurizio Zanetti. MikroRNA nie koduje protein. Wiąże za to matrycowy RNA, który koduje proteiny, uniemożliwiając ich kodowanie. W komórkach nowotworowych mRNA jest zwykle mniej aktywne, dzięki czemu komórki te mogą bez przeszkód się rozwijać. Zanetti i jego zespół wykorzystali miR-335, mRNA, które tłumi aktywność SOX4, czynnika transkrypcji wspomagającego rozwój guzów. W laboratorium dodali prekursor miR-335 do limfocytów B. Limfocyty zamieniły prekursor w dojrzałe aktywne miR-335 i opakowały je w niewielkie pęcherzyki. Każdy limfocyt B produkował w ciągu doby 100 000 pęcherzyków z miR-335. To wystarczająca ilość do zaatakowania 10 komórek nowotworowych. Podczas testów na myszach naukowcy wszczepili zwierzętom ludzkie komórki nowotworu piersi. Części myszy podano pęcherzyki z miR-335, a części – puste pęcherzyki. Po 60 dniach okazało się, że u 100% myszy (5 na 5) traktowanych pustymi pęcherzykami rozwinęły się duże guzy nowotworowe. Jednocześnie w tym samym czasie guzy pojawiły się u 44% (4 na 9) myszy leczonych pęcherzykami z miR-335. Co więcej przeciętny guz u myszy, którym podawano miR-335 był 260-krotnie mniejszy niż u myszy nieleczonych (7,2 mm3 wobec 1986 mm3). Terapia działała też przez długi czas. Wyższy poziom miR-335 utrzymał się 60 dni po podaniu. Byliśmy zaskoczeni faktem, że nawet niewielkie zmiany w ekspresji genów komórek nowotworowych, jakie zaszły po podaniu miR-335, były powiązane ze stłumieniem aktywności molekuł koniecznych do rozwoju guza, przyznaje profesor Hannah Carter. Profesor Zanett mówi, że dalszy rozwój tej metody może przebiegać dwoma drogami. Jedna z nich to pozyskiwanie w laboratorium z limfocytów B pęcherzyków z miR-335 i wprowadzanie ich do organizmu pacjenta. Sposób drugi to wstrzykiwanie samych limfocytów B. Wyzwaniem będzie dostarczenie limfocytów B czy pęcherzyków w sąsiedztwo guza. Łatwiej będzie to uczynić tam, gdzie guz jest dostępny i można użyć strzykawki. Jednak wiele guzów jest umiejscowionych w trudno dostępnych miejscach. Dlatego też Zanetti i jego zespół pracują obecnie nad udoskonaleniem metod dostarczenia leku, zwiększenia jego skuteczności i zmniejszenia skutków ubocznych. Idealnie byłoby, gdybyśmy w przyszłości byli w stanie sprawdzać pacjentów pod kątem poziomu miR-335 i SOX4. Wtedy leczylibyśmy tylko tych, u których byłaby największa szansa na powodzenie naszej terapii. To właśnie nazywamy spersonalizowaną precyzyjną medycyną. Można też dostosować tę technikę do użycia z innymi typami mRNA i atakowania innych komórek nowotworowych, dodaje uczony. « powrót do artykułu
  4. Specjalistom z University of Minnesota udało się powstrzymać komórki nowotworowe przed rozprzestrzenianiem się oraz zbadać w jaki sposób zostały one powstrzymane. Od lat wiadomo, że komórki nowotworowe rozprzestrzeniają się po określonych trasach. Wykorzystują swoiste „autostrady” do ruchu wewnątrz guza oraz, po jego opuszczeniu, po naczyniach krwionośnych i tkankach. Osoby, u których występuje duża liczba takich „autostrad” mają mniejsze szanse na przeżycie choroby. Dotychczas nie wiedziano, w jaki sposób komórki nowotworowe rozpoznają te drogi i jak się po nich poruszają. Uczeni z University of Minnesota badali w warunkach laboratoryjnych sposób przemieszczania się komórek raka piersi i wykorzystywali różne leki, próbując powstrzymać ich ruch. Okazało się, że gdy zaburzyli mechanizm, który zwykle pozwala komórkom na poruszanie się, nagle komórki nowotworowe zaczęły poruszać się jak bezkształtna galaretowata masa. Komórki nowotworowe są bardzo podstępne. Nie spodziewaliśmy się, że zmienią sposób poruszania się. To wymusiło na nas zmianę taktyki tak, by jednocześnie zablokować oba rodzaje ruchu. Dopiero wówczas przestały się poruszać i pozostały w miejscu, mowi jeden z autorów badań, profesor Paolo Provenzano. Przerzuty są przyczyną śmierci 90% osób umierających na nowotwory. Jeśli udałoby się zablokować ruch komórek, pacjenci i lekarze zyskaliby więcej czasu na wdrożenie skutecznego leczenia. Kolejnym krokiem badań będzie rozszerzenie eksperymentów na badania na zwierzętach. Mają nadzieję, że w ciągu kilku lat uda im się rozpocząć badania kliniczne na ludziach. Chcą też badać interakcje leków z komórkami nowotworowymi i ewentualne efekty uboczne. Naszym ostatecznym celem jest znalezienie sposobu na całkowite zablokowanie ruchu komórek nowotworowych i zwiększenie ruchliwości komórek układu odpornościowego, by te zwalczały nowotwór, mówi Provenzano. « powrót do artykułu
  5. Przez ostatnie dekady naukowcy pracowali nad lekami zabijającymi szybko dzielące się komórki nowotworowe. Teraz wiele grup naukowych zmieniło priorytety. Pracują nad lekami przeciwko złośliwym uśpionym komórkom rozsianym po całym ciele. Nowe lekarstwa mają uniemożliwić im utworzenie guzów nowotworowych. Te uśpione komórki powodują przerzuty odpowiedzialne za około 90% zgonów pacjentów nowotworowych. To właśnie one zabijają ludzi, u których, jak wszystko na to wskazywało, doszło do skutecznego wyleczenia nowotworu. Metody leczenia, które biorą na cel dzielące się komórki, zwykle nie działają na komórki uśpione, gdyż te się nie dzielą. Uśpione komórki są nieliczne i trudno je zidentyfikować wśród bilionów prawidłowych komórek organizmu. Przez wiele lat brakowało narzędzi pozwalających na ich badanie. Jednak powoli się to zmienia. W Montrealu trwa właśnie trzydniowa konferencja, która jest pierwszym szeroko zakrojonym spotkaniem naukowców zajmujących się uśpionymi komórkami. Liczba naukowców pracujących nad tym problemem osiągnęła masę krytyczną. Zdano sobie sprawę, że jest to bardzo ważne, mówi Julio Aguirre-Ghiso z Icahn School of Medicine. Paląca potrzeba nowej terapii występuje przede wszystkim w nowotworach, które często nawracają, nawet po latach od leczenia. Dzieje się tak w przypadku nowotworów piersi, prostaty i trzustki. Usuwamy guza, naświetlamy, robimy to i tamto. A wcześniej czy później pojawiają się przerzuty i człowiek zastanawia się, skąd się one wzięły, mówi Mina Bissell z Lawrence Berkeley National Laboratory. Coraz więcej dowodów wskazuje na to, że uśpione komórki nowotworowe uwalniają się z guza we wczesnej fazie jego rozwoju i wędrują z krwioobiegiem do różnych części ciała. Tam pozostają nieaktywne przez długi czas, aż coś – obecnie nie wiadomo co – powoduje ich aktywację. Wówczas zaczynają się dzielić i tworzą nowego guza. Gdy naukowcy próbowali badać takie komórki, szybko napotkali na poważne problemy. Wykorzystywane modele mysie były przygotowane do badań nad szybko dzielącymi się komórkami. Tutaj zaś potrzebny jest model powolnego wzrostu i możliwość śledzenia komórek przez długi czas po usunięciu pierwotnego guza. W ostatnim czasie kilka laboratoriów poczyniło postępy w opracowaniu modelu mysiego, w którym uśpione komórki nowotworowe można śledzić dłużej niż przez rok. Joshua Snyder z Duke University udoskonalił też same metody znakowania i śledzenia komórek, a Jason Bielas z Fred Hutchinson z Cancer Research Center stworzył technikę znakowania komórek za pomocą sekwencji DNA. To tania technika pozwalająca na zidentyfikowanie pojedynczej komórki nowotworowej wśród miliarda zdrowych komórek. Naukowcy mają nadzieję, że gdy będą w stanie identyfikować i śledzić takie komórki, dowiedzą się, co powoduje, że nagle zaczynają się one dzielić. Niewykluczone, że uda się je powstrzymać przed dzieleniem się. Pierwsze tego typu próby zostały już przeprowadzone. Niektóre zespoły naukowe pracują zaś nie nad powstrzymaniem uśpionych komórek przed obudzeniem się, a nad ich zabiciem. Wstępne badania sugerują, że do tego celu może nadawać się inhibitor proteiny PERK. Jesteśmy coraz bliżej dnia, w którym będziemy mogli bardzo wcześnie wykrywać nawrót nowotworu, stwierdziła Kathy Miller, onkolog specjalizująca się w nowotworach piersi. « powrót do artykułu
×