Search the Community
Showing results for tags ' kolczuga'.
Found 1 result
-
Inżynierowie z California Institute of Technology (Caltech) i Jet Propulsion Laboratory (JPL) stworzyli inspirowany kolczugami materiał, który pod wpływem przyłożonego napięcia zmienia się z miękkiego i giętkiego w sztywny. Materiał taki może przydać się do tworzenia egzoszkieletów czy rusztowań zmieniających swoją sztywność w miarę gojenia się ran. Być może posłuży też do budowy... mostów, które można będzie przywieźć na miejsce w rolce, rozwinąć i usztywnić. Chcieliśmy stworzyć materiał, który zmienia sztywność na żądanie, mówi profesor Chiara Daraio. Naszym celem było uzyskanie tkaniny, która z miękkiej w kontrolowany sposób staje się sztywna, dodaje. Takie materiały spotykaliśmy dotychczas w literaturze. Dość przypomnieć tutaj kolczugę z mithrilu, którą Frodo otrzymał od Bilba czy pelerynę Batmana z filmu Batman Begins. W życiu codziennym dość często spotykamy się z materiałami, których sztywność została zmieniona. Wystarczy przypomnieć sobie np. paczkę próżniowo zapakowanej kawy. Jest sztywna i twarda, jednak natychmiast po przebiciu opakowania całość staje się miękka. Takie struktury jak kawa czy piasek mają złożone kształty, nie są ze sobą połączone i mogą usztywniać się tylko pod wpływem kompresji. Z kolei kolczuga, złożona z połączonych metalowych pierścieni może stawać się sztywna zarówno gdy ją ściśniemy, jak i gdy ją rozciągniemy. I to właśnie ta jej właściwość zainspirowała naukowców. Przetestowaliśmy wiele różnych cząstek, by sprawdzić, które są zarówno elastycznej, jak i można nadać im sztywność. Okazało się, że te, które zyskują sztywność tylko podczas jednego z rodzajów przyłożonej siły (ściskania lub rozciągania) nie sprawują się najlepiej, mówi profesor Daraio. Uczeni sprawdzili więc całą gamę kształtów, od połączonych pierścieni, poprzez połączone sześciany po połączone ośmiościany foremne, które przypominają dwie piramidy złączone podstawami. W modelowaniu interakcji tego typu struktur brał udział profesor Jose E. Andrade, specjalista od modelowania zachowania materiałów ziarnistych. Materiały ziarniste to piękny przykład złożonego systemu, w którym proste interakcje na poziomie poszczególnych ziaren mogą przekładać się na złożone zmiany strukturalne całości, mówi Andrade. Naukowcy prowadzili symulacje komputerowe oraz wytwarzali za pomocą drukarek 3D obiecujące struktury i testowali je w laboratorium. Podczas testów materiały albo ściskano w komorach próżniowych albo zrzucano na nie ciężary. W jednym przypadku taka „kolczuga” utrzymała masę 50-krotnie większą od własnej masy. Testy wykazały, że strukturami o największych zmianach właściwości mechanicznych pomiędzy stanem elastycznym a sztywnym, były struktury o największej średniej liczbie punktów stycznych pomiędzy tworzącymi je elementami. Tego typu tkaniny mają największy potencjał. Mogą być lekkie, miękkie i wygodne w użyciu, a pod wpływem przyłożonej siły stają się sztywną strukturą, która może wspierać i chronić właściciela, wyjaśnia Yifan Wang, jeden z autorów badań. Jak już wspomnieliśmy, taki materiał może posłużyć również do budowy mostów. Jak więc spowodować, by coś, co zostało przywiezione w rolce utrzymało ludzi czy pojazdy? Profesor Daraio mówi, że przez taki materiał można np. przeciągnąć liny, za pomocą których materiał zostanie ściśnięty i usztywniony. Te liny będą działały tak, jak troczki, za pomocą których ściągamy np. kaptur, wyjaśnia. « powrót do artykułu
- 12 replies
-
- sztywność
- elastyczność
-
(and 3 more)
Tagged with: