Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' kanał jonowy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Naukowcy z MIT ze zdumieniem zauważyli, że ludzkie neurony mają mniejsze niż można by się spodziewać zagęszczenie kanałów jonowych w porównaniu z innymi ssakami. Kanały jonowe wytwarzają impulsy elektryczne, za pomocą których neurony się komunikują. To kolejne w ostatnim czasie zdumiewające spostrzeżenie dotyczące budowy mózgu. Niedawno informowaliśmy, że zagęszczenie synaps z mózgach myszy jest większe niż w mózgach małp. Naukowcy wysunęli hipotezę, że dzięki mniejszej gęstości kanałów jonowych ludzki mózg wyewoluował do bardziej efektywnej pracy, co umożliwia mu zaoszczędzenie energii na potrzeby innych procesów wymaganych przy złożonych zadaniach poznawczych. Jeśli mózg może zaoszczędzić energię zmniejszając zagęszczenie kanałów jonowych, może tę zaoszczędzoną energię użyć na potrzeby innych procesów, stwierdził profesor Mark Harnett z McGovern Institute for Brain Research na MIT. Wraz z doktorem Lou Beaulieu-Laroche'em porównywali neurony wielu gatunków ssaków, szukając w nich wzorców leżących u podstaw ekspresji kanałów jonowych. Badali dwa rodzaje zależnych od napięcia kanałów potasowych oraz kanał HCN neuronów piramidowych w V warstwie kory mózgowej. Naukowcy badali 10 ssaków: ryjówki etruskie, suwaki mongolskie, myszy, szczury, króliki, marmozety, makaki, świnki morskie, fretki oraz ludzkie tkanki pobrane od pacjentów z epilepsją. Przeprowadzili najszerzej zakrojone badania elektrofizjologiczne tego typu. Uczeni odkryli, że wraz ze zwiększeniem rozmiarów neuronów, zwiększa się gęstość kanałów jonowych. Zależność taka istnieje u 9 z 10 badanych gatunków. Gatunki o większych neuronach, a zatem zmniejszonym stosunku powierzchni do objętości, mają zwiększone przewodnictwo jonowe błon komórkowych. Wyjątkiem od tej reguły są ludzie. To było zdumiewające odkrycie, gdyż wcześniejsze badania porównawcze wykazywały, że ludzki mózg jest zbudowany tak, jak mózgi innych ssaków. Dlatego też zaskoczyło nas, że ludzkie neurony są inne, mówi Beaulieu-Laroche. Uczeni przyznają, że już sama zwiększająca się gęstość kanałów jonowych była dla nich zaskakująca, jednak gdy zaczęli o tym myśleć, okazało się to logiczne. W mózgu małego ryjówka etruskiego, który jest upakowany bardzo małymi neuronami, ich zagęszczenie w danej objętości jest większe, niż w mózgu królika, który ma znacznie większe neurony. Jednak jako że neurony królika mają większe zagęszczenie kanałów jonowych, to na daną objętość mózgu u obu gatunków zagęszczenie kanałów jonowych jest takie samo. Taka architektura mózgu jest stała wśród dziewięciu różnych gatunków ssaków. Wydaje się, że kora mózgowa stara się zachować tę samą liczbę kanałów jonowych na jednostkę objętości. To oznacza, że na jednostkę objętości kory mózgowej koszt energetyczny pracy kanałów jonowych jest taki sam u różnych gatunków. Wyjątkiem okazuje się tutaj mózg człowieka. Naukowcy sądzą, że mniejsze zagęszczenie kanałów jonowych w mózgach H. sapiens wyewoluowało jako sposób na zmniejszenie kosztów energetycznych przekazywania jonów, dzięki czemu mózg mógł wykorzystać tę energię na coś innego, na przykład na tworzenie bardziej złożonych połączeń między neuronami. Sądzimy, że w wyniku ewolucji ludzki mózg „wyrwał się” spod tego schematu, który ogranicza wielkość kory mózgowej i stał się bardziej efektywny pod względem energetycznym, dlatego też w porównaniu z innymi gatunkami nasze mózgu zużywają mniej ATP na jednostkę objętości, mówi Harnett. Uczony ma nadzieję, że w przyszłości uda się określić, na co zostaje zużyta zaoszczędzona przez mózg energie oraz przekonamy się, czy u ludzi istnieją jakieś specjalne mutacje genetyczne, dzięki którym neurony w naszej korze mózgowej mogą być bardziej wydajne energetycznie. Naukowcy chcą też sprawdzić, czy zjawisko zmniejszenie gęstości kanałów jonowych występuje również u innych naczelnych. « powrót do artykułu
  2. Niektórzy ludzie odczuwają silny ostry ból zębów podczas spożywania zimnych posiłków. Teraz międzynarodowy zespół naukowy odkrył, że za to nieprzyjemne uczucie odpowiedzialny jest kanał jonowy TRPC5 znajdujący się w wytwarzających zębinę komórkach zwanych odontoblastami. Kiedy więc mamy odsłoniętą zębinę i zetknie się z nią chłodny pokarm lub napój, obecne tam komórki – pełne TRC5 – odbierają wrażenie chłodu i wysyłają sygnał do mózgu. Gdy już wiemy, jaką molekułę należy wziąć na celownik, możemy opracować odpowiednie leczenie, mówi elektrofizjolog doktor Katharina Zimmermenn z Uniwerystetu Fryderyka i Aleksandra w Erlangen i Norymberdze. Odkryliśmy, że odontoblasty, odpowiedzialne za kształt zęba, są też odpowiedzialne za uczucie zimna. [...] Teraz wiemy, że zakłócenie funkcji odczuwania zimna pozwoli na pozbycie się bólu, dodaje patolog Jochen Lennerz dyrektor Center for Integrated Diagnostics w Massachusetts General Hospital. Odkrycie pomaga też wyjaśnić, dlaczego stary sposób na ból zębów, olej goździkowy, pomaga zmniejszyć ból zębów wywołany zimnem. Olej ten zawiera bowiem składnik blokujący proteinę odpowiedzialną za odczuwanie zimna. Trzeba tutaj zauważyć, że mowa jest konkretnym bólu mającym konkretną przyczynę. Ból zębów z powodu zimna może pojawiać się nie tylko wówczas, gdy mamy odsłoniętą zębinę. Jego przyczyną może być też też związane ze spowodowanymi wiekiem problemami z dziąsłami, a niektórzy pacjenci nowotworowi leczeni preparatami na bazie platyny są stają się niezwykle nadwrażliwi na zimno na całym ciele. Odkrycie roli kanału TRC5 w uczuciu bólu zębów pod wpływem zimna nie wyklucza też innych jego przyczyn. Jedna z głównych hipotez dotyczących tego zjawiska mówi, że w niewielkich kanałach wewnątrz zębów znajduje się płyn, który przemieszcza się pod wpływem zmian temperatury i czasem nerwy odbierają ten ruch, przesyłając sygnały bólowe. Hipotezy tej wciąż nie można wykluczyć. Przed około 15 laty Zimmermann pracowała w zespole, który odkrył, że kanał jonowy TRPC5 jest bardzo wrażliwy na zimno. Uczeni nie wiedzieli wówczas, gdzie może odgrywać on zasadniczą rolę, gdyż myszy pozbawione na skórze TRPC5 nadal odczuwały zimno. Pomysł na przyjrzenie się zębom zrodził się podczas wspólnego obiadu, gdy naukowcy zastanawiali się, jaki jeszcze organ ciała odczuwa zimno. Ktoś przypomniał wówczas o zębach. Eksperymenty na myszach oraz na zapisy aktywności elektrycznej wypreparowanych nerwów potwierdziły, że użycie blokerów TRPC5 znacząco zmniejszyło reakcję nerwów na uczucie zimna. Mamy teraz dowód, że czujnik temperatury, jakim jest TRCP5, przesyła sygnał o zimnie za pośrednictwem odontoblastów, wywołując ból i nadwrażliwość na zimno. Może to być sposób organizmu na ochronę zębów przed postępującym niszczeniem, mówi Lennerz. « powrót do artykułu
×
×
  • Create New...