Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' bramka logiczna'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Niemieccy naukowcy z Instytutu Optyki Kwantowej im. Maxa Plancka przeprowadzili operację na bramce logicznej, w której wzięły udział dwa kubity znajdujące się w dwóch różnych laboratoriach. Ich osiągnięcie to bardzo ważny krok w kierunku kwantowego przetwarzania rozproszonego. Może to pozwolić na zbudowanie modułowych systemów obliczeniowych, składających się z urządzeń stojących w różnych miejscach, ale działających jak jeden wielki komputer. Dodanie kolejnego kubitu do kwantowego komputera nie jest łatwym zadaniem. Kubity muszą być w stanie przeprowadzać operacje logiczne, a jednocześnie muszą być odizolowane od wpływów zewnętrznych (szumu), które mogą zniszczyć ich stan kwantowy. Bardzo istotnym źródłem szumu w systemach kwantowych jest interferencja pomiędzy samymi kubitami. Jeśli np. mamy system składający się z 4 kubitów, a chcemy przeprowadzić obliczenia z udziałem tylko 2 z nich, to wciąż istnienie ryzyko interakcji pomiędzy kubitami, które nie biorą udziału w obliczeniach. Im więcej zaś kubitów w systemie, tym większy problem szumu. Jednym ze sposobów poradzenia sobie z tym problemem jest rozproszenie kubitów pomiędzy różne urządzenia. To jednak wymaga zintegrowania operacji logicznych prowadzonych za pomocą tych urządzeń. Jeśli po prostu wykonamy obliczenia na jednym takim module i prześlemy wyniki do opracowania do innego modułu, to wciąż nie zwiększamy dostępnej mocy obliczeniowej, mówi Severin Daiss z Instytutu Optyki Kwantowej. Dlatego też dużym zainteresowaniem naukowców cieszy się koncepcja teleportacji za pomocą bramek kwantowych. To pomysł zgodnie z którym dane wyjściowe na kwantowej bramce logicznej są zależne od danych wejściowych na bramce, znajdującej się gdzieś indziej. Daiss i jego koledzy pracujący pod kierunkiem profesora Gerharda Rempe zaprezentowali znacząco uproszczoną technikę, która bazuje na interakcji fotonu z modułami w dwóch różnych laboratoriach. W każdym z tych laboratoriów naukowcy stworzyli wnękę optyczną zawierającą atom rubidu. Urządzenia zostały połączone światłowodem o długości 60 metrów. W celu ustanowienia bramki logicznej naukowcy wysłali foton, działający jak „latający kubit”, między obiema wnętami. Wędrował on pomiędzy nimi, dzięki czemu uzyskano splątanie jego polaryzacji ze stanem energetycznym atomów rubidu. Powstała w ten sposób bramka CNOT, której stan można odczytać mierząc stan fotonu. Ronald Hanson z Uniwersytetu Technologicznego w Delft uważa, że prace Niemców to ważny krok naprzód. Spowodowali, że foton odbił się od jednej strony, przemieścił w drugą i dokonał pomiaru. Od strony koncepcyjnej jest to niezwkle proste, a oni wykazali że to działa. Myślę, że to prawdziwa nowość na tym polu. Szczegóły eksperymentu opisano na łamach Science. « powrót do artykułu
  2. Po raz pierwszy w historii zmierzono dokładność dwukubitowych operacji logicznych w krzemie. Dokonał tego zespół prof. Andrew Dzuraka z Uniwersytetu Nowej Południowej Walii (UNSW), który w 2015 jako pierwszy stworzył dwukubitową bramkę logiczną w krzemie. Wszystkie obliczenia kwantowe mogą składać się z jedno- i dwukubitowych operacji. To podstawowe budulce obliczeń kwantowych. Gdy je mamy, możemy wykonać dowolne obliczenia kwantowe, jednak precyzja obu tych rodzajów obliczeń musi być bardzo wysoka, wyjaśnia profesor Dzurak. Od czasu, gdy w 2015 roku zespół Dzuraka stworzył pierwszą dwukubitową bramkę logiczną umożliwiając w ten sposób prowadzenie obliczeń z użyciem dwóch kubitów, wiele zespołów naukowych zaprezentowało podobne konstrukcje. Jednak dotychczas nie była znana dokładność obliczeń dokonywanych za pomocą takich bramek Precyzja obliczeń to kluczowy parametr, który decyduje o tym, na ile dana technologia kwantowa może zostać zastosowana w praktyce. Potęgę obliczeń kwantowych można wykorzystać tylko wtdy, jeśli operacja na kubitach są niemal idealne, dopuszczalne są minimalne błędy, mówi doktor Henry Yang, współpracownik Dzuraka. Australijscy naukowcy opracowali test oparty na geometrii Clifforda i za jego pomocą ocenili wiarygodność dwukubitowej bramki logicznej na 98%. Osiągnęliśmy tak wysoką dokładność dzięki zidentyfikowaniu i wyeliminowaniu podstawowych źródeł błędów, poprawiając w ten sposób dokładność obliczeń do takiego stopnia, że zrandomizowany test o znaczącej dokładności – tutaj 50 operacji na bramce – może zostać przeprowadzony na naszym dwukubitowym urządzeniu, dodał doktorant Wister Huang, główny autor artykułu, który opublikowano na łamach Nature. Komputery kwantowe będą mogły rozwiązać problemy, z którymi klasyczne komputery nigdy nie będą w stanie sobie poradzić. Jednak większość tych zastosowań będzie wymagała użycia milionów kubitów, więc będziemy musieli korygować błędy kwantowe, nawet jeśli będą one niewielkie. Aby korekcja tych błędów byla możliwa, same kubity muszą być niezwykle dokładne. Dlatego też podstawową rzeczą jest ocena ich dokładności. Im bardziej dokładne kubity, tym mniej będziemy ich potrzebowali, a zatem tym szybciej będziemy w stanie wyprodukować prawdziwy komputer kwantowy, dodaje profesor Dzurak. Australijczycy zauważają jeszcze jedną świetną informację, która płynie z ich badań. Otóż krzem po raz kolejny dowiódł,; że jest świetną platformą obliczeniową. Jako, że materiał ten jest wykorzystywany w przemyśle elektronicznym od niemal 60 lat jego właściwości, ograniczenia i problemy z nim związane zostały dobrze poznane, zatem już istniejące fabryki będą w stanie przestawić się na nową technologię. Jeśli okazałoby się, że dokładność kwantowych obliczeń na krzemie jest zbyt niska, to mielibyśmy poważny problem. Fakt, że wynosi ona blisko 99% to bardzo dobra wiadomość. Daje nam to możliwość dalszych udoskonaleń. To pokazuje, że krzem jest odpowiednia platformą dla prawdziwych komputerów kwantowych, cieszy się Dzurak. Myślę, że w najbliższej przyszłości osiągniemy znacznie większą dokładność i otworzymy w ten sposób drzwi do zbudowania prawdziwego odpornego na błędy komputera kwantowego. Obecnie jesteśmy bliscy granicy, poza którą w dwukubitowych systemach będzie można zastosować korekcję błędów, dodaje. Warto w tym miejscu przypomnieć, że niedawno zespół Dzuraka poinformował na łamach Nature Electronics o osiągnięciu rekordowej dokładności jednokubitowej bramki logicznej. Wyniosła ona 99,96%. « powrót do artykułu
×
×
  • Create New...