Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' aluminium'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Lądowanie na innych ciałach niebieskich niż Ziemia to bardzo trudne zadanie. Może być ono niebezpieczne dla samego lądującego pojazdu. Gazy wydobywające się z silników mogą skierować pył i fragmenty skał w stronę lądującego pojazdu i uszkodzić jego silniki, instrumenty naukowe czy zagrozić astronautom. Dotychczas udawało się przeprowadzać lądowania dlatego, że ludzie osadzali na Księżycu czy Marsie lekkie pojazdy. Nawet lądowniki Apollo były na tyle lekkie, że gazy z ich silników nie oddziaływały szczególnie mocno na podłoże. Jednak mamy coraz większe ambicje i skoro chcemy np. wrócić na Księżyc i zintensyfikować tam swoją obecność, będziemy potrzebowali znacznie większych rakiet niż obecnie. To zaś oznacza wykorzystanie potężniejszych silników i znacznie silniejszy strumień gazów, który będzie się z nich wydobywał. Pojazdy załogowe, które mają lądować na Srebrnym Globie w ramach programu Artemis będą miały masę od 2 do 4 razy większą, niż Apollo. Obliczenia przeprowadzone przez NASA wskazują, że podczas każdego lądowania mogą one prowadzić do przemieszczania nawet 470 ton materiału z powierzchni Księżyca. To olbrzymia ilość pyłu i skał unoszących się wokół pojazdu. W ramach prowadzonego programu NASA's Innovative Advanced Concepts (NIAC) amerykańska agencja kosmiczna finansuje nowatorski pomysł na zapewnienie bezpieczeństwa dużym lądującym pojazdom. Firma Masten Space System rozwija koncepcję o nazwie „Instant Landing Pads”. Zgodnie z tym pomysłem to sam pojazd kosmiczny w czasie podchodzenia do lądowania stworzy sobie bezpieczne lądowisko. Oczywiście można by się obejść bez tego. Można dokładnie wybierać miejsce lądowania tak, by pojazd wzbijał tam jak najmniej materiału oraz dobrze osłonić sam pojazd i jego poszczególne elementy. JEdnak takie działanie poważnie ograniczyłoby możliwość lądowania. Osłony sporo by ważyły, a miejsce wszelkich operacji trzeba by wybierać pod kątem miejsca do bezpiecznego lądowania. Konwencjonalne podejście do rozwiązania problemu, rozwijane np. w ramach projektu PISCES, zakłada wcześniejsze wysłanie na miejsce lżejszych pojazdów i wybudowanie – na przykład za pomocą robotów – lądowiska dla pojazdów cięższych. To jednak oznacza, że każda większa misja będzie musiała czekać miesiące lub lata na wybudowanie lądowiska. Nie wspominając już o kosztach takiego przedsięwzięcia. Masten wylicza, że koszt każdego takiego lądowiska to ponad 100 milionów dolarów. Firma proponuje rozwiązanie o nazwie FAST (in-Flight Alumina Spray Technique). Pomysł ma działać w następujący sposób: gdy pojazd znajdzie się o kilkaset metrów nad miejscem lądowania zawisa nad nim. Wówczas do wylotów silników dostarczane są aluminiowe pigułki, które opadają w dół i są częściowo roztapiane przez gorące gazy wydobywające się z silnika. Wiele z powierzchni, na których chcemy lądować, jest na tyle chłodnych, że takie częściowo roztopione aluminium ostygnie i stwardnieje w wyniku kontaktu z nimi. W ciągu około 15 sekund można w ten sposób pokryć powierzchnię 300 kilogramami aluminium, tworzyć ad hoc bezpieczne lądowisko. Lądujący pojazd co prawda je nieco uszkodzi, ale nie wybije krateru w powierzchni planety czy księżyca i nie zostanie narażony na kontakt z setkami ton pyłu i skał. Masten Space Systems ma wieloletnie doświadczenie z testowaniem silników rakietowych. Przez kolejnych 9 miesięcy będziemy sprawdzali, jak nasz pomysł może przysłużyć się programowi Artemis, mówi główny inżynier Mastena Matthew Kuhns. Cele programu NIAC są niezwykle ambitne i normalnie mija ponad 10 lat zanim opracowane w jego ramach technologie zostaną użyte. Jednak w tym wypadku korzystamy z już istniejących technologii, zatem myślę, że będziemy pracowali nieco szybciej, dodaje. Inżynierowie muszą m.in. zastanowić się, w jaki sposób trzeba przystosować silniki rakietowe do współpracy z FAST. Sam FAST wymaga użycia systemu do dostarczenia aluminiowych kapsułek do silników. Kuhns pytany, czy nie widzi problemu, że z czasem Księżyc może zostać usiany takimi lądowiskami, mówi, że dobrze by było, gdybyśmy rzeczywiście mieli taki problem. Taki scenariusz zakłada bowiem, że przeprowadzimy bardzo dużo misji na Księżyc, będziemy tam stale obecni i wykonamy wiele badań naukowych. Poza tym, w zależności od lokalizacji i materiału, lądowiska FAST mogą przysłużyć się nauce. Można je będzie np. wykorzystać jako powierzchnie odbijające światło lasera czy fale radiowe.   « powrót do artykułu
  2. Zainspirowani podwodnymi dzwonami topików i tratwami mrówek z rodzaju Solenopsis, inżynierowie z Uniwersytetu w Rochesterze wygrawerowali laserem femtosekundowym 2 płytki z glinu. Uzyskali superhydrofobowe powierzchnie, które po złożeniu z odpowiednim "rozstawem" są przez długi czas niezatapialne. Można je na siłę zanurzać, a nawet dziurawić, a i tak będą się utrzymywać na powierzchni. Prof. Chunlei Guo uważa, że bioinspirowane rozwiązanie może w przyszłości znaleźć rozwiązanie w niezatapialnych statkach i łodziach, kamizelkach ratunkowych, które będą spełniać swoją rolę również po uszkodzeniu czy w elektronicznych urządzeniach monitorujących, które bez problemu wytrzymają długi czas w oceanie. Jak tłumaczą autorzy artykułu z pisma ACS Applied Materials and Interfaces, za pomocą femtosekundowego lasera w metalu graweruje się mikro- i nanowzory, które więżą powietrze i sprawiają, że powierzchnia staje się superhydrofobowa. Kluczowe spostrzeżenie jest takie, że wielofasetkowe superhydrofobowe powierzchnie (SH) mogą zachowywać spore objętości powietrza, co rodzi możliwość, że powierzchnie SH uda się [kiedyś] wykorzystać do uzyskania pływalnych urządzeń. Zespół Guo stworzył strukturę złożoną z 2 płytek z aluminium. Ich wygrawerowane powierzchnie były zwrócone do wewnątrz, w ten sposób chroniono je np. przed ścieraniem (abrazją). Odległość między okrągłymi płytkami była taka, by udało się między nimi schwycić i utrzymać ilość powietrza, która wystarczy do unoszenia struktury na wodzie. Okazało się, że nawet po wymuszonym 2-miesięcznym zanurzeniu struktura wypływała na powierzchnię od razu po usunięciu obciążenia. Struktury zachowywały tę zdolność nawet po wielokrotnym przedziurawieniu (wystarczyło powietrze uwięzione w zachowanych fragmentach "przegrody"). Choć zespół Guo grawerował glin, proces można zastosować do dowolnego metalu. Gdy Amerykanie pierwszy raz demonstrowali swoją technikę, do wygrawerowania fragmentu o wymiarach cal na cal (ok. 6,45 cm2) potrzebna była godzina. Dzisiejsza moc laserów i szybkość skanowania przyspieszają proces, dzięki czemu można zacząć myśleć o przeskalowaniu go do zastosowań komercyjnych. Poszukując idealnej konfiguracji, ekipa eksperymentuje z innymi kształtami płytek metalu i różnymi rozmiarami szczeliny dzielącej płytki. Warto dodać, że przynajmniej na obecnym etapie badań, po długim okresie zanurzenia w wodzie taka powierzchnia może zacząć tracić właściwości hydrofobowe.   « powrót do artykułu
×
×
  • Create New...