Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' AI'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Trenowanie systemów sztucznej inteligencji trwa obecnie wiele tygodni. Firma Cerebras Systems twierdzi, że potrafi skrócić ten czas do kilku godzin. Pomysł polega na tym, by móc testować więcej pomysłów, niż obecnie. Jeśli moglibyśmy wytrenować sieć neuronową w ciągu 2-3 godzin, to rocznie możemy przetestować tysiące rozwiązań, mówi Andrew Feldman, dyrektor i współzałożyciel Cerebras. Jeśli chcemy wytrenować sieć sztucznej inteligencji, która np. ma zarządzać autonomicznym samochodem, potrzebujemy wielu tygodni i olbrzymiej mocy obliczeniowej. Sieć musi przeanalizować olbrzymią liczbę zdjęć czy materiałów wideo, by nauczyć się rozpoznawania istotnych obiektów na drodze. Klienci Cerebras skarżą się, że obecnie trenowanie dużej sieci neuronowej może trwać nawet 6 tygodni. W tym tempie firma może wytrenować około 6 sieci rocznie. To zdecydowanie zbyt mało dla przedsiębiorstw, które chcą sprawdzić wiele nowych pomysłów za pomocą SI. Rozwiązaniem problemu ma być komputer CS-1, a właściwie jego niezwykły procesor. Maszyny CS-1 mają wysokość 64 centymetrów, a każda z nich potrzebuje do pracy 20 kW. Jednak 3/4 obudowy każdego z komputerów zajmuje układ chłodzenia, a tym, co najbardziej rzuca się w oczy jest olbrzymi układ scalony. Zajmuje on powierzchnię 46 255 milimetrów kwadratowych, czyli około 50-krotnie więcej niż tradycyjny procesor. Zawiera 1,2 biliona tranzystorów, 400 000 rdzeni obliczeniowych i 18 gigabajtów pamięci SRAM. Procesor o nazwie Wafer Scale Engine (WSE) wypada znacznie lepiej niż podobne systemy. Jak zapewniają przedstawiciele Cerebras, ich maszyna, w porównaniu z klastrem TPU2 wykorzystywanym przez Google'a do trenowania SI, zużywa 5-krotnie mniej energii i zajmuje 30-krotnie mniej miejsca, a jest przy tym 3-krotnie bardziej wydajna. Takie zestawienie brzmi imponująco, a na ile rzeczywiście WSE jest lepszy od dotychczasowych rozwiązań powinno ostatecznie okazać się w bieżącym roku. Jak zauważa analityk Mike Demler, sieci neuronowe stają się coraz bardziej złożone, więc możliwość szybkiego ich trenowania jest niezwykle ważna. Trzeba jednak przyznać, że w twierdzeniach Cerebras musi być ziarno prawdy. Wśród klientów firmy jest m.in. Argonne National Laboratory, które ma już maszyny CS-1 u siebie. Zapewne już wkrótce dowiemy się, czy rzeczywiście zapewniają one tak wielką wydajność i pozwalają tak szybko trenować sieci neuronowe. Twórcami Cerebras są specjaliści, którzy pracowali w firmie Sea Micro, przejętej przez AMD. Pomysł stworzenia komputera wyspecjalizowanego w sztucznej inteligencji zaczął kiełkować w ich głowach w 2015 roku. Stwierdzili, że odpowiedni procesor musi być w stanie szybko przesyłać duże ilości danych, układy pamięci muszą znajdować się blisko rdzenia, a same rdzenie nie powinny zajmować się danymi, którymi już zajmują się inne rdzenie. To zś oznaczało, że tego typu układ musi składać się z olbrzymiej liczby niewielkich rdzeni wyspecjalizowanych w obliczeniach z zakresu sieci neuronowych, połączenia między rdzeniami muszą być szybkie i zużywać niewiele energii, a wszystkie dane muszą być dostępne na procesorze, a nie w osobnych układach pamięci. Twórcy Cerebras uznali, że tym, czego potrzebują, jest chip niemalże wielkości całego plastra krzemowego. Udało im się taki układ skonstruować, chociaż nie było to łatwe zadanie i wciąż muszą poradzić sobie z licznymi problemami. Jednym z nich było poradzenie sobie z filozofią tworzenia współczesnych plastrów krzemowych. Obecnie z pojedynczego plastra tworzy się wiele procesorów. Po ich przygotowaniu, plaster, zawierający wiele identycznych układów, jest cięty. W procesie przygotowywania plastra do produkcji tworzy się na nim specjalne linie, wzdłuż których przebiegają cięcia. Tymczasem Cerebras potrzebowało takiego plastra w całości, z połączeniami pomiędzy poszczególnymi rdzeniami. To zaś wymagało nawiązania współpracy z TSMC i opracowania metody przeprowadzenia połączeń przez linie. Wysiłek się opłacił. Poszczególne rdzenie komunikują się między sobą z prędkością 1000 Pb/s, a komunikacja pomiędzy pamięcią a rdzeniami przebiega w tempie do 9 PB/s. To nie jest trochę więcej. To o cztery rzędy wielkości więcej, gdyż wszystko odbywa się w ramach tego samego plastra, cieszy się Feldman. Jednak przeprowadzenie połączeń przez linie nie był jedynym problemem. Trzeba było zmodyfikować cały proces projektowania i produkcji układów. Nawet oprogramowanie do projektowania procesorów jest przygotowane pod niewielkie układy. Każda zasada, każde narzędzie i każde urządzenie jest obecnie dostosowana do produkcji układów scalonych o zwyczajowych rozmiarach. My zaś potrzebujemy czegoś znacznie większego, dlatego też musieliśmy na nowo opracować każdy element, dodaje Feldman. Jeszcze innym problemem okazało się zasilanie takiego układu. Każdy z 1,2 biliona tranzystorów potrzebuje 0,8 wolta. To standardowe napięcie, ale tranzystorów jest tak dużo, że do układu należy doprowadzić prąd o natężeniu 20 000 amperów. Uzyskanie w całym plastrze 20 000 amperów bez znacznego spadku napięcia było kolejnym wyzwaniem inżynieryjnym, mówią przedstawiciele Cerebras. Doprowadzenie prądu do krawędzi WSE nie wchodziło w rachubę, gdyż opory spowodowałyby spadek napięcia do zera zanim prąd osiągnąłby środek układu. Rozwiązaniem okazało się prostopadłe podłączenie od góry. Inżynierowie Cerebras zaprojektowali specjalny zestaw składający się z setek układów wyspecjalizowanych w kontrolowaniu przepływu prądu. Za pomocą miliona miedzianych połączeń dostarcza on zasilanie do WSE. Cerebras nie podaje żadnych danych odnośnie testów wydajności swojego rozwiązania w porównaniu z innymi systemami. Zamiast tego firma zachęca swoich klientów, by po prostu sprawdzili, czy  CS-1 i WSE sprawują się lepiej w zadaniach, których ci klienci potrzebują. Nie ma w tym jednak nic dziwnego. Każdy korzysta z własnych modeli dostosowanych do własnych potrzeb. To jedyne co się liczy dla klienta, mówi analityk Karl Freund. Jednym z takich klientów jest właśnie Argonne National Laboratory. Ma ono dość specyficzne potrzeby. Wykorzystuje sieci neuronowe do rozpoznawania różnych rodzajów fal grawitacyjnych w czasie rzeczywistym. Pracujący tam specjaliści wolą więc samodzielnie przekonać się, czy nowe urządzenie lepiej sprawdzi się w tych zastosowaniach niż dotychczas stosowane superkomputery. « powrót do artykułu
  2. Sztuczna inteligencja, jako system samouczący się i samodzielnie podejmujący decyzje, nie mieści się w ramach dotychczasowych, obowiązujących w Polsce, zasad prawnych. Należy podjąć w tej kwestii pilne kroki - przekonuje prawnik, prof. Marek Świerczyński. W ocenie ekspertów komputery nadal działają wolniej niż ludzki mózg. Natomiast w ostatnich latach prace nad zaawansowanymi systemami sztucznej inteligencji (AI) przyspieszyły w zaskakującym tempie. Tworzone przez ekspertów algorytmy powodują, że systemy te są w stanie same się uczyć i wcielać w życie czasem trudne do przewidzenia decyzje. Niesie to wyzwania związane z prawem. Obowiązujące przepisy zostały stworzone z myślą o człowieku. Jednak algorytmy sztucznej inteligencji stały się już zdolne, na przykład, do samodzielnego zawierania umów - opowiada w rozmowie z PAP prawnik i konsultant Rady Europy w dziedzinie nowych technologii, prof. Marek Świerczyński z Uniwersytetu Kardynała Stefana Wyszyńskiego w Warszawie. Ekspert twierdzi, że systemy AI są w stanie wyrządzić szkody. Ponadto sztuczna inteligencja zaczęła tworzyć dobra intelektualne. To wszystko rodzi konsekwencje natury prawnej. Stąd pojawiły się postulaty przyznania AI podmiotowości prawnej, uznania jej za tzw. elektroniczną osobę prawną - opowiada. Czy taki kierunek jest słuszny? Czy to sama AI powinna brać odpowiedzialność za swoje czyny i decyzje? Zasadniczym wyzwaniem prawnym jest dookreślenie podmiotu odpowiedzialnego. Użytkownik, wytwórca systemu AI, producent oprogramowania, osoba wprowadzająca dany system AI do obrotu – to podmioty, które mogłyby ponieść odpowiedzialność. Próby przypisania odpowiedzialności samej AI nie wydają się być jednak prawnie racjonalne i efektywne - mówi prof. Świerczyński. I dodaje, że taki kierunek prawodawstwa należy interpretować, jako próbę uniknięcia odpowiedzialności przez twórców AI. W ocenie prof. Świerczyńskiego Polska nie jest przygotowana pod względem prawnym do coraz bardziej zaawansowanych systemów AI. Przepisy już teraz wymagają dostosowania. AI jako system samouczący się i samodzielnie podejmujący decyzje mające określone konsekwencje prawne nie mieści się w ramach dotychczasowych zasad prawnych, dotyczących umów czy odpowiedzialności odszkodowawczej - uważa prawnik. I dodaje, że brak dostosowania prawa będzie prowadzić do pogorszenia sytuacji osób poszkodowanych przez działania AI. Kluczowe jest - według eksperta - prowadzenie działań legislacyjnych od razu w wymiarze międzynarodowym, tak aby przepisy prawne były spójne ze sobą w różnych krajach. Dlatego ważne są prace dostosowawcze prowadzone na forum Rady Europy, w których biorę udział jako konsultant. 17 maja br. na konferencji w Helsinkach Komitet Ministrów Rady Europy postanowił o rozpoczęciu pracy nad konwencją o sztucznej inteligencji - informuje prof. Świerczyński. Kwestie te były również przedmiotem dyskusji na konferencji w Warszawie (pt. "Prawo i sztuczna inteligencja") zorganizowanej 27 maja br. przez UKSW oraz Instytut Badawczy - Ośrodek Przetwarzania Informacji (IB - OPI). Ze względu na brak jednolitych regulacji prawnych związanych z AI sprawy sądowe rozpatrywane są w różny sposób w zależności od kraju. Interesującą kwestią jest, na przykład, rozstrzyganie o odpowiedzialności za szkodę spowodowaną przez autonomiczne samochody. W Polsce odpowiedzialny będzie posiadacz pojazdu na zasadzie ryzyka. Producent czy autor systemów sterowania, w tym opartych na AI, będzie z odpowiedzialności zwolniony - wyjaśnia ekspert. Jednak jego zdaniem utrzymanie tych zasad nie jest prawidłowe. Krąg osób, odpowiedzialnych podmiotów powinien ulec poszerzeniu, zależnie od rodzaju AI i jej wpływu na wypadek - uważa ekspert. Co ciekawe, tworzone przez AI teksty czy piosenki nie podlegają ochronie prawnej. Zasada jest taka, że twórcą może być tylko człowiek. I tak powinno pozostać. Można ewentualnie dopuścić ochronę takich utworów na podstawie prawa autorskiego, za podmiot praw autorskich uznając osobę fizyczną lub prawną, która zainicjowała ich stworzenie przez AI - mówi prawnik. I wskazuje, że takie rozwiązania przyjęto m.in. Wielkiej Brytanii i Nowej Zelandii. Komitet Współpracy Prawnej Rady Europy zajmuje się obecnie kwestią wykorzystania AI w sądownictwie. Przygotowuje on wytyczne w tej kwestii dla państw członkowskich. W projektowanych wytycznych przyjmujemy, że algorytmy mają przede wszystkim ułatwiać pracę sędziom, ale ich nie zastąpią. Przykładowo AI może być przydatna przy przygotowywaniu tych fragmentów rozstrzygnięcia, które mają charakter bardziej techniczny - wskazuje ekspert. Sztuczna inteligencja mogłaby ewentualnie zastąpić arbitrów. Dotyczyłoby to prostszych spraw, w których wyrok zostaje wydany na podstawie dokumentów, np. faktur, a które wymagają szybkiego rozstrzygnięcia - mówi. Zdaniem prof. Świerczyńskiego pomarzyć możemy o superobiektywnej AI. Algorytm, na podstawie którego będzie ona działać, oparty będzie o różnego rodzaju dane, które nie zawsze muszą być wiarygodne. « powrót do artykułu
  3. Pet-Commerce to internetowy sklep brazylijskiej sieci Petz, w którym dzięki połączeniu technologii rozpoznawania twarzy oraz sztucznej inteligencji pies może kupić swoje ulubione produkty. Wystarczy ustawić kamerę internetową na pysk zwierzęcia. Gdy tylko AI wykryje produkt, który podczas przewijania strony wywołał u psa duże zainteresowanie, zostaje on automatycznie dodany do koszyka. By Pet-Commerce powstał, agencja reklamowa Ogilvy Brazil nawiązała współpracę z trenerem psów Leonardem Ogatą. To on "oświecił" wszystkich w kwestii wyrazów pyska różnych ras i ich znaczenia. Sztucznej inteligencji zaprezentowano tysiące zdjęć psów, tak by mogła się nauczyć lepiej wykrywać szczególiki związane z wyrażaniem zainteresowania przez psy. Stroną produkcyjno-techniczną przedsięwzięcia zajęły się firmy D2G Tecnologia i Hogarth. Produkty z witryny pogrupowano w 3 kategorie: kości, zabawki, piłki. Gdy człowiek klika na dany obiekt, wyświetlają się filmy. Tło jest żółte bądź niebieskie, bo wg Ogaty, to kolory, które psy najlepiej widzą. Poziom zainteresowania psa jest prezentowany za pomocą ikonek w kształcie kości. Witryna przekazuje też ludziom zalecenia, co zrobić, by czworonogowi jak najłatwiej było robić zakupy. Po pierwsze, należy włączyć dźwięk, bo to ważny dla psów zmysł. [Poza tym] pies musi być zrelaksowany, w zabawowym nastroju. Nie należy go podnosić bądź podtrzymywać głowy, bo to może drażnić. Wystarczy nakierować kamerę internetową na jego pysk [...]. Zakup jest dokonywany po potwierdzeniu przez właściciela i wprowadzeniu niezbędnych danych. Na razie Pet-Commerce jest tylko dla psów, ale być może pewnego dnia projekt obejmie też np. koty.   « powrót do artykułu
×
×
  • Create New...