Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'wzrok' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 39 wyników

  1. Mimo że krety do tego stopnia przystosowały się do podziemnego trybu życia, iż mają permanentnie zamknięte powieki, nadal umieją odróżnić dzień od nocy (BMC Biology). Martin Collinson i David Carmona z Uniwersytetu w Aberdeen badali krety iberyjskie (Talpa occidentalis). Brytyjczycy uważają, że u owadożernych ssaków dochodzi do degeneracji wzroku na wczesnym etapie rozwoju. Podobne zmiany genetyczne (mutacje) mogą występować u pacjentów z dziedzicznymi chorobami oczu, np. aniridią, charakteryzującą się brakiem tęczówki. Panowie śledzili rozwój narządu wzroku u kretów iberyjskich na dwóch poziomach: komórkowym i molekularnym. Wg nich, zwierzęta te mogą od czasu do czasu potrzebować wzroku, ale większość życia spędzają, przekopując się przez zwały ziemi. Gdyby dostała się ona do oczu, doszłoby do uszkodzenia gałki lub rozwoju stanu zapalnego. Brytyjczycy spodziewali się, że u kretów pojawiły się podobne zmiany, jak u pozostałych zwierząt żyjących w ciemnościach. U ryb jaskiniowych zanik soczewek uruchomił np. cały łańcuch reakcji. W ten sposób nie dochodzi również do utworzenia siatkówki z komórkami światłoczułymi (pręcikami i czopkami) oraz innych struktur oka. Wbrew oczekiwaniom, procesy zachodzące u Talpa occidentalis były różne od tego, co obserwuje się u ryb jaskiniowych. U ssaków w życiu płodowym nadal występuje bowiem nadrzędny gen PAX6, który kontroluje aktywność innych genów wpływających na rozwój oczu. Niestety, jest on "włączony" za długo, co zaburza proces przemieszczania się komórek tego narządu. Dochodzi do nieprawidłowego wykształcenia włókien soczewki. W rezultacie składa się ona z poprzerywanego nabłonka i bezładnej masy niedojrzałych komórek jądrzastych. Co prawda powieki kretów są zawsze zamknięte, ale skóra jest na tyle cienka, że zwierzęta rejestrują prześwitujące przez nie światło. Collinson opowiada też, że krety dysponują czymś na kształt rytmów dobowych.
  2. Naukowcy z Massachusetts Institute Technology próbują dowiedzieć się, jak to się dzieje, że potrafimy rozpoznawać obiekty. Ich prace mogą posłużyć do stworzenia maszyn widzących w sposób podobny jak ludzie. Widzenie i rozpoznawanie przedmiotów to dla nas umiejętności tak oczywiste, że w ogóle się nad nimi nie zastanawiamy. Tymczasem są to bardzo skomplikowane mechanizmy. Wystarczy uświadomić sobie, że nigdy nie widzimy dwukrotnie tego samego obrazu. Przedmioty, ludzi i zwierzęta oglądamy w coraz to nowych sytuacjach, pod innym kątem, przy zmieniającym się oświetleniu. A mimo to potrafimy je rozpoznać. Ta stabilność, niezmienność to podstawa umiejętności rozpoznawania obiektów - mówi James Di Carlo z McGovern Institute for Brain Research w MIT. Chcemy dowiedzieć się, w jaki sposób mózgowi udało się osiągnąć tę stabilność i jak możemy ją zaimplementować w systemach komputerowych - dodaje. Jedno z możliwych wyjaśnień jest takie, że w ciągu sekundy następują trzy niewielkie ruchy gałek ocznych. Tymczasem obiekty fizyczne poruszają się dość wolno. Oczy rejestrują więc "klatki" z obrazami danego obiektu, a mózg uznaje, że seria następujących po sobie "zdjęć" przedstawia ten sam obiekt i dlatego potrafimy go rozpoznać. Już wcześniej zespół DiCarlo przeprowadził ciekawy eksperyment, który potwierdziałby teorię "serii zdjęć". Badanym wyświetlano przedmiot peryferiach pola widzenia. Gdy oczy zaczynały się poruszać tak, żeby znalazł się on w centrum pola widzenia, przedmiot zamieniano na inny. Badani świadomie nie byli w stanie zarejestrować zmiany, jednak okazało się, że po pewnym czasie mylili oba przedmioty. Może to świadczyć o tym, że mózg, do którego trafiała "seria zdjęć" dwóch różnych przedmiotów, uznawał je za jeden. Ostatnio profesor DiCarlo przeprowadził kolejny eksperyment, tym razem na małpach. Naukowcy zbierali sygnały dobiegające z dolnej kory skroniowej w której najprawdopodobniej znajduje się ośrodek "stałości wzrokowej". Neurony tej kory mają swoje preferencje i reagują na "ulubiony" przedmiot niezależnie od tego, w którym miejscu pola widzenia się on znajduje. Najpierw zidentyfikowaliśmy obiekt, który neuron preferował - na przykład żaglówkę - oraz taki, który mniej 'lubił' - na przykład filiżankę herbaty - opowiada magistrant Nuo Li. Gdy w różnych miejscach pola widzenia wyświetlaliśmy żaglówkę, oczy małpy w naturalny sposób przemieszczały się tak, by znalazła się ona w centrum. Jedno z miejsc w polu widzenia wybraliśmy jako punkt, w którym będziemy małpę 'oszukiwać'. Najpierw wyświetlaliśmy tam żaglówkę, a gdy oczy zaczynały się poruszać, zmienialiśmy ją na filiżankę herbaty - mówi. Badania wykazały, że po serii takich "oszustw" neurony małp zareagowały tak samo, jak neurony ludzi z poprzednich badań - straciły orientację co do przedmiotu. Neuron, który "lubił" żaglówki nadal je preferował we wszystkich punktach pola widzenia, z wyjątkiem tego jednego, w którym pokazywano mu filiżankę herbaty. Akurat w tym miejscu zaczął preferować filiżankę herbaty. Im dłużej trwały eksperymenty, tym silniejsza była zmieniona preferencja. Co ważne, naukowcy w żaden sposób nie wpływali na preferencje małp. Zwierzęta mogły swobodnie wędrować wzrokiem po całym ekranie, na którym pokazywano obrazki. Byliśmy zdumieni efektywnością uczenia się neuronów, szczególnie po 1- lub 2-godzinnym treningu - mówi DiCarlo. Wydaje się, że nawet u dorosłych system rozpoznawania obiektów bez przerwy się uczy na podstawie doświadczenia. Jeśli weźmiemy pod uwagę fakt, że w ciągu roku oczy człowieka wykonują około 100 milionów ruchów, to ten właśnie mechanizm może być podstawą naszych umiejętności łatwego rozpoznawania obiektów - dodaje profesor.
  3. Powszechnie wiadomo (i potwierdzają to badania), że u osób niewidomych pozostałe zmysły znacznie się wyostrzają. Dotychczas nie było jednak wiadomo, jak do tego dochodzi. Badacze z Beth Israel Deaconess Medical Center (BIDMC) uchylili rąbka tajemnicy dzięki interesującemu eksperymentowi. Przeprowadzone doświadczenie wyjaśnia częściowo mechanizm kompensacji utraconej zdolności widzenia, lecz także dowodzi, że proces ten zachodzi bardzo szybko i jest odwracalny. Jak tłumaczy dr Alvaro Pascual-Leone, jeden z autorów badania, zdolność mózgu do reorganizacji jest znacznie większa, niż dotychczas sądzono. W naszym badaniu wykazaliśmy, że nawet u osoby dorosłej część mózgu odpowiedzialna za widzenie szybko dostosowuje się do przetwarzania [informacji o] dotyku w reakcji na całkowitą utratę zdolności widzenia. Szybkość i dynamiczna natura zaobserwowanych zmian sugeruje, że dzieje się to nie dzięki tworzeniu nowych połączeń nerwowych, które zajmowałoby znaczną ilość czasu, lecz dzięki prezentowaniu przez korę wzrokową nowych zdolności, które są ukryte, gdy wzrok jest sprawny. W jednym z poprzednich badań naukowcy z BIDMC udowodnili, że osoby, którym zasłoni się oczy, już po pięciu dniach znacznie skuteczniej odczytują tekst zapisany alfabetem Braille'a. Wykonane później testy wykazały, że ich kora mózgowa przeszła znaczne zmiany. Badacze podążyli tym tropem i postanowili okreslić naturę tych zmian. Do badania zaproszono 47 ochotników. Połowie z nich zasłonięto całkowicie oczy na pięć dni, pozostałym zaś - tylko na czas wykonywanych testów. Badani z obu grup uczyli się intensywnie (przez cztery do sześciu godzin dziennie) alfabetu Braille'a pod okiem instruktorów z Carroll Center for the Blind. Wykonano u nich także obrazowanie metodą funkcjonalnego rezonansu magnetycznego, pozwalające na określenie aktywności poszczególnych części mózgu. Eksperyment wykazał, że osoby, którym zasłonięto oczy na pięć pełnych dni, nie tylko radzą sobie znacznie lepiej z odczytywaniem informacji zapisanych alfabetem Braille'a, lecz także ich mózgi przeszły znaczną reorganizację. Ich kora wzrokowa wykazywała ogromną aktywność w reakcji na dotyk. Także jej pobudzanie metodą przezczaszkowej stymulacji magnetycznej (ang. transcranial magnetic stimulation - TMS) znacznie zakłócało możliwość odbioru informacji związanych z dotykiem, co dodatkowo potwierdza zmiany zachodzące w układzie nerwowym. Co ciekawe, już w 24 godziny po zakończeniu eksperymentu mózg uczestników eksperymentu wracał do normalnego trybu funkcjonowania. Jak ocenia dr Lotfi Merabet, główna autorka badania, ta wyjątkowo szybka adaptacja oznacza, że funkcje normalnie hamowane w obrębie kory wzrokowej zostają "wyciągnięte na powierzchnię", gdy zachodzi taka potrzeba. Dodaje: jesteśmy przekonani, że z czasem te funkcje zostają utrzymane i wzmocnione, prowadząc ostatecznie do trwałych zmian strukturalnych. Wykonany eksperyment podważa więc przekonanie niektórych badaczy o trwałym podziale funkcjonalnym mózgu na części o wyraźnej specjalizacji. Wyniki badań opublikowano w najnowszym numerze czasopisma PLoS One.
  4. Podczas badań na rezusach (Macaca mulatta) okazało się, że rejon odpowiadający za odbiór dźwięków może bezpośrednio wpływać na pracę obszarów związanych z percepcją wzrokową. W procesie nie uczestniczą żadne struktury integrujące. Zespół P. Barone'a z Centrum Badań nad Mózgiem i Poznaniem w Tuluzie utrwalał reakcje neuronów za pomocą mikroelektrod umieszczonych w pierwszorzędowej korze wzrokowej. Zadanie małp polegało na skierowaniu spojrzenia na bodziec. Naukowcy wyliczali czas upływający od momentu jego prezentacji do uaktywnienia się neuronów (fachowo nazywa się go czasem latencji). W pierwotnej wersji eksperymentu prezentowano tylko bodziec wzrokowy. Potem z tego samego punktu dochodził też dźwięk. Gdy bodziec wzrokowy był silny, dołączenie dźwięku nie zmieniało czasu reakcji. Jeśli jednak był on słaby, skojarzenie wzroku ze słuchem skracało czas latencji o 5 do 10 procent. Nasze odkrycia sugerują, że pojedyncze neurony z pierwszorzędowej kory wzrokowej mogą integrować informacje z innej modalności sensorycznej. Bodziec słuchowy jest przetwarzany szybciej od wzrokowego. Rezusy nauczyły się kojarzyć dźwięk z widokiem, dlatego kora wzrokowa jest przygotowana do odbioru słabszego sygnału.
  5. Grupa naukowców z Los Alamos, ośrodka znanego głównie z eksperymentów nad bronią atomową, wraz z kolegami z innych uczelni opracowała nową metodę obserwacji świata oczami muchy. Dzięki swoim odkryciom poszerszyli oni znacznie wiedzę o mechanizmie, w jakim zwierzęta postrzegają świat oraz o ich reakcjach na zmiany w środowisku. Badenia te pozwolą też być może znacząco zmienić sposób konstruowania przez informatyków tzw. sieci neuronowych, co może znacząco wspomóc prace nad rozwojem sztucznej inteligencji. Aby zbadać zachowania much, badacze unieruchomili je na specjalnej platformie i podłączyli miniaturowe elektrody do neuronów odpowiadających za postrzeganie przez nie ruchu w otoczeniu. Dodatkowo umieścili urządzenie w środowiku przypominającym naturalne miejsce bytowania much, czyli w zalesionej okolicy. Następnie wprawili platformę w ruch naśladujący lot muchy unikającej drapieżnika lub goniącej innego owada. W ten sposób wymuszono na muchach obserwowanie przestrzeni w czasie ruchu podobnego do tego wykonywanego w stanie zagrożenia, a jednocześnie rozwiązno problem związany z instalacją okablowania na ciele owada. Co ciekawe, podobne (choć oczywiście znacznie bardziej prymitywne) badania prowadzono już w... 1926 roku. Wtedy jednak niemożliwe było osiągnięcie tak wysokiej precyzji jak obecnie. Brakowało wystarczająco dokładnej aparatury pomiarowej, a dodatkowo urządzenia odtwarzające ruchy owada nie były wystarczająco dynamiczne. Z łatwością można się domyślić, że podczas dynamicznego "lotu" reakcje neuronów były bardzo szybkie. Stwierdzono również, że przekazywane przez nie informacje mają charakter sygnału cyfrowego, tzn. składały się z serii bardzo szybkich impulsów oraz przerw między nimi, co odpowiada zerom i jedynkom w komputerowym kodzie binarnym. W badanym przez nas systemie neurony odpowiadające za wykrywanie ruchu wysyłały bardzo krótkie i precyzyjne serie danych - tłumaczy fizyk Ilya Nemenman, jeden z autorów badań. Dodaje: Do tej pory zwykliśmy uważać, że wysyłane dane mają charakter znacznie bardziej przypadkowy. Tymczasem, ku naszemu zaskoczeniu, okazało się, że precyzja wysyłanych serii informacji jest co najmniej dziesięciokrotnie wyższa od opisywanej dotychczas. Obserwacja much dostarczyła także interesujących danych na temat oszczędzania energii przez muchy. W czasie lotu z gwałtownymi manewrami aż 10% energii wytwarzanej w jej ciele jest zużywane przez oczy. Z tego powodu, w celu optymalizacji zużycia energii, w czasie spoczynku oko owada pracuje w trybie "uśpionym", a aktywność neuronów odpowiedzialnych za widzenie znacznie spada. W tym czasie pracują wyłącznie nieliczne neurony, których zadaniem jest wykrywanie nagłych zmian w otoczeniu. Gdy takie zaburzenie porządku nastąpi, organ wzroku bardzo szybko "budzi się" i powraca do pełnej aktywności. Ilya Nemenman tłumaczy, że odkrycie jego zespołu może dostarczyć wskazówek mogących wspomóc proces konstruowania tzw. sieci neuronowych. Mówiąc najprościej, są to złożone programy komputerowe (często obejmujące nawet wiele komputerów naraz), w których zadanie obliczeniowe zostaje "rozdzielone" pomiędzy liczne punkty w sieci, czyli "neurony". Dzięki wzajemnej wymianie informacji między nimi możliwe jest wykonanie niektórych typów zadań znacznie szybciej, niż jakąkolwiek znaną wcześniej metodą. Jak tłumaczy badacz, dotychczas sieci neuronowe opierały się jedynie na okresowej wymianie danych. Częstotliwość nadawania sygnałów uznawano dotychczas za nieistotną dla działania tego typu programów. Obserwacja neuronów i odkrycie istotnej roli częstotliwości nadawania może być wytłumaczeniem, dlaczego konstruowane dotychczas sieci neuronowe nie spełniały do końca swojego zadania. Zdaniem Amerykańskiej Fundacji Nauki odkrycie to jest na tyle istotne, że przyznała ona niemal natychmiast grant na przeprowadzenie badań nad konstrukcją sieci neuronowej nowej generacji. Udoskonalenie funkcjonowania tego typu programów może mieć bowiem kluczowe znaczenie w wielu dziedzinach, w których potrzebne jest zastosowanie zaawansowanych technik obliczeniowych, od klimatologii po identyfikację terrorystów na podstawie ich twarzy.
  6. Bob McNichol, 57-letni Irlandczyk, który w listopadzie 2005 roku stracił wzrok w wyniku wybuchu płynnego aluminium, odzyskał wzrok dzięki... zębowi syna. W pewnym momencie lekarze z Zielonej Wyspy powiedzieli mężczyźnie, że zrobili już wszystko, co tylko mogli. Wtedy McNichol usłyszał o operacji przeprowadzanej przez doktora Christophera Liu z Sussex Eye Hospital w Brighton: osteoodontokeratoplastyce (ang. Osteo-Odonto-Keratoprosthesis, OOKP). Jej pionierami byli w latach 60. ubiegłego wieku Włosi. Polega ona na tworzeniu oparcia dla sztucznej rogówki z własnych zębów pacjenta i otaczających kości. W przypadku Irlandczyka wykorzystano tkanki jego syna Roberta: korzeń zęba i fragment szczęki. Najpierw odtworzono prawy oczodół, potem umieszczono w nim kawałek zęba, a w wydrążonym otworze umocowano soczewkę. Pierwsza operacja trwała 10 godzin, druga już o połowę krócej. McNichol ma 65% szans na odzyskanie wzroku. Już teraz może wykonywać proste czynności i oglądać telewizję. W Sieci można zobaczyć zdjęcie pana McNichola po operacji.
  7. Jedną z ciekawszych cech, jakie można znaleźć u ryb jaskiniowych, jest brak zmysłu wzroku. Naukowcy z New York University pokazali jednak, że to ewolucyjne przystosowanie można błyskawicznie cofnąć – wystarczy odpowiednio skrzyżować przedstawicieli różnych populacji ryb z gatunku Astyanax mexicanus, aby już w pierwszym pokoleniu pojawiły się osobniki z funkcjonującymi oczami. Co ciekawe, prawdopodobieństwo "odzyskania" wzroku przez potomstwo rosło wraz z odległością między macierzystymi jaskiniami rodziców. Obecnie znanych jest 29 różnych populacji wspomnianego gatunku ryb, które choć mają wspólnego przodka, od około miliona lat rozwijają się niezależnie. Do tej pory wiadomo było, że Astyanax mexicanus uzyskał swą obecną formę przez mutacje zachodzące w wielu grupach genów. Wynik eksperymentu wykazał, że w różnych populacjach za brak wzroku odpowiadały mutacje różnych genów. Po skrzyżowaniu, u części narybku nieaktywne geny jednego rodzica zostały zastąpione "prawidłowym" fragmentem DNA drugiego. Tym samym naukowcy dowiedli, że mimo podobnego efektu końcowego mutacji, różne szczepy ryb uzyskały go różnymi drogami. Według naukowców, w ciągu miliona lat badany gatunek ryb tracił wzrok co najmniej trzy razy.
  8. Kiedy słuchamy muzyki lub skupiamy się na złożonych, skomplikowanych dźwiękach, nasz mózg ogranicza nakłady związane z widzeniem. Naukowcy porównują to do zamykania oczu. W amerykańskim eksperymencie wzięło udział 20 dyrygentów oraz liderów zespołów muzycznych i 20 niezwiązanych z muzyką studentów. Wiek wolontariuszy wahał się od 28 do 40 lat. W obu grupach podczas wykonywania zadań słuchowych zaobserwowano charakterystyczne zjawisko: zmniejszenie aktywności w obszarach związanych z widzeniem (przy jednoczesnym jej zwiększeniu w rejonach słuchowych). Gdy zadania były trudniejsze, u dyrygentów obserwowano słabiej zaznaczone zmiany niż u niemuzyków. Badacze z dwóch uczelni, centrum medycznego Wake Forest University oraz Uniwersytetu Północnej Karoliny, posłużyli się funkcjonalnym rezonansem magnetycznym (fMRI). Kiedy wolontariusze leżeli w skanerze, słuchali dwóch różnych dźwięków, odtwarzanych w odstępie tysięcznych sekundy. Mieli określić, który z nich pojawił się jako pierwszy. By wyrównać szanse, profesjonalnym muzykom utrudniono zadanie. Aktywność w obszarach mózgu związanych ze słuchem wzrastała, we wzrokowych malała. Wraz ze wzrostem trudności zadania niemuzycy "przenosili" coraz więcej nakładów do obszarów słuchowych (w ten sposób wspomagali procesy uwagi). Po przekroczeniu pewnego stopnia trudności u muzyków nie obserwowano podobnego zjawiska, co oznacza, że lata treningu korzystnie wpłynęły na organizację ich mózgu. Dzięki niemu dyrygenci potrafili z większą łatwością skupić się na dźwiękach. Wyobraźmy sobie różnicę między słuchaniem czyjejś mowy w cichym pomieszczeniu a wsłuchiwaniem się w dyskusję w wypełnionym hałasem pokoju – wyjaśnia dr Jonathan Burdette. To dlatego mózg musi zamknąć oczy...
  9. Zmysły wydają się ze sobą ściślej połączone niż do tej pory sądzono. Kombinując ze sobą bodźce, można więc dość łatwo oszukać mózg. Doświadczamy wtedy rzeczy, które w rzeczywistości nie miały w ogóle miejsca. Naukowcy odkryli, że badani, którym pomiędzy dwoma dźwiękami zaprezentowano krótki rozbłysk światła, widzieli po drugim z tonów kolejny krótki błysk. Bodźce prezentowano po sobie w szybkim tempie (Journal of Neuroscience). Oznacza to, że mózg łączy informacje wzrokowe ze słuchowymi w ciągu milisekund, czyli dużo szybciej, niż myśleli neurolodzy. Wcześniej uważano, że komunikacja i wymiana danych między zmysłami zachodzi na wyższym poziomie, w swego rodzaju stacjach pośredniczących. Po ich przetworzeniu miały one być odsyłane z powrotem do jednego lub/i drugiego zmysłu — wyjaśnia Steven Hillyard z Uniwersytetu Kalifornijskiego w San Diego. Szybkie porozumiewanie się między dwoma obszarami mózgu oznacza jednak, że istnieje jakieś bezpośrednie połączenie. Odkrycie Amerykanów pozostaje w zgodzie z wynikami wcześniejszych badań anatomicznych na małpach, które wykazało obecność ścieżek nerwowych łączących bezpośrednio korę wzrokową ze słuchową. Jak zauważa Mishra, brakowało jeszcze dowodu, że takie połączenie rzeczywiście przyspiesza komunikację. To właśnie udało się jego zespołowi. Trzydziestu czterech wolontariuszy 300-krotnie przeszło próbę dźwięk-błysk-dźwięk. Wszyscy doświadczyli złudzenia wzrokowego, tyle tylko, że jednym zdarzało się to częściej niż innym. Nieistniejący błysk postrzegano w 10-90% wszystkich prezentacji. Neurolodzy potrafili przewidzieć, czy dana osoba doświadczy złudzenia wzrokowego, obserwując aktywność elektryczną jej mózgu. Jeśli po drugim dźwięku utrzymywała się aktywność kory słuchowej, badany widział drugi błysk. Istniejące różnice w rodzaju i sile połączeń powstają w trakcie rozwoju osobniczego i najprawdopodobniej mogą się zmieniać pod wpływem doświadczeń.
  10. Badania przeprowadzone przez naukowców z University of Rochester dowodzą, że gry FPS, czyli popularne "strzelaniny” w rodzaju Unreal Tournament, pozytywnie wpływają na przetwarzanie przez mózg sygnałów wizualnych. Okazuje się, że osoby, które spędzają przy takich grach kilka godzin dziennie, są o około 20% lepsze w identyfikowaniu bodźców wzrokowych. Wystarczy 30 godzin spędzonych przy grze by zauważyć znaczącą poprawę w przetwarzaniu form przestrzennych. Oznacza to ni mniej, ni więcej, że gracz znacznie szybciej od osoby niegrającej wyłapie spośród wielu figur konkretny, zadany kształt. Profesor Daphne Bavelier i doktorant Shawn Green wybrali do swojego eksperymentu studentów, którzy w przeszłości grali bardzo niewiele lub w ogóle. Podzielili ich na dwie grupy. Jedna przez godzinę dziennie grała w Unreal Tournament, a druga w Tetris – grę wymagającą równie dużo kontroli ruchowo-wzrokowej, ale mniej skomplikowaną wizualnie. Gdy ludzie grają w gry akcji, zmienia się sposób pracy tych obszarów mózgu, które są odpowiedzialne za przetwarzanie bodźców wzrokowych. Takie gry początkowo bardzo obciążają mózg, który pracuje na granicy swoich możliwości. Bardzo szybko jednak uczy się on nowych rzeczy i dostosowuje do potrzeb użytkownika. Tak wyuczone umiejętności są później wykorzystywane w codziennym życiu – mówi Bavelier.
  11. Naukowcom udało się częściowo przywrócić wzrok sześciu niewidomym osobom. Uczeni chcą teraz przeprowadzić eksperymenty na szerszą skalę. System, dzięki któremu niewidomi odzyskali wzrok, składa się z kamery przymocowanej do okularów. Kamera przekazuje obraz o rozdzielczości 16 pikseli do procesora noszonego na pasku. Stamtąd biegnie on do umieszczonego w głowie implantu, który rzutuje obraz na siatkówkę. To zadziwiające, jak wiele osiągnęliśmy dzięki 16 pikselom – mówi profesor Mark Humayun z Doheny Eye Institute na University of Southern California. Dzięki symulacjom wiedzieliśmy, że 16 pikseli pozwoli jedynie na rozróżnienie jasności od ciemności i, być może, niektórych odcieni szarości. Całkowicie się myliliśmy. W tej chwili trwają prace nad zwiększeniem rozdzielczości do 60 pikseli.i takiego zmniejszenia implantu, by można go było wszczepić w powiekę. Dzięki temu czas potrzebny do założenia całego systemu uległby skróceniu z 8 godzin do 90 minut, a koszt operacji spadłby do około 87 000 złotych. Uczeni przypuszczają, że, aby niewidomy mógł całkowicie odzyskać wzrok, potrzebna jest rozdzielczość około 10 000 pikseli. Jednak takie szacunki przeprowadzono zanim jeszcze okazało się, że 16 pikseli sprawuje się lepiej, niż przypuszczano. Profesor Humayun mówi, że jego systemy nie przyda się, niestety, wszystkim. Pomoże on osobom, które niegdyś widziały. Ponadto ich nerwy wzrokowe muszą być nienaruszone. Podobno uczestnictwem w testach zainteresowany był Stevie Wonder, jednak jako osoba, która utraciła wzrok we wczesnym dzieciństwie, nie zakwalifikował się do pierwszej fazy eksperymentów.
  12. Niewiele osób wie, że popularne zioło przyprawowe, kolendra, może pomóc cierpiącym z powodu pogorszenia wzroku. Według hinduskiego Central Council for Research in Ayurveda and Siddha, które podlega Ministerstwu Zdrowia i Dobrostanu Rodziny, picie niewielkich ilości soku z liści kolendry z miodem korzystnie wpływa na wzrok. Zaleca się przyjmowanie 2 do 3 łyżeczek ekstraktu z 5-10 g miodu. Mikstura pomaga w największym stopniu dzieciom, osobom w podeszłym wieku oraz ludziom, którzy spędzają wiele godzin przed monitorem komputera.
  13. Australijscy uczeni utrzymują, że istnieje ścisły związek między utratą wzroku a utratą słuchu u starszych ludzi. Naukowcy z Uniwersytetu w Sydney odkryli, że osoby, które w miarę starzenia się doświadczały utraty wzroku, częściej także cierpiały z powodu niedosłuchu i na odwrót. W studium uwzględniono 1.911 osób, a średnia wieku wynosiła 69,8. Ich wzrok i słuch zbadano po upływie pięciu lat od pierwszego badania (które miało miejsce albo w 1997, albo w 1999 roku). Akademicy wyliczyli, że na każdą linię liter i liczb, której badany nie widział na tablicy, przypadał 18-proc. (u niedowidzących) i 13-proc. (u osób z najlepiej skorygowaną wadą wzroku) wzrost ryzyka utraty słuchu. Dwie najpowszechniejsze związane z wiekiem przyczyny utraty wzroku, zaćma oraz zwyrodnienie plamki żółtej, były niezależnie (każda z osobna) skorelowane z utratą słuchu. Według badaczy, utarta wzroku oraz słuchu są integralną częścią procesu starzenia się i odkryte zjawisko może pomóc wyjaśnić, czemu te dwie dolegliwości często występują łącznie. Dodatkowo „popularne” czynniki ryzyka predysponują starszych ludzi do wystąpienia i stępienia słuchu, i spadku ostrości wzroku. Każda z tych dolegliwości była uznawana za skutek podobnych czynników genetycznych, środowiskowych oraz związanych ze stylem życia. Wystawienie na działanie stresu tlenowego [stan podwyższonego stężenia wolnych rodników tlenowych — przyp. red.], palenie papierosów, a także arterioskleroza oraz jej czynniki ryzyka były powiązane z degeneracją plamki żółtej, zaćmą i utratą słuchu. Innym czynnikiem ryzyka dla zaćmy i utraty wzroku oraz słuchu jest cukrzyca. Niesprawność działania tych dwóch zmysłów wywiera negatywny kumulacyjny wpływ na funkcjonowanie i samopoczucie starszego człowieka. Potrzebne są jednak dalsze badania, by zrozumieć naturę odnalezionej zależności i sprawdzić, czy usunięcie stwierdzonych niepełnosprawności może opóźnić proces starzenia się.
  14. Wyniki dwóch badań dostarczają kolejnych powodów do tego, by jeść ryby. Zawarte w nich związki zapobiegają związanemu z wiekiem zwyrodnieniu plamki żółtej, a jest to główna przyczyna ślepoty wśród starszych osób. Od dość dawna wiadomo, że kwasy omega-3, występujące m.in. w mięsie łososia, pomagają utrzymać serce i mózg w dobrym zdrowiu. Od teraz trzeba zapamiętać, iż miłośnicy ryb chronią również swój wzrok (Archives of Ophthalmology). Omawiane badania nie stanowią same w sobie mocnego dowodu naukowego, ale potwierdzają wyniki wcześniejszych studiów, łączących spożywanie ryb z zapobieganiem degeneracji plamki żółtej. Badanie 681 starszych Amerykanów (tylko panów) wykazało, że ci, którzy dwa razy w tygodniu jedli ryby, obniżali ryzyko zaniku plamki żółtej o 36%. W innym przez 5 lat obserwowano stan zdrowia 2335 Australijczyków (zarówno kobiet, jak i mężczyzn). Okazało się, że ci, którzy przynajmniej raz w tygodniu jedli ryby, o 40% rzadziej zapadali na omawianą chorobę oczu. Studium amerykańskie wykazało w dodatku, iż palacze niemal podwajają ryzyko wystąpienia zaniku plamki żółtej, w porównaniu do osób, które nigdy nie paliły. Zanik plamki żółtej początkowo objawia się zamazaniem obrazu w środku pola widzenia. Choroba postępuje aż do całkowitej utraty wzroku. Proces może przebiegać wolno lub szybko. Sześciu na ośmiu ludzi w wieku 75 lat i starszych cierpi na zaawansowaną postać zaniku plamki żółtej. Długość życia się zwiększa, dlatego częstość występowania związanego z wiekiem zaniku plamki żółtej również będzie wzrastać — zauważa nadzorująca badania amerykańskie dr Johanna Seddon z Massachusetts Eye and Ear Infirmary w Bostonie. Właściwe zbilansowanie niezbędnych kwasów tłuszczowych jest kluczowe dla zapobiegania chorobom oczu — twierdzi Seddon. Człowiek, który je nie tylko kwasy omega-3, ale też, w mniejszych ilościach, kwasy omega-6 (znajdujące się np. w warzywach), postępuje najlepiej. Oba badania efektów spożywania ryb były oparte na doniesieniach uczestników dot. diety. Były to badania obserwacyjne zachowania i stanu zdrowia wolontariuszy. Naukowcy wzięli pod uwagę także inne czynniki, które mogły wpłynąć na uzyskane wyniki (osoby te np. nie tylko jedzą ryby, ale mają inne zdrowe przyzwyczajenia obniżające ryzyko zachorowania). Silniejsze dowody pojawią się w ciągu najbliższych 5-6 lat, kiedy zakończą się duże badania nad wpływem olejów rybnych i luteiny na zanik plamki żółtej. Wezmą w nich udział losowo dobrane osoby — zakomunikowała sprawująca nad nimi nadzór dr Emily Chew z National Eye Institute. Wolontariusze zostaną losowo przydzieleni do 1) grupy przyjmującej olej rybny, 2) grupy zażywającej luteinę, 3) grupy łykającej i jedno, i drugie lub 4) placebo. Naukowcy jeszcze nie wiedzą, dlaczego jedzenie ryb chroni oczy. Kwasy omega-3 mogą neutralizować wolne rodniki w oku, zapobiegać tworzeniu się nowych naczyń krwionośnych, zmniejszać stany zapalne lub działać równocześnie na te trzy sposoby — dywaguje Chew. Jeśli ktoś nie lubi ryb, może je zastąpić odpowiednimi suplementami.
×
×
  • Dodaj nową pozycję...