Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'szafir' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Prace naukowców z Purdue University dają nadzieję na upowszechnienie się diod LED na rynku. Diody te są znacznie bardziej wydajne, energooszczędne i trwałe niż obecnie używane żarówki oraz świetlówki. Ich główną wadą jest zaś wielokrotnie wyższa cena. Tradycyjne LED-y wykorzystują szafir, który znacząco podnosi ich koszty. Uczonym z Purdue właśnie udało się zastąpić go krzemem. W szafirowych diodach materiałem emitującym światło jest azotek galu. Ponadto diody te korzystają z systemu luster, które obija światło tak, by nie było tracone. Te trzy elementy: szafir, azotek galu i lustra powodują, że diody są około 20-krotnie droższe od żarówek. Dotychczas nie udawało się zastąpić szafiru tańszym krzemem, ponieważ nie wiedziano, jak pokryć krzem odpowiedniej jakości metaliczną powłoką odbijającą światło. Amerykańscy naukowcy wykorzystali do tego celu azotek cyrkonu. Związek ten jest jednak niestabilny w obecności krzemu i reaguje z nim. Problem rozwiązano umieszczając na krzemie izolującą warstwę azotku glinu. Uczeni w komorze próżniowej bombardowali cyrkon i glin pozytywnie naładowanymi jonami argonu. Atomy metali były wybijane przez jony argonu i wchodziły w reakcję ze znajdującym się w komorze azotem. W wyniku tego procesu na krzemie odkładał się azotek glinu i azotek cyrkonu. Następnie w temperaturze około 1000 stopni Celsjusza za pomocą techniki epitaksji z fazy parowej dodano azotek galu. Znajdujące się na krzemie azotki cyrkonu, glinu i galu utworzyły krystaliczną strukturę, odpowiednią do produkcji diod LED. Dodatkową zaletą nowej technologii, oprócz znacznego obniżenia kosztów, jest fakt, iż krzem lepiej niż szafir rozprasza ciepło, co powinno skutkować zwiększoną żywotnością diod krzemowych. A ta może sięgać być może nawet 15 lat. Jeśli zastąpimy obecne żarówki diodami, możemy zaoszczędzić aż 30% energii zużywanej na oświetlanie. Oznacza to 10-procentową oszczędność w poborze energii w ogóle i odpowiednią redukcję emisji węgla do atmosfery - mówi profesor Timothy Sands. Informuje przy tym, że obecnie wydajność żarówek wynosi zaledwie 10%, a więc aż 90% pobieranej energii zamieniają one na ciepło, a nie na światło. Na rynku już teraz obecne są diody LED, których wydajność sięga 64 procent. Kosztują one jednak około 100 dolarów. Badania naukowców z Purdue powinny pozwolić na obniżenie ceny tego typu urządzeń do około 5 USD. Sands wierzy, że nowe diody trafia na rynek w ciągu 2 lat. Naukowcy muszą się jeszcze nauczyć, jak zmniejszyć liczbę wad fabrycznych oraz w jaki sposób zapobiec niszczeniu się warstwy azotku galu podczas schładzania plastrów krzemowych.
  2. Dla jednych bezcenny materiał na biżuterię i źródło estetycznych zachwytów, dla innych świetny materiał na wytrzymałe elementy maszyn, dla jeszcze innych okazja do zbadania i poszerzenia swojej wiedzy. Szafir. Jeden z najcenniejszych i najpiękniejszych kamieni szlachetnych. Dla astrologa szafir będzie kamieniem magicznym, dla chemika po prostu trójtlenkiem glinu (Al2O3), ale cenią go wszyscy. Szafir słynie ze swojej twardości i odporności na zarysowania. Może być używany zamiast diamentu, w elektronice i mechanice ceni się też jego właściwości elektryczne i cieplne. Potrafimy go wytwarzać sztucznie, ale to nie znaczy, że wiemy o nim wszystko. Badania nad strukturą kryształów i zmianami, jakie zachodzą w ich właściwościach pod wpływem niewielkich zmian lub domieszek skutkują coraz lepszym zrozumieniem zasad rządzących materią i rozwojem nwych technologii materiałowych. A właśnie amerykańsko-niemieckiej ekipie naukowców udało się przyjrzeć strukturze szafiru tak blisko, jak jeszcze nikomu. W tym celu naukowcy z Case Western Reserve University - Arthur Heuer i Peter Lagerlöf - udali się do niemieckiego Institute of Solid State Research w Julich gdzie oczekiwał na nich Chunlin Jia. Swojego wsparcia teoretycznego udzielał ponadto Jacques Castaing z francuskiego Laboratorie Physique des Materiaux. Badania przeprowadzano w Ernst Ruska-Centre for Electron Microscopy, gdzie znajduje się elektronowy mikroskop transmisyjny, który wymaga trudnego przygotowania próbki w postaci bardzo cienkiej płytki, ale w zamian zapewnia bardzo duże powiększenia. Badania przeprowadzono na syntetycznym szafirze, jaki stosuje się w konstrukcji specjalistycznych układów elektronicznych. Zobaczenie na własne oczy drobnych zaburzeń w strukturze kryształu wymagało ponadto wykorzystania efektu negatywnej aberracji sferycznej do uzyskania obrazu. Była to pierwsza udana próba zastosowania tej techniki do uzyskania obrazów defektów w materiałach ceramicznych z rozdzielczością poniżej jednego angstrema (1 Å = 0,1 nanometra). Oczom uczonych ukazały się wyraźnie pojedyncze atomy glinu i tlenu, tworzące krystaliczne struktury sześciokrotnych wielościanów glinu. Wśród nich można było zobaczyć rdzenie dyslokacji, powodujące zmiany kształtu wielościanów na czterokrotne. Każdy taki rdzeń zakończony był atomem glinu. To właśnie one wpływają na właściwości szafiru: zachowuje on właściwości elektrycznego izolatora, kiedy rdzenie dyslokacji otaczają najwyżej połowę położeń atomów glinu. Zrozumienie niuansów budowy szafiru (oraz innych kryształów) pozwoli w przyszłości na kontrolowanie ich czystości, a więc właściwości mechanicznych, cieplnych, elektrycznych czy magnetycznych. Na to zaś niecierpliwie czeka na przykład przemysł półprzewodników, czy laserów, gdzie szafiry są powszechnie stosowane. Chociaż panie zawsze zapewne będą wolały te naturalne, nawet jeśli nie będą idealne. Studium na ten temat opublikowano w periodyku Science z 26 listopada 2010.
×
×
  • Dodaj nową pozycję...