Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'samochód elektryczny' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 32 wyników

  1. Ostatnio często słyszymy o pożarach samochodów elektrycznych. Powstaje wrażenie, jakoby miały one miejsce bardzo często. Czy jednak rzeczywiście pojazdy elektryczne płoną częściej niż samochody spalinowe? Analiza danych z USA przeprowadzona przez porównywarkę ubezpieczeń AutoinsuranceEZ oraz dane Szwedzkiej Agencji Bezpieczeństwa Publicznego pokazują, że samochody elektryczne są bezpieczniejsze pod względem zagrożenia pożarowego od samochodów spalinowych. Największe zaś ryzyko stwarzają hybrydy. W ubiegłym roku analitycy z AutoinsuranceEZ przyjrzeli się danym zgromadzonym przez amerykańskie Narodową Radę Bezpieczeństwa Transportu (NTHB), Biuro Statystyk Transportu (BTS) oraz rządowym informacjom nt. samochodów, które sami producenci ściągnęli z rynku z powodu zagrożenia pożarowego. Z analizy wynika, że najbardziej ryzykownym typem pojazdu są hybrydy. Na każdych 100 000 sprzedanych hybryd zanotowano 3474,5 pożarów. Na drugim miejscu uplasowały się samochody spalinowe, z których płonie 1529,9 na 100 tysięcy sprzedanych. Jeśli zaś chodzi o pojazdy elektryczne, to zanotowano 25,1 pożarów na 100 000 sprzedanych. Eksperci sprawdzili też, ile pojazdów zostało ściągniętych z rynku z powodu ryzyka pożaru. I tak na przykład w roku 2020 Hyundai poinformował, że 430 000 sztuk spalinowego modelu Elantra jest zagrożonych pożarem. Ryzyko stwarzała instalacja elektryczna. W tym samym roku konieczna była naprawa usterki w 308 000 spalinowych modeli Kia Cadenza i Kia Sportage. Również tutaj problemem była instalacja elektryczna. Z kolei w 95 000 spalinowych Huyndai Genesis zagrożenie pożarowe stwarzał ABS, a producent McLarena Senny i McLarena 720S poinformował o wyciekach paliwa z 2800 samochodów. Narażone były też, oczywiście, samochody elektryczne. Pojawiła się konieczność naprawy usterek w 82 000 sztuk Huyndaia Kona i 70 000 Chryslera Pacifica. Tutaj problemem był akumulator. On też stwarza problemy w pojazdach hybrydowych. Jak więc wynika z dostępnych danych, w przypadku samochodów elektrycznych i hybrydowych pożary są powodowane przez usterki w akumulatorach, podczas gdy w pojazdach spalinowych przyczyn jest więcej i zagrożenie stanowiły układ elektryczny, wycieki paliwa oraz usterki w ABS. Dane z USA znajdują potwierdzenie w informacjach ze Szwecji. Na koniec 2022 roku u naszych północnych sąsiadów po drogach jeździło 610 716 samochodów elektrycznych i hybrydowych oraz 4 396 827 samochodów spalinowych. W tym czasie doszło do 106 pożarów elektrycznych środków transportu. Najczęściej, bo 38 razy, płonęły skutery, zanotowano 23 pożary samochodów osobowych i 20 pożarów rowerów. Szwedzi informują, że w ciągu ostatnich trzech lat liczba pożarów samochodów elektrycznych utrzymuje się na stałym poziomie około 20 rocznie, mimo że w tym czasie liczba samochodów tego typu zwiększyła się niemal dwukrotnie. To oznacza, że statystyczne ryzyko pożaru spada. W latach 2018–2020 w Szwecji zanotowano 81 pożarów samochodów elektrycznych. Do 17 doszło w czasie jazdy (zaliczono tutaj pożary w wyniku wypadków drogowych), 18 miało miejsce w trakcie ładowania, a w przypadku 46 nie ustalono w jakich warunkach pożar miał miejsce. Jak już wspomnieliśmy, w 2022 roku spłonęły w Szwecji 23 elektryczne i hybrydowe samochody pasażerskie. W tym samym roku całkowita liczba pożarów samochodów pasażerskich w Szwecji to około 3400 rocznie. Biorąc pod uwagę liczbę samochodów różnych typów trzeba stwierdzić, że zapaliło się 0,004% samochodów elektrycznych i hybrydowych oraz 0,09% samochodów spalinowych. Wśród pożarów pojazdów spalinowych układ elektryczny bądź akumulatory były przyczyną 656 pożarów. Z dostępnych polskich danych wynika, że w ubiegłym roku doszło w naszym kraju do 10 pożarów samochodów elektrycznych (na 29 780 zarejestrowanych) i 8333 pożarów samochodów spalinowych (na ok. 20 milionów zarejestrowanych). Zatem współczynnik pojazdów, które uległy pożarowi wynosi, odpowiednio, 0,03 i 0,04 procent. Głównym problemem związanym z pożarami samochodów elektrycznych, nie jest więc częstotliwość ich występowania, a trudności z ugaszeniem. « powrót do artykułu
  2. Rosnąca popularność samochodów elektrycznych (EV) często postrzegana jako problem dla sieci elektroenergetycznych, które nie są dostosowane do nowego masowego źródła obciążenia. Naukowcy z Uniwersytetu w Lejdzie oraz amerykańskiego Narodowego Laboratorium Energii Odnawialnej podeszli do zagadnienia z innej strony. Z analizy wynika, że w ciągu najbliższych lat EV mogą stać się wielkim magazynem energii ze źródeł odnawialnych, stabilizując energetykę słoneczną i wiatrową. Energia z wiatru i słońca to najszybciej rosnące źródła energii. So to jednak źródła niestabilne, nie dostarczają energii gdy wiatr nie wieje, a słońce nie świeci. Z analizy, opublikowanej na łamach Nature Communications, dowiadujemy się, że rolę stabilizatora mogą odegrać samochody elektryczne. Obecnie większość ich właścicieli ładuje samochody w nocy. Autorzy badań uważają, że właściciele takich pojazdów mogliby podpisywać odpowiednie umowy z dostawcami energii. Na jej podstawie dostawca energii sprawowałby kontrolę nad ładowaniem samochodu w taki sposób, by z jednej strony zapewnić w sieci odpowiednią ilość energii, a z drugiej – załadować akumulatory do pełna. Właściciel samochodu otrzymywałby pieniądze za wykorzystanie jego pojazdu w taki sposób, wyjaśnia główny autor badań, Chengjian Xu. Co więcej, gdy pojemność akumulatorów zmniejsza się do 70–80 procent pojemności początkowej, zwykle nie nadają się one do zastosowań w transporcie. Jednak nadal przez wiele lat mogą posłużyć do stabilizowania sieci elektroenergetycznych. Dlatego też, jeśli kwestia taka zostanie uregulowana odpowiednimi przepisami, akumulatory takie mogłyby jeszcze długo służyć jako magazyny energii. Z wyliczeń holendersko-amerykańskiego zespołu wynika, że do roku 2050 samochody elektryczne oraz zużyte akumulatory mogą stanowić wielki bank energii o pojemności od 32 do 62 TWh. Tymczasem światowe zapotrzebowanie na krótkoterminowe przechowywanie energii będzie wówczas wynosiło od 3,4 do 19,2 TWh. Przeprowadzone analizy wykazały, że wystarczy, by od 12 do 43 procent właścicieli samochodów elektrycznych podpisało odpowiednie umowy z dostawcami energii, a świat zyska wystarczające możliwości przechowywania energii. Jeśli zaś udałoby się wykorzystać w roli magazynu energii połowę zużytych akumulatorów, to wystarczy, by mniej niż 10% kierowców podpisało umowy z dostawcami energii. Już w roku 2030 w wielu regionach świata EV i zużyte akumulatory mogą zaspokoić popyt na krótkoterminowe przechowywanie energii. Oczywiście wiele tutaj zależy od uregulowań prawnych oraz od tempa popularyzacji samochodów elektrycznych w różnych regionach świata. Autorzy badań zauważają też, że wielką niewiadomą jest tempo degradacji akumulatorów przyszłości, które będzie zależało m.in. od postępu technologicznego, czy też tempo rozwoju systemów zarządzania energią. Nie wiadomo także, czy nie zajdą radykalne zmiany w samym systemie transportowym. Nie można wykluczyć np. zmiany przyzwyczajeń i rozpowszechnienia się komunikacji zbiorowej czy systemów wspólnego użytkowania pojazdów, na dostępność samochodów i akumulatorów może też wpłynąć rozpowszechnienie się pojazdów autonomicznych. « powrót do artykułu
  3. Prezydent Biden zatwierdził przeznaczenie 900 milionów dolarów na budowę stacji ładowania samochodów elektrycznych. Podczas North American International Auto Show w Detroit prezydent stwierdził, że niezależnie od tego czy będziecie jechali wybrzeżem autostradą I-10 [prowadzi z Kalifornii na Florydę - red.] czy I-75 [wiedzie z Michigan na Florydę] stacje do ładowania będą wszędzie i można je będzie znaleźć równie łatwo jak stacje benzynowe. Wspomniane 900 milionów USD będą pochodziły z zatwierdzonego w ubiegłym roku planu infrastrukturalnego na który przewidziano bilion dolarów, z czego 550 miliardów na transport czy internet szerokopasmowy i infrastrukturę taką jak np. sieci wodociągowe. W 2020 roku amerykański transport odpowiadał za 27% amerykańskiej emisji gazów cieplarnianych. To najwięcej ze wszystkich działów gospodarki. Władze Stanów Zjednoczonych chcą, by do roku 2030 samochody elektryczne stanowiły połowę całej sprzedaży pojazdów w USA. Poszczególne stany podejmują własne, bardziej ambitne inicjatywy. Na przykład Kalifornia przyjęła przepisy zgodnie z którymi od 2035 roku zakaże sprzedaży samochodów z silnikami benzynowymi. Obecnie pojazdy elektryczne stanowią jedynie 6% sprzedaży samochodów w USA. Jedną z najważniejszych przyczyn, dla których Amerykanie nie chcą kupować pojazdów z silnikiem elektrycznym jest obawa o łatwy dostęp do punktów ładowania. Obecnie w całym kraju takich punktów jest poniżej 47 000. Biden chce, by do roku 2030 ich liczba wzrosła do 500 000. W dokumencie zatwierdzającym wspomniane 900 milionów USD znalazła się też propozycja, by narzucić stanom obowiązek zakładania stacji ładowania pojazdów elektrycznych do 50 mil na głównych drogach stanowych i autostradach. Stany o dużym odsetku społeczności wiejskich już wyraziły obawę, że z takim obowiązkiem sobie nie poradzą. Dlatego też dla takich stanów oraz na potrzeby centrów miejskich i ubogich społeczności przygotowano program grantowy o łącznej wartości 2,5 miliarda USD. « powrót do artykułu
  4. Jedną z głównych przeszkód stojących na drodze ku upowszechnieniu się samochodów elektrycznych jest długi czas ładowania akumulatorów. Niewykluczone jednak, że już wkrótce możliwe będzie pełne załadowanie akumulatora w ciągu zaledwie 10 minut. Takie pojedyncze ładowanie pozwoli na przejechanie 320–480 kilometrów. Wykazaliśmy, że możliwe jest załadowanie w 10 minut akumulatora zapewniającego energię na 200–300 mil podróży, mówi profesor Chao-Yang Wang, dyrektor Electrochemical Engine Center na Pennsylvania State University. Żywotność takiego akumulatora wynosi 2500 cykli ładowania-rozładowania, co pozwala na przejechanie około pół miliona mil. Już obecnie można szybko ładować akumulatory litowo-jonowe, jednak znacząco skraca to ich żywotność, gdyż na anodzie osadza się metaliczny lit. Nie dość, że prowadzi on do spadku pojemności akumulatora, może też spowodować jego awarię. Im akumulator jest starszy, tym łatwiej dochodzi do tego niekorzystnego procesu. Wiadomo też, że jeśli akumulator zostanie podgrzany podczas ładowania, to nie dochodzi do osadzania się litu. Jednak samo podgrzewanie również skracażywotność urządzenia. Wang i jego zespół przeprowadzili eksperymenty, podczas których zauważyli, że jeśli akumulator zostanie podgrzany do temperatury do 60 stopni Celsjusza na nie dłużej niż 10 minut, a następnie szybko schłodzi się do temperatury pokojowej, to można go szybko naładować, zapobiec osadzaniu się litu i nie wpływa to negatywnie na jego żywotność. Obecnie uważa się, że podgrzanie akumulatora do 60 stopni Celsjusza nie powinno mieć miejsca, gdyż znacząco skraca to jego żywotność, mówi Wang. Uczony wraz z zespołem przeprowadzili serię eksperymentów, podczas których do elektrod komercyjnie dostępnych akumulatorów dodano folię aluminiową o grubości liczonej w mikronach. Pozwoliła ona na podgrzanie elektrod w ciągu zaledwie 30 sekund. Następnie uczeni testowali zmodyfikowane akumulatory, ładując je po podgrzaniu do 40, 49 i 60 stopni C. Ich wydajność porównano z akumulatorem testowym, pracującym w temperaturze 20 stopni. Okazało się, że przy temperaturze 20 stopni Celsjusza już po 60 cyklach ładowania-rozładowania pojawiły się problemy, które znacząco zmniejszyły wydajność. Tymczasem gdy elektrody podgrzano do 60 stopni Celsjusza akumulatory bez większych problemów wytrzymały 2500 cykli ładowania-rozładowania. Ważne było też szybkie schłodzenie akumulatora. Wang twierdzi, że można do tego wykorzystać system chłodzący pojazdu, tym bardziej, że olbrzymią różnicę robi już schłodzenie z 60 do niecałych 24 stopni Celsjusza. Uczeni chcą kontynuować swoje badania i mają nadzieję, że opracują technologię pozwalającą na pełne załadowanie akumulatora w ciągu zaledwie 5 minut. Szczegóły badań opublikowano w piśmie Joule. « powrót do artykułu
  5. Envia Systems wyprodukowała najtańsze - w przeliczeniu na ilość przechowywanej energii - ogniwo dla samochodów elektrycznych. Dzięki niemu można będzie znacząco zwiększyć zasięg niedrogich pojazdów. Envia poinformowała, że gęstość energetyczna urządzenia wynosi 400 watogodzin na kilogram, a gotowe akumulatory zostaną wycenione na 125 USD za kilowatogodzinę pojemności. To z kolei oznacza, że samochód elektryczny za 20 000 dolarów będzie miał zasięg około 480 kilometrów na pojedynczym ładowaniu. W tym przemyśle gęstość energetyczna akumulatorów rośnie średnio o 5% rocznie. My ją podwoiliśmy, jednocześnie obniżając o połowę cenę, co pozwoli nam na wprowadzenie tych akumulatorów na masowy rynek pojazdów o zasięgu 300 mil - powiedział szef Envii, AtulKapadia. Nowe ogniwo zbudowane jest z krzemowo-węglowego nanokompozytu, który posłużył do stworzenia anody oraz z katody HCMR (High Capacity Manganese Rich). Udoskonalono także sam elektrolit. Wymiary urządzenia to 97x190x10 milimetrów, waga wynosi 365 gramów, a pojemność 46 Ah. O tym jak wiele osiągnęła Envia może świadczyć fakt, że najbliższym konkurentem jej urządzenia jest ogniowo firmy Panasonic montowane w samochodach Tesla Model S, którego gęstość wynosi 245 Wh/kg. Obecnie ogniwa Envii przechodzą niezależne testy w ośrodku marynarki wojennej. Na rynek mają trafić w 2015 roku.
  6. Producent samochodów elektrycznych, Tesla Motors, zaprezentował poljazd, który błyskawicznie podbił serca wielu fanów motoryzacji. W ciągu zaledwie 1 dnia od premiery crossovera Model X Tesla otrzymała w ramach przedpłat 40 milionów dolarów. Jako, że wymagana jest przedpłata w wysokości 40 000 USD, w ciągu dnia zamówiono tysiąc sztuk. Termin „Model X“ był również trzecią najpopularniejszą frazą wyszukiwaną w Google’u. „W czwartek wieczorem, gdy pokazaliśmy nowy model, ruch na witrynie teslamotors.com wzrósł o 2800 procent. Dwie trzecie z odwiedzających to były osoby, które przyszły po raz pierwszy“ - oświadczyli przedstawiciele Tesli. Model X przyspiesza od 0 do 100 km/h w ciągu 4,4 sekundy, wyposażony jest z 300-konny silnik z tyłu. Klient może zamówić też 150-konny silnik z przodu. Zasięg pojazdu wynosi od 345 do 430 kilometrów na pojedynczym ładowaniu baterii. Ostateczna cena samochodu nie została ujawniona, ale Tesla zapewnia, że będzie ona konkurencyjna w stosunku do podobnych pojazdów.
  7. Przed pięcioma laty informowaliśmy o stworzeniu przez Massachusetts Institute of Technology technologii bezprzewodowego przesyłania prądu - Witricity. Teraz firma o tej samej nazwie zapowiada, że jej pierwsze urządzenia trafią na rynek jeszcze w bieżącym roku. Eric Giler, prezes firmy, dokonał pokazu dla dziennikarzy. Skierował pilota na niewielki czarny panel przymocowany do ściany, a naciśnięcie przycisku spowodowało, że zapaliły się trzy lampki, a leżący na biurku komputer przenośny zaczął się ładować Panelu z lampkami i komputerem nie łączył żaden kabel, energia przesyłana była bezprzewodowo. Witricity zapewnia, że pierwszy produkt firmy, urządzenie służące do bezprzewodowego zasilania elektroniki przenośnej, znajdzie się w sklepach jeszcze w bieżącym roku. Za rok lub dwa właściciele samochodów elektrycznych dostaną do swoich rąk urządzenie, które pozwoli na ładowanie akumulatorów bez potrzeby podłączania samochodu kablami. Później mogą pojawić się urządzenia do bezprzewodowego ładowania rozruszników serca i innych implantów. Pomysł na bezprzewodowe przesyłanie prądu nie jest nowy. Pierwsze urządzenia prezentował Nikola Tesla przed stu laty. Od pewnego czasu są dostępne np. specjalne maty, które zapewniają energię myszkom komputerowym. Jednak wszystkie tego typu sprzedawane już urządzenia mają poważną wadę - wymagają fizycznego kontaktu z ładowanym urządzeniem. Nie jest to zatem dużo wygodniejsze niż podłączanie urządzenia do prądu. Przesyłanie prądu na odległość zakłada wykorzystanie pola magnetycznego. Przepuszcza się prąd przez cewkę, co powoduje powstanie takiego pola. Gdy w bezpośrednim sąsiedztwie mamy podobną cewkę, również i w niej pojawia się pole magnetyczne, generujące prąd elektryczny. Wystarczy jednak obie cewki od siebie odsunąć, by wydajność tej metody przekazywania energii gwałtownie spadła. Dlatego też wymagany jest obecnie bezpośredni kontakt urządzenia ładującego z ładowanym. Witricity radzi sobie z tym problemem dobierając precyzyjnie częstotliwość drgań każdej cewki, dzięki czemu straty są minimalne. Odległość, na jaką można w ten sposób przekazać energię zależy od wielkości cewki. Małe cewki, mieszczące się np. w telefonach komórkowych, pozwolą na efektywne ładowanie ich z odległości kilkunastu centymetrów. Witricity pokazało jednak prototypy pozwalające na przesyłanie energii na odległość około metra. Co prawda można przesyłać też energię za pomocą laserów i mikrofal, jednak po pierwsze oba urządzenia muszą znajdować się wówczas na wprost siebie, a po drugie są do metody niebezpieczne. Możliwe jest także zwiększenie odległości używając dodatkowych cewek pośredniczących. Podczas pokazu urządzonego przez Gilera cewki umieszczono też pod dywanem pomieszczenia, co pozwoliło na ładowanie komputera i zapalanie lampek na większą odległość. Witricity opracowało też prototypowy stół ładujący położone na nim urządzenia nawet wówczas, gdy znajdują się w torbie czy pudełku. Stworzyło też prototypową myszkę i klawiaturę ładowaną bezprzewodowo z monitora komputerowego. Firma podpisała wielomilionowy kontrakt z Toyotą na opracowanie systemu do bezprzewodowego ładowania samochodów elektrycznych. Witricity to jedna z wielu firm pracujących nad tego typu technologiami. Co więcej powstają nawet pomysły ładowania samochodów elektrycznych będących w ruchu. Utah State University otrzymało federalny grant w wysokości 2,7 miliona dolarów, dzięki któremu na przystankach autobusowych w Utah powstają urządzenia bezprzewodowo ładujące autobusy. Z kolei badacze z Oak Ridge National Laboratory i Stanford University pracują nad systemem cewek wbudowanych w drogi. Zapewniałyby one przejeżdżającemu pojazdowi wystarczająco dużo energii, by mógł dojechać do kolejnego zestawu cewek znajdującego się milę dalej. Umieszczone przy cewkach urządzenie wykrywałoby nadjeżdżający pojazd i rozpoczynało jego ładowanie. Specjaliści oceniają, że każdy z takich zestawów cewek kosztowałby mniej niż milion dolarów. Bezprzewodowe ładowanie pojazdów elektrycznych jest niezwykle wygodne. Nie musisz zmagać się z kablami, nie przejmujesz się pogodą, nawet nie musisz pamiętać o tym, by załadować samochód. Myślę, że ten pomysł szybko chwyci - mówi John Miller z Oak Ridge.
  8. Akumulator opracowany przez Nanotek Instruments ma wszelkie szanse stać się przełomowym urządzeniem na rynku pojazdów elektrycznych. Specjaliści zaprojektowali urządzenie przechowujące energie, która jest w stanie bardzo szybko uwięzić dużą liczbę jonów litu pomiędzy elektrodami, których działania wspomagają duże ilości grafenu. Naładowanie takiego akumulatora, który mógłby napędzać samochody elektryczne, może trwać mniej niż minutę. Urządzenie przyda się również np. do przechowywania energii ze źródeł odnawialnych. Wynalazcy nazwali je „surface-mediate cells" (SMCs). Już w tej chwili, mimo, że materiały oraz konstrukcja urządzenia nie zostały zoptymalizowane, charakteryzuje się ono osiągami przewyższającymi zarówno konstrukcje litowo-jonowe jak i superkondensatory. Gęstość mocy urządzenia wynosi 100 kW/kg, jest zatem 100-krotnie większa od baterii litowo-jonowych i 10-krotnie przekracza możliwości superkondensatorów. Im większa zaś jest gęstość mocy, tym szybszy transfer energii, a co za tym idzie - tym krótsze czasy ładowania. Ponadto gęstość energii - czyli ilość energii, którą można przechowywać w danej objętości lub masie - sięga 160 Wh/kg. Jest więc porównywalna z gęstością baterii litowo-jonowych i 30 razy większa od gęstości konwencjonalnych superkondensatorów. Jeśli porównamy SMC i baterie litowo-jonowe o tej samej wadze, to napędzany nimi samochód elektryczny będzie mógł przejechać mniej więcej taką samą trasę na pojedynczym ładowaniu. Nasze SMCs, podobnie jak współczesne urządzenia litowo-jonowe, mogą być jeszcze ulepszone pod względem gęstości energii. Jednak SMC mogą być ładowane w ciągu minut (prawdopodobnie w mniej niż minutę), a akumulatory litowo-jonowe wymagają godzin ładowania - mówi Bor Z. Jang, współzałożyciel Nanotek Instruments. Nanotek i jego firma-córka, Angstron Materials, która współpracowała przy SMC, specjalizują się w badaniach nad nanometeriałami. Angston to największy na świecie producent płytek nanografenowych (NGP). Jak widzimy, SMC łączą zalety baterii i superkondensatorów. Te pierwsze charakteryzują się większą gęstością energetyczną, te drugie - większą gęstością mocy. Nanotek i Angstron stworzyły nową architekturę urządzenia do przechowywania energii, która potencjalnie może zrewolucjonizować przemysł samochodowy. Kluczem do sukcesu są anoda i katoda wyposażone w olbrzymie powierzchnie grafenowe. Podczas produkcji naukowcy umieścili na anodzie metaliczny lit (w postaci cząsteczek lub folii). W czasie pierwszego rozładowania, dochodzi do jonizacji litu, w wyniku czego pojawia się znacznie większa liczba jonów niż w urządzeniach litowo-jonowych. W czasie pracy urządzenia jony migrują poprzez płynny elektrolit do katody. Z kolei podczas ładowania, olbrzymia liczba jonów litu szybko przechodzi od katody do anody. Dzięki wielkiej powierzchni obu elektrod możliwe jest szybkie przesyłanie dużych ilości jonów. Dzięki temu, że jony litu przemieszczają się pomiędzy porowatymi powierzchniami elektrod udało się wyeliminować czasochłonny proces interkalacji. Naukowcy prowadzili badania z różnymi rodzajami grafenu i mówią, że konieczne są dalsze eksperymenty. Chcą teraz przede wszystkim skupić się na zwiększeniu żywotności swojego urządzenia. Dotychczasowe badania wykazały, że może ono zachować 95% pojemności po 1000 cykli ładowania/rozładowania, a nawet po 2000 cykli nie zauważono, by dochodziło do powstawania zmniejszających pojemność akumulatorów kryształów dendrytycznych. Nie widzimy żadnych poważniejszych przeszkód, które mogłyby uniemożliwić komercjalizację technologii SMC. Chociaż grafen jest obecnie drogi, to Angstron Materials pracuje nad technologiami umożliwiającymi jego produkcję na skalę przemysłową. Przewidujemy, że w ciągu najbliższych 1-3 lat jego cena dramatycznie spadnie - mówi Jang.
  9. Niemiecki zespół Schluckspecht zaprezentował eksperymentalny pojazd elektryczny, który jest w stanie przejechać 1631 kilometrów na pojedynczym ładowaniu baterii. Samochód Schluckspecht E przebył trasę o takiej długości w ciągu 36 godzin. Łatwo zatem obliczyć, że jego średnia prędkość wynosiła nieco powyżej 45 km/h. Niemcy pobili poprzedni rekord wynoszący 1003 kilometry na pojedynczym ładowaniu, który należał do Japońskiego Klubu Miłośników Pojazdów Elektrycznych. Samochód Japończyków nie dość, że przejechał krótszy odcinek, to jego średnia prędkość wynosiła 40 km/h.
  10. Nowa architektura baterii, którą opracowano na MIT (Massachussetts Institute of Technology) może pozwolić na stworzenie lekkich i tanich baterii dla samochodów elektrycznych, których ładowanie będzie przebiegało tak szybko i prosto jak napełnianie baku paliwem. Innowacyjna architektura to połączenie baterii przepływowych i baterii litowo-jonowych. Cząsteczki ciała stałego są w niej zawieszone w płynie i przepompowywane przez baterię. Te cząsteczki stanowią katodę i anodę. W nowej baterii dwie zasadnicze funkcje jakie spełniają tego typu urządzenia - przechowywanie energii i jej uwalnianie w razie potrzeby - zostały przeniesione do dwóch fizycznych różnych struktur. W konwencjonalnej baterii energia jest przechowywana i uwalniania w tej samej strukturze. Dzięki rozdzieleniu tych funkcji projekt baterii jest bardziej efektywny. Twórcy urządzenia, Mihai Duduta i Bryan Ho, którzy pracowali pod kierunkiem profesorów W. Craiga Cartera i Yet-Ming Chianga, mówią, że nowy typ baterii pozwala na stworzenie urządzeń dwukrotnie mniejszych niż obecne. To z kolei może pozwolić na stworzenie samochodów elektrycznych, które będą w pełni konkurencyjne do pojazdów na tracydyjne paliwa. Drugą niezwykle ważną cechą urządzeń jest możliwość wypompowywania zużytego płynu i wpompowania nowego, ewentualnie wymianę zbiorników z płynem przepływającym przez baterię. Oczywiście możliwe będzie również tradycyjne ładowanie baterii. Podobne baterie istnieją już od pewnego czasu, jednak charakteryzują się małą gęstością energetyczną, przez co są duże i wymają szybkiego pompowania płynu. Baterie z MIT-u z jednej strony oferują 10-krotnie większą gęstość energetyczną od innych baterii przepływowych, a z drugiej są tańsze w produkcji niż urządzenia litowo-jonowe. Dzięki dużej gęstości energetycznej, płyn nie musi być szybko przepompowywany. Nowe baterie przepływowe mogą być tanio i łatwo skalowane. Można je będzie zatem stosować zarówno w samochodach jak i dużych instalacjach energetycznych. Chiang dodaje, że urządzenie może posłużyć do powstania nowej klasy baterii, gdyż jego budowa nie jest w żaden sposób zależna od składników płynu przechowującego baterię. Obecnie młody uczony wraz z kolegami eksperymentują z różnymi „wsadami" do baterii. Yuri Gogotski, profesor na Drexel University mówi: Pokazanie litowo-jonowej baterii przepływowej to ważny przełom, który pokazuje, że tego typu aktywne materiały mogą być używane do przechowywania energii elektrycznej. Będzie to miało olbrzymie znaczenie dla przechowywania energii w przyszłości. Uczony dodaje, że musi zostać wykonanych jeszcze wiele badań, zanim nowe baterie trafią na rynek. Nie widzę jednak fundamentalnych problemów, który nie można będzie rozwiązać. To przede wszystkim problemy inżynieryjne. Oczywiście stworzenie baterii, która będzie konkurowała z obecnymi urządzeniami pod względem kosztów i wydajności z obecnymi może zająć całe lata - dodaje. Licencję na nową baterię ma firma 24M Technologies, którą Chiang i Carter założyli w ubiegłym roku wraz z przedsiębiorcą Throopem Wilderem. Firma zebrała już na dalsze badania 16 milionów dolarów od funduszy inwestycyjnych i budżetu federalnego.
  11. Niewielka firma Nanotune twierdzi, że rozwijane przez nią ultrakondensatory będą mogły konkurować z tradycyjnymi akumulatorami. Przedsiębiorstwo już teraz jest w stanie wyprodukować ultrakondensatory zdolne do przechowywania od 4 do 7 razy więcej energii niż standardowe urządzenia tego typu. Zaletami ultrakondensatorów są możliwość szybkiego uwalniania energii, szybkiego ładowania oraz duża wytrzymałość. Jednak urządzenia takie są obecnie zbyt drogie i przechowują zbyt mało energii by zastąpić akumulatory. Nanotune zbudowało jednak ultrakondensator, którego gęstość energetyczna - w przypadku zastosowania standardowego elektrolitu - wynosi 20 Wh/kg. Jeśli zaś użyta zostanie droższa ciecz jonowa, to gęstość ultrakondensatorów Nanotune wzrasta do 35 Wh/kg. W niektórych pojazdach hybrydowych używane są akumulatory o gęstości 40 Wh/kg. Tymczasem Nanotune zapowiada, że do końca bieżącego roku wyprodukuje ultrakondensator o pojemności 70 Wh/kg. Akumulatory wykorzystywane w samochodach elektrycznych i hybrydowych nie są odporne na działanie skrajnych temperatur. Zarówno zbyt wysokie jak i zbyt niskie temperatury im szkodzą. Dlatego też producenci wyposażają je w systemy chłodzące i nagrzewające. To, oczywiście, zwiększa cenę i czyni całość bardziej podatną na awarie. Jakby tego było mało, z czasem pojemność akumulatorów spada, a producenci, by temu przeciwdziałać, dodają nadmiarowe ogniwa. Ultrakondensatory są pozbawione tych wad. Tolerują znacznie większy zakres temperatur i znacznie wolniej tracą pojemność. Mogą wytrzymać setki tysięcy cykli ładowania/rozładowywania. Na razie cena ultrakondensatorów Nanotune jest bardzo wysoka i wynosi od 2400 do 6000 USD za kilowatogodzinę pojemności. Amerykański Departamen Energii uważa, że samochody elektryczne staną się konkurencyjne wobec tradycyjnych przy cenie 250 USD za kilowatogodzinę. Nanotune uważa jednak, że z czasem urządzenia tej firmy mogą kosztowac około 150 USD za kilowatogodzinę. Wszystko zależy bowiem od ceny materiałów (jak np. elektrolitu) oraz rozpoczęcia produkcji na dużą skalę. Nanotune to kolejna firma, która obiecuje wyprodukowanie ultrakondensatorów o dużej pojemności. Specjaliści uważają, że jeśli komuś uda się stworzyć tego typu urządzenia o pojemności 100 Wh/kg to będzie to „fantastyczne osiągnięcie".
  12. Google postanowiło ułatwić życie posiadaczom samochodów elektrycznych. Mimo, że tego typu pojazdy stają się coraz bardziej popularne, to stacji ich ładowania jest wciąż niewiele i przypadkowe trafienie na jakąś, gdy jesteśmy w trasie graniczy z cudem. Dlatego też teraz na Google Maps zaznaczono lokalizacje stacji ładowania samochodów elektrycznych. Dzięki temu podróże - oczywiście po USA - staną się mniej stresujące dla ich właścicieli. Dane o lokalizacji są dostarczane przez należące do Departamentu Energii Narodowe Laboratorium Energii Odnawialnej. Już wkrótce na mapach Google powinno znaleźć się 600 punktów ładowania samochodów elektrycznych oraz około 7000 stacji z alternatywnymi rodzajami paliwa. Aby znaleźć punkt ładowania samochodu należy wpisać w wyszukiwarce "ev charging station".
  13. Rolls-Royce pokazał podczas genewskich targów pojazd Phantom 102EX - swój pierwszy elektryczny samochód. To jednocześnie pierwszy taki samochód w segmencie pojazdów ultraluksusowych. Phantom korzysta z 2 silników elektrycznych o mocy 145 kW każdy, które zapewniają moment obrotowy rzędu 800 Nm. Dla porównania 12-zaworowy silnik spalinowy Phantoma ma moc 338kW i zapewnia maksymalny moment obrotowy 720Nm przy 3500 obrotach na minutę. Gęstość energetyczna użytych akumulatorów wynosi aż 230 Wh/kg. Producent zapewnia, że zasięg pojazdu wynosi około 200 kilometrów na pojedynczym ładowaniu. Akumulatory można ładować albo za pomocą kabla lub też indukcyjnie. Pełen cykl ładowania trwa około 8 godzin. Maksymalna prędkość Phantoma wynosi 160 km/h. Od 0 do 100 km/h przyspiesza on w mniej niż osiem sekund. Pojazd waży niemal 3 tony, więc osiągi takie należy uznać za co najmniej przyzwoite.
  14. Symbol motoryzacyjnego luksusu, firma Rolls-Royce, zaprezentuje w pełni elektryczny samochód swojej produkcji. Model Phantom 102EX będziemy mogli zobaczyć 1 marca podczas Geneva Motor Show. Później w pełni elektryczny samochód ruszy w ogólnoświatową podróż, odwiedzając Europę, Azję i Bliski Wschód. Stworzyliśmy pierwszy elektryczny samochód w segmencie pojazdów ultraluksusowych. Wraz z nim rozpoczynamy badania nad nowymi technologiami i poszukujemy rozwiązań, które zostaną wykorzystane w przyszłych modelach Rolls-Royce - stwierdził Torsten Muller-Otvos, szef firmy. Dodał przy tym, że na razie przedsiębiorstwo nie planuje sprzedaży samochodów elektrycznych. Chce jednak przekonać do takiej wizji akcjonariuszy oraz swoich klientów. Szczegóły techniczne elektrycznego Phantoma są trzymane w ścisłej tajemnicy.
  15. Chiny chcą wymusić na zagranicznych koncernach samochodowych przekazanie własności intelektualnej dotyczącej pojazdów elektrycznych. To już druga w ostatnim czasie, po ograniczeniu wydobycia metali ziem rzadkich, próba wymuszenia ustępstw na inwestorach podjęta przez rząd Chin. Państwo Środka przyjęło 10-letni plan w ramach którego Chiny mają stać się światowym liderem produkcji pojazdów elektrycznych. Chińczycy nie dysponują jednak odpowiednimi technologiami. Dlatego też Ministerstwo Przemysłu i Technologii Informacyjnej rozważa plan, w ramach którego koncerny, które chciałyby produkować w Chinach samochody elektryczne, będą musiały założyć spółkę z chińskim producentem samochodów. Chińczycy byliby mniejszościowymi udziałowcami i zyskaliby dostęp do zagranicznych technologii. Polityka Chin spotyka się z coraz większą krytyką, gdyż innym państwom nie podobają się próby zmuszania przedsiębiorstw do przekazania własności intelektualnej. Państwo Środka ma jednak na rynku pojazdów elektrycznych sporo do powiedzenia chociażby ze względu na to, że kontroluje 95% wydobycia metali ziem rzadkich.
  16. Grupa kanadyjskich firm pracuje nad samochodem elektrycznym wykonanym częściowo z... konopi. Kanadyjczycy chcą wykorzystać przewagę, jaką daje im prawo w USA zabraniające uprawy konopi. Testy pojazdu Kestrel rozpoczną się jeszcze w sierpniu. Czteroosobowy samochód ma jeździć z maksymalną prędkością 90 km/h, a jego zasięg, w zależności od typu baterii, wyniesie od 40 do 160 kilometrów. Jest to zatem niewielki, typowo miejski samochód. Bardzo wytrzymała karoseria samochodu zostanie wykonana z włókien konopi. Pomysł na ich wykorzystanie nie jest nowy. Henry Ford, pionier masowej motoryzacji, produkował karoserie z żywic i konopi. Przed kilkudziesięciu laty pomysł ten jednak się nie przyjął. Wytwórcy samochodów woleli stal. Obecnie coraz częściej mówi się o wykorzystaniu włókien szklanych czy węglowych. Są one bowiem lekkie i wytrzymałe. Jednak ich poważną wadą jest fakt, że podczas produkcji wymagane są wysokie temperatury i liczne procesy chemiczne, przez co materiały te są bardzo energochłonne i drogie. Tymczasem włókna konopi rosną same. "Konopie to jeden z najlepszych materiałów" - mówi Nathan Armstrong, prezes firmy Motive Industries. Jak zauważa, włókna konopi są dwukrotnie bardziej wytrzymałe niż włókna innych roślin, konopie nie wymagają dużo wody i pestycydów oraz rosną dobrze w Kanadzie, dając wysokie plony z hektara. Dodatkową zaletą z punktu widzenia Kanadyjczyków jest zakaz ich uprawy w USA. Daje on producentom z Kanady oczywistą przewagę.
  17. Firma Coulomb Technologies oznajmiła, że do września 2011 roku w dziewięciu amerykańskich metropoliach założy 4600 punktów ładowania samochodów elektrycznych. To część programu ChargePoint America. Projekt wspierają Chevrolet, Ford i Smart, które zapowiedziały sprzedaż pojazdów elektrycznych w miastach, w których pojawią się wspomniane punkty. ChargePoint America będzie kosztował 37 milionów dolarów, z czego 15 milionów pochodzi z grantu Departamentu Energii. Obecnie poważnym problemem związanym z budową punktów ładowania samochodów elektrycznych jest... brak samochodów. Po drogach USA jeździ ich zbyt mało, by prywatne inwestycje w tego typu przedsięwzięcie mogły przynieść jakikolwiek dochód. Jednak z drugiej strony, brak punktów ładowania powoduje, że kierowcy nie kupują samochodów elektrycznych obawiając się, że nie będą mieli gdzie ich "tankować". Punkty zakładane przez Coulomb Technologies będą połączone w sieć i mogą być konfigurowane tak, by udostępniały energię bezpłatnie lub za opłatą. Już teraz firmy mogą zwracać się do Coulomb by instalowała część ze wspomnianych 4600 punktów na należących do nich terenach. Instytucje rządowe i osoby indywidualne mogą wnioskować o ustawianie punktów w konkretnych publicznych miejscach. Osobom indywidualnym przysługuje też prawo do złożenia wniosku o zainstalowanie takiego punktu na ich prywatnej posesji. Punkty ładowania będą zbierały dane dotyczące sposobu ich użytkowania. Dane te będą następnie analizowane przez naukowców z Purdue University i Idaho National Labs.
  18. Toyota zawarła porozumienie z producentem elektrycznego samochodu sportowego Tesla Roadster, firmą Tesla Motors. Na jego podstawie oba przedsiębiorstwa będą wspólnie rozwijały pojazdy elektryczne. W ramach umowy Toyta kupi akcje Tesli o wartości 50 milionów dolarów. Już w ubiegłym roku 10 procent udziałów Tesli kupił Daimle AG. Celem Tesla Motors jest stworzenie taniego elektrycznego samochodu dla przeciętnego użytkownika. Dotychczas firma skupia się na produkcji sportowego Roadstera. Sprzedała już ponad 1000 sztuk tego pojazdu. Firma zakupiła też fabrykę firmy NUMMI, gdzie będzie produkowany elektryczny sedan Model S i przyszłe samochody Tesli. Model S ma kosztować około 50 000 dolarów, a dzięki dodatkowym akumulatorom jest w stanie przejechać około 500 kilometrów na pojedynczym ładowaniu. Tesla współpracuje też z firmą Panasonic. Ich celem jest udoskonalanie akumulatorów dla pojazdów elektrycznych.
  19. Jedną z największych wad współczesnych baterii jest długi czas ich ładowania. To z kolei uniemożliwia upowszechnienie się np. elektrycznych samochodów. Niewykluczone jednak, że uczeni z Mississippi State University właśnie znaleźli sposób na przezwyciężenie tego problemu. Podczas ładowania baterii pole elektryczne przesuwa jony w kierunku grafitowej elektrody. Jednak jony, by zostać zatrzymane i przechowane w elektrodzie muszą przeniknąć barierę potencjału. Zespół pod kierunkiem Ibrahima Abou Hamada postanowił zbadać, jakie siły działają na jony w czasie, gdy się one przesuwają. Stworzyli komputerowy model składający się ze 160 atomów węgla ułożonych w 4 warstwy grafenu oraz 69 molekuł węglanu propylenu i 87 węglanu etylenu, które były modelowym elektrolitem. Do całości dodano dwa jony heksafluorofosforanu i 10 jonów litu. Do takiej konstrukcji uczeni przyłożyli wirtualne pole elektryczne, by zobaczyć, co się będzie działo. Okazało się, że gdy pole elektryczne popycha jony litu w kierunku grafenu, przeszkodą dla nich jest bariera potencjału. Dalsze badania wykazały, że barierę tę można bardzo łatwo pokonać. Wystarczy dodać oscylujące pole elektryczne do pola, które ładuje baterię. Wówczas jony litu bardzo łatwo przedostają się do grafenu i wiążą się z nim. To jednak nie wszystko. Uczeni zauważyli, że istnieje wykładnicza zależność pomiędzy amplitudą dodatkowego pola elektrycznego a prędkością przenikania jonów do grafenu. To oznacza, że niewielka zmiana amplitudy powoduje gwałtowne przyspieszenie tego procesu. Symulacja pokazała, że możliwe jest skonstruowanie urządzenia, które będzie bardzo szybko ładowało baterie. Naukowcy nie wykluczają, że może też ono zwiększyć gęstość mocy urządzenia. Przeprowadzenie fizycznych testów powinno być bardzo proste, możemy zatem przypuszczać, że już wkrótce się one rozpoczną. Niestety, nie oznacza to, że niedługo zobaczymy na naszych drogach samochody elektryczne z akumulatorami, które będzie można błyskawicznie naładować. Obecnie nie wiadomo bowiem, czy nowy sposób ładowania baterii nie skróci ich żywotności, ani jak długo mogą one przechowywać tak dostarczony ładunek.
  20. Profesor Jeff Stein z University of Michigan chciałby w przyszłości wykorzystywać samochody do... dystrybucji energii elektrycznej. Naukowiec zauważa, że przez większość czasu pojazdy stoją bezczynnie, a tymczasem mogłyby, oczywiście o ile są to samochody elektryczne, sprzedawać energię do sieci. Dzięki temu infrastruktura zasilana energią elektryczną mogłaby powstać tam, gdzie obecnie jej tworzenie jest nieopłacalne. Mogłyby też posłużyć do dystrybucji energii odnawialnej. Jeśli np. dach naszego garażu pokryjemy ogniwami słonecznymi, z których naładujemy samochód, a następnie pojedziemy do miasta na zakupy, będziemy mogli sprzedać tam część energii. Miliony takich samochodów mogą mieć olbrzymie znaczenie dla systemu produkcji i dystrybucji energii. Oczywiście należy brać pod uwagę różne aspekty tego typu działań. Grupa profesora Sterna zastanawia się m.in. jak taki sposób dystrybucji może wpłynąć na żywotność akumulatorów. Pytanie to jest też o tyle istotne, że większość właścicieli pojazdów elektrycznych będzie starało się doładowywać je "przy okazji", korzystając np. z faktu, że minęły godziny szczytu, czy też, że znajdują się w okolicy, w której energia jest nieco tańsza, niż w ich rodzinnej miejscowości.
  21. Nissan twierdzi, że w ciągu najbliższych 5 lat wyprodukuje baterie, które pozwolą na dwukrotne zwiększenie zasięgu firmowego samochodu elektrycznego. Oznacza to, że samochód Leaf będzie miał w 2015 roku zasięg 320 kilometrów na pojedynczym ładowaniu baterii. Produkcja nowych, bardziej wydajnych baterii ma kosztować tyle samo, co produkcja pierwotnego zestawu, który wraz z Leafem zadebiutuje w przyszłym roku. Nowe baterie mogą trafić też do samochodów elektrycznych Renaulta. Wiadomo, że będą to baterie typu NMC (litowo-niklowo-manganowo-kobaltowe). Nad podobnym rozwiązaniem pracuje wiele firm, co oznacza, że w ciągu najbliższych lat będą one stosowane w licznych modelach samochodów elektrycznych.
  22. Ustanowiono nowy rekord zasięgu seryjnie produkowanego samochodu elektrycznego. Właściciel firmy Tesla Motors Simon Hackett oraz jego kolega Emilis Prelgauskas przejechali 501 kilometrów na pojedynczym ładowaniu samochodu Tesla Roadster. Pojazd, którym poruszali się pomiędzy Alice Springs a punktem położonym o 183 kilometry na północ od miejscowości Coober Pedy, był seryjny Roadster z 2008 roku. Samochód nie został w żaden sposób przerobiony. "Emilis i ja mamy za sobą dziesiątki lat doświadczeń w lataniu na lotni i zastosowaliśmy znane nam techniki oszczędzania energii, które wykorzystaliśmy w naszej technice prowadzenia pojazdu" - powiedział Hackett. Gdy obaj mężczyźni dotarli do wyznaczonego punktu, samochodowi pozostało energii na przejechanie jeszcze około 5 kilometrów.
  23. Grupa SAE International proponuje wprowadzenie nowego standardu oznaczania wydajności samochodów. Jej przedstawiciele chcą, by w obliczu rosnącej popularności pojazdów elektrycznych, wprowadzić oznaczenie "elektryczność na milę" obok używanej obenie "mil na galon". Nad podobnymi metodami pomiaru efektywności pracuje kilka organizacji. W przypadku pojazdów napędzanych ropą lub benzyną, określenie ilości paliwa potrzebnej do przejechania określonej odległości jest dość proste. Sprawa komplikuje się, gdy mamy do czynienia z pojazdami hybrydowymi. W zależności od zachowania się kierowcy różnice spalania mogą być znacznie większe, niż w przypadku pojazdów tradycyjnych. Różnice będą jeszcze większe, gdy hybrydę można doładowywać z gniazdka. Dlatego też SAE chce w ciągu najbliższych sześciu miesięcy zaproponować amerykańskiej Agencji Ochrony Środowiska (EPA) system oceny dla samochodów hybrydowych, z którego użytkownik dowie się ile pojazd spali paliwa płynnego oraz ile potrzebuje energii elektrycznej. System przyda się również do oceny kosztów eksploatacji samochodów elektrycznych ładowanych z gniazdka.
  24. Ford ogłosił powstanie inteligentnego systemu zarządzania ładowaniem samochodów elektrycznych. Pomysł polega na wykorzystaniu technologii komunikacji bezprzewodowej do jak najtańszego tankowania samochodów elektrycznych oraz zapobiegania przeciążeniom sieci. System Forda po podłączeniu kabla zasilania do samochodu, komunikuje się z licznikami i sprawdza ceny prądu oraz przewidywany czas ładowania. Kierowca może wcześniej zdefiniować maksymalną cenę, którą jest skłonny zapłacić za jednostkę energii. Dzięki takiemu rozwiązaniu samochód zacznie ładować się np. dopiero poza godzinami szczytu. Ponadto sprawdzi, czy w okolicy nie ma jednocześnie podłączonych zbyt wielu pojazdów, by w ten sposób uniknąć przeciążenia sieci. Inteligentny system trafi do pojazdów Forda w 2011 roku.
  25. Firma Tesla Motors, producent elektrycznego samochodu sportowego Roadster, informuje, że w lipcu wartość jej sprzedaży wyniosła 20 milionów dolarów, a dochód wyniósł milion dolarów. W ubiegłym miesiącu przedsiębiorstwo sprzedało rekordowo dużo, bo aż 109, swoich pojazdów. Ostatnimi czasy firmie powodzi się coraz lepiej. W czerwcu otrzymała ona 465 milionów dolarów niskooprocentowanego kredytu w ramach rządowego Advanced Technology Vehicle Manufacturing Program (ATVM). Tesla planuje, że za 100 milionów wybuduje fabrykę silników, a reszta pożyczki zostanie przeznaczona na budowę fabryki kolejnego elektrycznego samochodu - sedana Model S. Ma on trafić na rynek w 2010 roku. Podstawowa wersja pojazdu ma kosztować 49 900 dolarów, a więc o połowę mniej niż Roadster. W czerwcu Tesla otworzyła swój pierwszy europejski salon. Powstał on w Londynie. W najbliższym czasie podobne salony powstaną w Monachium i Monako. Podstawowa wersja pojazdu Tesla Roadster przyspiesza od 0 do 100 km/h w ciągu 3,9 sekundy, a zasięg samochodu wynosi niemal 400 kilometrów na pojedynczym ładowaniu baterii.
×
×
  • Dodaj nową pozycję...