Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'rekombinacja homologiczna' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Naukowcy z Iowa State University opracowali skuteczną metodę precyzyjnej modyfikacji materiału genetycznego komórek roślinnych. Ich pomysł opiera się na celowym wywołaniu uszkodzeń w DNA komórek docelowych i wstawieniu w ich miejsce specjalnie przygotowanej nici DNA zawierającej gen odpowiedzialny za nową cechę organizmu. Rozwiązanie zaproponowane przez zespół kierowany przez Davida Wrighta oraz Jeffery'ego Townsenda opiera się na wykorzystaniu tzw. nukleaz z motywem palca cynkowego. Te syntetyczne enzymy, stworzone dzięki połączeniu fragmentów genów kodujących dwie inne proteiny, posiadają zdolność do rozcinania nici DNA w ściśle określonych miejscach. Dzięki ich aktywności w cząsteczce DNA powstaje luka, w którą może wkomponować się DNA zawierające gen będący obiektem modyfikacji. Dzięki zaplanowaniu miejsca rozcięcia nici DNA możliwe jest zajście procesu tzw. rekombinacji homologicznej. Polega on polega na dopasowaniu do siebie sekwencji rozcinanego DNA komórkowego oraz fragmentu DNA zawierającego obcy gen w sposób umożliwiający zajście integracji w sposób spontaniczny, tzn. korzystny z punktu widzenia termodynamiki. To ogromny krok naprzód w porównaniu do większości metod stosowanych dotychczas, w których integracja zachodzi w sposób przypadkowy. Największą zaletą metody opracowanej na Iowa State University jest jej wydajność. Jak obliczyli autorzy eksperymentu, do integracji homologicznej dochodzi aż w 2% komórek. To ogromny krok naprzód, ponieważ dotychczasowe techniki "celowanej" modyfikacji genetycznej pozwalały na osiągnięcie skuteczności na poziomie jednej komórki na dziesięć milionów. Autorzy nowej techniki liczą, że jej zwiększona precyzja pozwoli na zwiększenie poziomu akceptacji urzędników dla tworzenia GMO. Dotychczas procedury tego typu były uznawane za potencjalnie niebezpieczne, przez co konieczne było wykonywane wielu czasochłonnych i drogich testów potwierdzających ich bezpieczeństwo. Teraz, gdy modyfikację genetyczną można ściśle zaplanować, można liczyć, że dopuszczenie nowych odmian zmodyfikowanych genetycznie roślin do stosowania w rolnictwie będzie nieco prostsze.
  2. Geny potrafią rozpoznawać na odległość inne podobne do siebie pod względem chemicznym geny, w dodatku w procesie tym nie pośredniczą białka ani inne biozwiązki (Journal of Physical Chemistry B). Opisywana zdolność pozwala wyjaśnić, w jaki sposób podobne geny odnajdują się i grupują, by rozpocząć rekombinację homologiczną, zwaną też uprawnioną. Polega ona na wymianie analogicznych funkcjonalnie i podobnych fizycznie fragmentów DNA (mogą to być całe geny lub tylko ich fragmenty). Oznacza to, że taki typ rekombinacji zachodzi między dwoma cząsteczkami DNA w miejscu ich całkowitej lub częściowej komplementarności. Odbywa się to w ramach przygotowań do podziału komórkowego. Rekombinacja homologiczna spełnia ważną rolę w ewolucji i doborze naturalnym, dzięki niej organizm może też naprawiać uszkodzenia DNA. Do tej pory naukowcy nie wiedzieli jednak, w jaki sposób odnajdywane są odpowiadające sobie pary genów. Badacze z Imperial College London przeprowadzili serię eksperymentów, w której zamierzali sfalsyfikować teorię stworzoną siedem lat temu przez dwóch członków zespołu. Zgodnie z nią, identyczne podwójne nici DNA odnajdują się wyłącznie na podstawie komplementarnych wzorców ładunków elektrycznych. Brytyjczycy chcieli sprawdzić, czy takie rozpoznanie jest możliwe w warunkach braku fizycznego kontaktu oraz pośrednictwa białek. Wcześniejsze badania wykazały, że białka są zaangażowane w proces identyfikacji jedynie w przypadku krótszych nici DNA (do 10 par komplementarnych zasad). Zachowanie DNA obserwowano w roztworze. Wcześniej kwas naznaczono "fluorescencyjnie", by było to łatwiejsze. Okazało się, że cząsteczki DNA z identycznym układem zasad zbierały się razem 2-krotnie częściej niż cząsteczki o innych sekwencjach. Odkrycie, że identyczne DNA wyszukują się w tłumie bez pomocy z zewnątrz, jest ekscytujące – cieszy się profesor Aleksiej Kornyszew. Naukowcy podkreślają, że zrozumienie etapu wstępnego rozpoznania pozwoli uniknąć błędów rekombinacyjnych. To ważne, bo uznaje się, że błędy te powodują szereg uwarunkowanych genetycznie chorób, np. nowotwory czy pewne postaci choroby Alzheimera, oraz przyczyniają się do starzenia.
  3. Przytwierdzone do jednego miejsca, rośliny muszą sobie radzić ze szkodnikami i wieloma innymi problemami: zbyt dużą lub zbyt małą ilością światła, bakteriami, plagą owadów itp. Udało im się przeżyć zarówno dzięki zmianom w fizjologii, jak i w genomie. Teraz naukowcom udało się pokazać, że zdolność do zwiększania częstości mutacji genetycznych w odpowiedzi na stres jest przekazywana aż 4 kolejnym pokoleniom. Barbara Hohn z Friedrich Miescher Institute for Biomedical Research w Bazylei i jej zespół wybrali do badań kilka okazów rzodkiewnika pospolitego (Arabidopsis thaliana). Poddali je działaniu silnego promieniowania ultrafioletowego lub patogenów bakteryjnych. Rośliny przeżyły ciężką próbę dzięki zwiększeniu częstości rekombinacji homologicznych, zwanych też uprawnionymi. Taki typ rekombinacji zachodzi między 2 cząsteczkami DNA w miejscu ich całkowitej lub częściowej komplementarności. Odbywa się to w ramach przygotowań do podziału komórkowego. Co ciekawe, rośliny przekazywały zwiększoną liczbę mutacji (2-4 razy większą niż u "niestresowanych" organizmów) swojemu potomstwu, nawet jeżeli nie musiało się ono zmierzyć z promieniowaniem UV i patogenami. Cecha ta występowała też wtedy, gdy tylko jedno z rodziców (bez względu na płeć) miało styczność ze stresującymi warunkami. Zwiększona liczba mutacji nie była wynikiem przypadkowych zmian w kodzie genetycznym, gdyż cała populacja stresowanych roślin odpowiadała w podobny sposób. Ujawnione zmiany epigenetyczne mogą być wpisane w cały genom, w określone locusy [miejsca] lub transgeny badanych roślin — spekulują naukowcy w artykule prezentującym odkrycie. Opublikowano go we wczorajszym (6 sierpnia) wydaniu on-line magazynu Nature. Proponujemy, by uznać, że wpływy środowiskowe, które prowadzą do zwiększenia dynamiki genomu, nawet u następnego, niestresowanego pokolenia, mogą zwiększyć szanse na ewolucję adaptacyjną [różnicującą].
×
×
  • Dodaj nową pozycję...