Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'położenie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 10 wyników

  1. Eksperci pracujący pod kierunkiem uczonych z UCLA Henry Samueli School of Engineering and Applied Science udowodnili, że za pomocą metod mechaniki kwantowej można stworzyć mechanizm kryptograficzny bazujący tylko i wyłącznie na fizycznej lokalizacji odbiorcy i nadawcy wiadomości. To ogromny postęp, gdyż eliminuje jedno z najpoważniejszych wyzwań kryptografii - bezpieczną dystrybucję kluczy kryptograficznych koniecznych do zapisania i odczytania informacji. Kryptografia opierająca się na lokalizacji zakłada wykorzystanie precyzyjnych danych o położeniu odbiorcy i nadawcy do stworzenia klucza kryptograficznego. Rozwiązanie takie ma tę olbrzymią zaletę, że daje pewność, iż wiadomość zostanie odebrana i odczytana tylko przez osobę, która znajduje się w określonym miejscu. Szef grupy badaczy Rafail Ostrovsky, profesor z UCLA mówi, że najważniejszym elementem nowej metody jest bezpieczna weryfikacja położenia geograficznego urządzeń nadawczo-odbiorczych. Dzięki niej mamy pewność, że np. informacja wysyłana do odległej bazy wojskowej zostanie odebrana tylko przez kogoś, kto się w tej bazie znajduje. Niezwykle ważne jest tutaj bezpieczne określenia położenia i to w taki sposób, żeby nie można było się pod to położenie podszyć oraz bezpieczna komunikacja z urządzeniem znajdującym się w tej konkretnej lokalizacji. Urządzenie jest uwiarygadniane przez swoje położenie. Stworzyliśmy metodę bezpiecznej komunikacji z urządzeniem w danej lokalizacji. Połączenie można nawiązać bez potrzeby wcześniejszego komunikowania się z tym urządzeniem - mówi Ostrovsky. Dotychczas sądzono, że wykorzystywana w łączności bezprzewodowej triangulacja oferuje odpowiedni poziom bezpieczeństwa. Jednak w ubiegłym roku badania prowadzone pod kierunkiem Ostrovsky'ego pokazały, że grupa osób jest w stanie oszukać wszelkie dotychczasowe systemy określania położenia. Najnowsze badania pokazały jednak, że wykorzystanie mechaniki kwantowej gwarantuje bezpieczne jednoznaczne określenie położenia, nawet wówczas, gdy mamy do czynienia z grupą próbującą oszukać systemy lokalizacji. Ostrovsky i jego zespół pokazali, że używając kwantowych bitów w miejsce bitów tradycyjnych, jesteśmy w stanie precyzyjnie określić lokalizację i zrobimy to w sposób bezpieczny. Jeśli nawet przeciwnik będzie próbował podszyć się pod naszą lokalizację, to mu się to nie uda. Jego urządzenia będą bowiem w stanie albo przechowywać przechwycony stan kwantowy, albo go wysłać. Nie mogą robić obu tych rzeczy jednocześnie. Wysyłając zatem kwantową wiadomość szyfrujemy ją na podstawie naszej lokalizacji, a odszyfrować może ją jedynie urządzenie znajdujące się w lokalizacji docelowej. W pracach Ostrovsky'ego brali udział jego studenci Nishanth Chandran i Ran Gelles oraz Serge Fehr z holenderskiego Centrum Wiskunde & Informatica (CWI) i Vipul Goyal z Microsoft Research.
  2. Pozycja oczu wskazuje na liczbę, o której myślimy. Psycholodzy dywagują, że przez to trudniej nam będzie ukryć np. wiek... Podczas eksperymentu naukowcy z Uniwersytetu w Melbourne prosili ochotników o wymienienie serii losowych liczb. Określając pozycję oczu w pionie i poziomie, z dużą pewnością Australijczycy byli w stanie stwierdzić, jaką liczbę wypowie dany człowiek, zanim jeszcze zdążył otworzyć usta. Ruchy gałek ocznych w dół i na lewo wskazywały, że następna liczba będzie mniejsza od poprzedniczki. Z kolei przesunięcie w prawo i ku górze zapowiadały, że wolontariusz wypowie większą wartość. Stopień przesunięcia gałki wskazywał na wielkość różnicy między kolejnymi liczbami. Kiedy myślimy o liczbach, automatycznie kodujemy je w przestrzeni, z mniejszymi wartościami ułożonymi z lewej, a większymi z prawej. Traktujemy je jak zorientowaną od lewej do prawej mentalną linię, nawet nie zdając sobie sprawy ze skojarzeń numeryczno-przestrzennych. Nasze studium pokazuje, że przełączaniu zachodzącemu wzdłuż mentalnego ciągu liczb towarzyszą systematyczne ruchy oczu. Sugerujemy, że kiedy nawigujemy po poznawczych reprezentacjach – np. wśród liczb – wykorzystujemy procesy mózgowe, które pierwotnie wyewoluowały, by kontaktować się i przemieszczać po świecie zewnętrznym – przekonuje dr Tobias Loetscher z uniwersyteckiej Szkoły Nauk Behawioralnych. Kolega z tego samego zespołu, dr Michael Nicholls, twierdzi, że oczy stają się oknem, ale nie duszy, lecz pracującego umysłu. W studium wzięło udział 12 praworęcznych mężczyzn. W tempie wyznaczanym przez elektroniczny metronom panowie wymieniali 40 cyfr i liczb od 1 do 30 w kolejności tak losowej, jak się tylko dało. W każdym przypadku psycholodzy mierzyli przeciętną pozycję oka w ciągu 500 milisekund poprzedzających wypowiedzenie wybranej wartości.
  3. Sposób, w jaki ludzie zapamiętują kroki taneczne, zależy od ich kręgu kulturowego. Przedstawiciele Zachodu operują pojęciami w rodzaju "w prawo" lub "w lewo", a dla wędrownych plemion zbieracko-myśliwskich z Namibii bardziej naturalne jest najwyraźniej opisywanie ruchu za pomocą stron świata – krok na północ, a teraz na wschód. Wg naukowców, różnice nie odnoszą się do języka. Odzwierciedla on jedynie sposób, w jaki mózg interpretuje i zapamiętuje relacje przestrzenne. Ludzki umysł wykazuje większe zróżnicowanie kulturowe, niż zakładamy. Nawet codzienne zadania, o których w ogóle nie myślimy podczas ich wykonywania, np. utrwalanie kroków tanecznych, są realizowane odmiennie – podkreśla Daniel Haun z Grupy Badawczej na rzecz Porównawczej Antropologii Poznawczej Maxa Plancka. Dotąd naukowcy wiedzieli, że poszczególne kultury inaczej reprezentują położenie obiektów w przestrzeni. Umiejscowienie nóg i rąk jest jednak czymś tak egocentrycznym, że Niemcy myśleli, że wszyscy ludzie na świecie zapamiętują ruchy ciała tak samo. Badacze uczyli tańca dzieci z Niemiec oraz maluchy z plemienia Haikom w Namibii. Instruktor stał obok i pokazywał prosty ruch. Należało potrząsać złożonymi rękoma w sekwencji prawa-lewa-prawa-prawa (PLPP). Potem adeptów tańca poproszono o obrócenie się o 180 stopni wokół własnej osi i powtórzenie układu. Na koniec dzieci tańczyły jeszcze raz w pierwotnym położeniu. Jeśli ktoś kodował taniec PLPP za pomocą koordynat egocentrycznych, powinien odtwarzać sekwencję PLPP zarówno po pierwszym, jak i drugim obrocie. Gdyby jednak osoba posługiwała się koordynatami allocentrycznymi, po rotacji 1. pojawiłby się układ LPLL, a po drugiej z powrotem PLPP. Dzieci z Niemiec prawie zawsze poruszały rękoma w ten sam sposób, czyli prawo-lewo-prawo-prawo, bez względu na ustawienie w przestrzeni. Pojawiła się więc u nich reakcja skoncentrowana na własnym ciele. Maluchy z Namibii wraz z obrotem o 180 stopni zmieniały kierunek ruchów, przestawiając się na wersję lewa-prawa-lewa-lewa. Oznacza to, że zapamiętywanie przez nie ruchów odnosiło do zakotwiczonego w środowisku zewnętrznego systemu odniesień.
  4. Badacze z Princeton University utrwalili aktywność pojedynczych neuronów mysiego hipokampa podczas przemierzania wirtualnego labiryntu. Wg nich, rytmiczne wyładowania można by powiązać z położeniem zwierzęcia. Amerykanie mają nadzieję, że ich metoda pozwoli odkryć, w jaki sposób aktywność neuronów formuje nowe ślady pamięciowe i oddziałuje na zachowanie. W rzeczywistości cyfrowej gryzonie biegały, choć ich głowa była unieruchomiona. Pozwoliło to biologom na uzyskanie ciągłego zapisu aktywności pojedynczego neuronu. Wzięli oni na cel komórki miejsca hipokampa (ang. place cells), po raz pierwszy opisane w 1978 r. przez O'Keefe'a i Dostrovsky'ego u szczurów. Uaktywniają się one, gdy lokalizacja w środowisku odpowiada obsługiwanemu przez nie polu. Wcześniej specjaliści badali ich działanie za pomocą elektrod zewnątrzkomórkowych. Jak jednak zauważa prof. David Tank, w ten sposób określano aktywność, lecz już nie to, jak jest generowana. Jego ekipa zastosowała inną technikę, dzięki której udało się utrwalić aktywność wewnątrz neuronu. Podczas eksperymentu myszy przebierały właściwie tylko łapami. Poza tym nie przemieszczały się, ponieważ umieszczano je na kuli lewitującej nad ziemią, czyli na czymś w rodzaju minipoduszkowca. Myszy łatwo chodzić i biegać po takiej powierzchni – to zupełnie jak kołowrotek [widywany w akwariach chomików]. Przesuwając kulę, gryzoń kontrolował swoje ruchy w wirtualnym labiryncie. Na końcu każdego czekała nagroda. Gdy zwierzę miało ochotę na kolejną, musiało się odwrócić i biec do drugiego końca. Komórki miejsca stawały się aktywne w określonych okolicach korytarza. Wyładowania grup neuronów wrażliwych na położenie następowały w szczególnym rytmie [...]. Patrząc na czasowanie aktywności, można zatem powiedzieć, gdzie mysz się znajduje. Niewykluczone, że timing stanowi rodzaj kodu, który jest jakoś przekładany na pamięć. Profesor Tank nadmienia, że nadal nie wiadomo, jaką dokładnie funkcję spełniają komórki miejsca. Czy stanowią fundamentalną część systemu nawigacyjnego mózgu, czy też ich rola jest bardziej uogólniona i polega na umożliwieniu zapamiętywania sekwencji zdarzeń.
  5. Jak zdradza Christopher Blizzard z Mozilli, Firefox 3.6 zostanie wyposażony w oprogramowanie współpracujące z akcelerometrami wbudowanymi w notebooki i inne urządzenia przenośne. Dzięki temu przeglądarka będzie znała pozycję urządzenia. Może się to przydać np. podczas gier komputerowych, gdyż umożliwi sterowanie bohaterem za pomocą ruchów całego urządzenia, a nie myszy czy klawiatury. Wiele programów jest już wyposażonych w podobne funkcje. Najbardziej przydają się one użytkownikom niewielkich urządzeń, takich jak smartfony, gdyż pozwalają na łatwe i przyjemne korzystanie z gier.
  6. Położenie dłoni wpływa na to, jak dokładnie coś widzimy. Zespół profesora Richarda A. Abramsa z Washington University w St. Louis zademonstrował, że ludzie przeprowadzają dokładniejszą inspekcję obiektu, jeśli trzymają go w rękach lub w ich pobliżu. Ta odruchowa i nieświadoma reakcja pozwala stwierdzić, jak się posługiwać danym przedmiotem albo, w razie gdy jest niebezpieczny, jak się przed nim chronić (Cognition). Badacze sądzą, że ich odkrycie pozwoli ulepszyć wykorzystywane metody rehabilitacji oraz projekty protez. Osoba po udarze, która chce odzyskać władzę w porażonej ręce, musi ją zatem kłaść tuż obok przedmiotu. Powinno to pomóc w jego uchwyceniu. W przypadku protez trzeba zaś zadbać o dodatkowy przepływ danych z dłoni do mózgu. Tymczasem dzisiejsze urządzenia bazują wyłącznie na kontrolowaniu przez mózg położenia sztucznej kończyny w przestrzeni. Amerykanie zaznaczają, że wyniki ich badań odnoszą się nie tylko do zastosowań medycznych, ale również do prowadzenia samochodu. Możliwość trzymania obu dłoni na kierownicy nasila świadomość zarówno jej samej, jak i okolicznych przyrządów [oraz ich wskazań]. Jeśli samochód jest postrzegany jako rodzaj przedłużenia kierownicy, trzymanie na niej obu dłoni polepsza postrzeganie położenia auta i obiektów wokół niego. Zadanie uczestników eksperymentu polegało na wyszukiwaniu liter S lub H w grupach wyświetlanych na ekranie komputera znaków. Po wypatrzeniu symbolu należało nacisnąć jeden z dwóch guzików. Znajdowały się one albo po bokach ekranu, albo na klawiaturze przed nim. Tempo wyszukiwania było wolniejsze, gdy ludzie trzymali ręce po bokach ekranu niż wtedy, gdy mogli korzystać z klawiatury. To pierwszy eksperyment nad wpływem położenia dłoni na czas reakcji w czasie wykonywania zadań wzrokowych. We wszystkich wcześniejszych badaniach dotyczących wyszukiwania obiektów ochotnicy widzieli bodźce na ekranie i naciskali guziki umieszczone na stole z dala od nich. W naszym eksperymencie wolontariusze używali guzików przymocowanych do wyświetlacza, a więc ich dłonie znajdowały się tuż obok bodźca. Abrams porównuje nowo odkryty mechanizm do kamery montowanej na końcu ramienia robota. Przesyła ona dane do operatora, który w ten sposób zyskuje wgląd w otoczenie i może precyzyjniej sterować urządzeniem. Do tej pory nie wiedzieliśmy, że ludzki mózg dysponuje podobnym mechanizmem.
  7. Kyohei Terao z Uniwersytetu w Kioto i zespół z Uniwersytetu w Tokio opracowali minimaszynę do szycia, dzięki której można zespalać długie nici DNA i nadawać im kształty (Lab on a Chip). Co ważne, w czasie tych zabiegów nie zostają one uszkodzone. Do tej pory choroby genetyczne, np. zespół Downa, diagnozowano za pomocą markerów. Wiązały się one tylko z wysoce podobnymi łańcuchami DNA. Gdy już do tego doszło, ich położenie wykrywano dzięki fluorescencji. Detekcja wygląda na łatwą tylko na papierze. Często jest to długi i żmudny proces, ponieważ łańcuchy kwasu dezoksyrybonukleinowego bywają mocno skręcone. Technologia Japończyków bazuje na miniaturowych haczykach (ich wielkość mierzy się w mikrometrach), którymi operuje się za pomocą lasera. Dzięki nim można z dużą precyzją chwycić i naciągnąć pojedynczą nić. Kiedy cząsteczka DNA jest obrabiana i prostowana przez haczyki oraz szpulki, łatwo określić położenie genu – wyjaśnia Terao. Wygięty w kształt litery "z" haczyk zapobiega jej wymykaniu (działa on jak grot strzały). Po złapaniu na haczyk, kwas da się precyzyjnie przesuwać, koncentrując w innym miejscu promienie lasera. Japończycy porównują swoje urządzenie do maszyny do szycia. Przewidzieli nawet to, że nić DNA może być bardzo długa, a więc nieporęczna. Dlatego nawija się ją na miniaturowe szpulki. Wg Yoshinobu Baby z Uniwersytetu w Nagoi, urządzenie opracowane przez jego kolegów przyda się także przy sekwencjonowaniu oraz budowaniu elektroniki molekularnej.
  8. Naukowcy opracowali nową metodę określania położenia ognisk padaczkowych, czyli miejsc, gdzie rozpoczynają się napady. Polega ona na wprawianiu mózgu w drgania za pomocą promieni lasera (Physics in Medicine and Biology). Eksperci podkreślają, że leki przeciwpadaczkowe działają tylko na ok. 2/3 pacjentów. Osoby z lekooporną padaczką muszą się poddać operacji, ale w wielu przypadkach jest ona nieskuteczna, ponadto odnotowuje się nawroty. Dotyczy to zwłaszcza drgawek generowanych przez zewnętrzną warstwę kory: korę nową (neocortex). Operacja usunięcia ogniska padaczkowego jest możliwa tylko po dokładnym ustaleniu jego położenia. W tym celu bada się czynność bioelektryczną mózgu za pomocą EEG lub MEG – magnetoencefalografii. Drugą z wymienionych metod stosuje się od kilku lat, ale jest droga i nadal eksplorowana. Niekiedy podczas samego zabiegu wykonuje się bezpośrednią elektrokortykografię (EKoG). W odszukaniu ogniska lub ognisk pomagają też metody radiologiczne, np. tomografia komputerowa lub rezonans magnetyczny. Huabei Jiang i zespół z Uniwersytetu Florydzkiego w Gainsville opracowali skaner generujący laserowe wiązki, który pozwala odnaleźć ognisko padaczkowe bez zabiegu chirurgicznego. Skuteczność działania urządzenia przetestowano na szczurach. Nową technikę ochrzczono mianem indukowanej laserem fotoakustycznej tomografii (ang. laser-induced photoacoustic tomography). Silna wiązka promieni dociera do mózgu przez czaszkę, wywołując w tkance niewielkie wibracje. Zastosowanie przetwornika ultradźwięków pozwala na mapowanie mózgu i jego aktywności. Aktywne rejony absorbują większość światła i są wprawiane w najsilniejsze drgania. Z dużym prawdopodobieństwem można przypuszczać, że to one są ogniskami padaczkowymi. Opisywana metoda daje kompletne wyniki już po kilku sekundach, podczas gdy na wykonanie tomografii czy rezonansu potrzeba paru minut. Mamy do czynienia z dużą szybkością, a technika jest tania i potencjalnie można ją zaimplementować w urządzeniach przenośnych. Obrazowanie mózgu można więc wykonać w czasie rzeczywistym [...] – cieszy się Jiang. Ponieważ badanie trwa naprawdę krótko, doskonale sprawdzi się w przypadku najbardziej niecierpliwych pacjentów, czyli dzieci. Na razie eksperymenty prowadzono tylko na szczurach. Obecnie trwają prace nad skonstruowaniem skanera dla ludzi. Jego częścią byłby specjalny hełm, który dostarczałby wiązki lasera i zajmował się "zbieraniem" nadchodzących danych. Niestety, nie da się po prostu przeskalować wersji urządzenia dla szczurów, by uzyskać sprawny aparat do badania człowieka. Nasze gatunki za bardzo różnią się chociażby grubością kości czaszki. U człowieka wynosi ona ok. centymetra, a u gryzoni mamy do czynienia ze wskazaniami w granicach dziesiątych części milimetra. Amerykański zespół zamierza wypróbować promieniowanie o większej długości fali, które dotarłoby do głębszych warstw mózgu. Ponadto naukowcy myślą o zastosowaniu specjalnego żelu, który poprawiałby zarówno transmisję promieni lasera, jak i pojawiających się w odpowiedzi drgań.
  9. Dla genu istotna jest nie tylko sama jego aktywność, ale także jego położenie wewnątrz jądra komórkowego - donoszą naukowcy z Wydziału Medycznego Uniwersytetu Chicago. Umocowanie określonego odcinka DNA do wewnętrznej strony błony jądrowej umożliwia wyciszenie jego ekspresji. Jest to kolejny odkryty mechanizm zwany epigenetycznym, tzn. regulujący ekspresję genu i jednocześnie niezależny jednoznacznie od sekwencji chromatyny. W jądrze komórkowym ssaków chromatyna - skomplikowana struktura złożona z DNA i towarzyszących mu białek - jest zorganizowana w tzw. domeny, czyli pętle przymocowane w określonych miejscach do wewnętrznej strony błony jądrowej (kariolemmy). Aby zbadać wpływ położenia genu na jego transkrypcję, naukowcy badali tzw. geny markerowe, czyli takie, których ekspresja jest łatwa do wykrycia. Następnie badano wpływ lokalizacji danego genu wewnątrz jądra na poziom jego ekspresji. Zespół pod przewodnictwem profesora Singhsa skupił się na badaniu syntezy łańcucha ciężkiego przeciwciał, produkowanych wyłącznie przez limfocyty B. Geny kodujące te białka jeszcze przed rozpoczęciem ekspresji przechodzą rekombinację: określone odcinki DNA są wycinane, a następnie powstające fragmenty są ze sobą zestawiane. Wobec tego wykrycie zmian w sekwencji DNA limfocytów B jest oznaką aktywności genu. Naukowcy odkryli, że w aktywnych limfocytach B geny dla przeciwciał były ulokowane bliżej centrum jądra, natomiast w komórkach naturalnie nieprodukujących immunoglobulin były one zawsze ulokowane bliżej błony jądrowej. Potwierdzeniem tego odkrycia był fakt, że gdy gen zlokalizowany był bliżej błony jądrowej, nie wykazywał oznak wcześniejszej rekombinacji. Do tej pory ciągle nie jest jednak znany dokładny mechanizm regulujący położenie genu wewnątrz jądra. Jedna z najbardziej prawdopodobnych hipotez sugeruje, że decydują o tym białka tworzące kariolemmę. Wstępne formowanie chromatyny zachodzi zapewne już podczas podziału komórki - te geny, które w określonym typie komórek nie będą poddawane ekspresji lub będzie ona niska, są przesuwane na peryferia jądra. Jest to forma zabezpieczenia przed "niechcianą" ekspresją genu. Badacze sugerują także, że w DNA mogą istnieć określone sekwencje służące jako "adresy" określonych genów - miałyby one, ich zdaniem, służyć do "mocowania" chromatyny do błony jądrowej, a przez to do regulacji ekspresji genu, włączając i wyłączając ją w określonych momentach, w zależności od bieżących potrzeb. Może to wyjaśniać rolę wielu białek tworzących błonę jądrową, których funkcja dotychczas pozostawała nieznana oraz umożliwić zrozumienie licznych nieuleczalnych chorób związanych z ich mutacjami.
  10. Umiejscowienie migaczy nie jest tylko i wyłącznie kwestią estetyki i upodobań projektanta. Okazuje się bowiem, że ludziom trudniej podjąć szybką decyzję, w którą stronę skręci auto, jeśli migacze znajdują się bliżej środka samochodu niż wtedy, gdy zamontowano je na zewnątrz od reflektorów (Journal of Applied Cognitive Psychology). Różnica w czasie reakcji jest ponoć tak znaczna, że może wpłynąć na bezpieczeństwo innych użytkowników dróg, w tym pieszych — przekonuje dr Andrew Bayliss. Badania z udziałem dwóch 15-osobowych grup dorosłych wolontariuszy przeprowadzono na Uniwersytecie Walijskim w Bangor. Pokazano im zdjęcia przodów samochodów i poproszono, by jak najszybciej nacisnęli klawisz po lewej stronie klawiatury, gdy włączy się lewy migacz i prawy, kiedy włączy się prawy kierunkowskaz. Uczestnicy studium naciskali klawisze o wiele szybciej, jeśli migacze znajdowały się na zewnątrz od reflektorów (czyli bliżej "brzegu" samochodu). Bayliss podkreśla, że różnice mogą być jeszcze większe w przypadku osób starszych oraz w realnych sytuacjach, gdy na człowieka działa więcej rozpraszających bodźców niż w laboratorium naukowca. Projektanci chcą stworzyć dobrze wyglądające auta, ale nie można tego uzyskiwać kosztem bezpieczeństwa. Położenie migaczy powinno być podyktowane względami bezpieczeństwa, a nie wskazaniami estetycznymi.
×
×
  • Dodaj nową pozycję...