Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'obliczenia kwantowe' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Podczas odbywającego się właśnie dorocznego spotkania Amerykańskiego Towarzystwa Fizycznego specjaliści z IBM-a poinformowali o dokonaniu trzech przełomowych kroków, dzięki którym zbudowanie komputera kwantowego stanie się możliwe jeszcze za naszego życia. Jednym z najważniejszych wyzwań stojących przed ekspertami zajmującymi się kwantowymi komputerami jest dekoherencja. To wywołana oddziaływaniem czynników zewnętrznych utrata właściwości kwantowych przez kubity - kwantowe bity. Koherencja wprowadza błędy do obliczeń kwantowych. Jednak jeśli udałoby się utrzymać kwantowe bity przez wystarczająco długi czas można by przeprowadzić korektę błędów. Eksperci z IBM-a eksperymentowali ostatnio z „trójwymiarowymi“ nadprzewodzącymi kubitami, które zostały opracowane na Yale University. Ich prace pozwoliły na dokonanie przełomu. Udało się im utrzymać stan kwantowy kubitu przez 100 mikrosekund. To 2 do 4 razy więcej niż poprzednie rekordy. A co najważniejsze, to na tyle długo by przeprowadzić korekcję błędów na kubitach 3D. Drugi z przełomowych kroków to powstrzymanie dekoherencji zwykłego „dwuwymiarowego“ kubitu przez 10 mikrosekund. W przypadku takich kubitów wystarczy to do przeprowadzenia korekcji błędów. Utrzymanie przez tak długi czas kubitu pozwoliło na dokonanie trzeciego z przełomów. Udało się bowiem przeprowadzić na dwóch kubitach operację CNOT (controlled-NOT) z dokładnością 95-98 procent. To niezwykle ważne osiągnięcie, gdyż bramka CNOT w połączeniu z prostszymi bramkami kubitowymi może być skonfigurowana do przeprowadzenia dowolnej operacji logicznej. Od połowy 2009 roku IBM udoskonalił wiele technik związanych z komputerami kwantowymi. Najprzeróżniejsze aspekty związane z takimi maszynami udoskonalono od 100 do 1000 razy. W sumie wszystkie te techniki są bardzo bliskie spełnienia minimalnych wymagań stawianych przed praktycznym komputerem kwantowym.
  2. Przeprowadzono testy pierwszego uniwersalnego, programowalnego komputera kwantowego. Odbyły się one w warunkach laboratoryjnych i ujawniły sporo problemów, które muszą zostać rozwiązane, zanim tego typu komputer pojawi się poza laboratorium. Podczas testów prowadzonych przez zespół Davida Hanneke użyto urządzenia skonstruowanego przez amerykański Narodowy Instytut Standardów i Technologii (NIST). Maszyna wykonuje obliczenia na dwóch kubitach (kwantowych bitach). Obliczenia kwantowe były wykonywane już wcześniej, jednak dotychczas udawało się je przeprowadzać tylko dla pewnych specyficznych algorytmów. Teraz amerykańscy naukowcy pokazali, w jaki sposób wykonywać każdy rodzaj kwantowych obliczeń za pomocą tego samego urządzenia. Jego sercem jest pokryta złotem płytka aluminium. Umieszczono na niej elektromagnetyczną pułapkę o średnicy 200 nanometrów, w której uwięziono dwa jony magnezu i dwa berylu. Magnez działa jak rodzaj "zamrażarki", eliminując niepożądane wibracje i utrzymując stabilność systemu jonów. Całość uzupełniały lasery, w których świetle zakodowano kwantowe bramki logiczne. Seria impulsów z zakodowanymi bramkami trafia w jony, a wyniki są odczytywane przez inny laser. Spośród nieskończonej liczby operacji, które można przeprowadzić na dwóch kubitach, wybrano 160 przypadkowych, by sprawdzić uniwersalny charakter komputera. Podczas każdej z operacji oba jony berylu były ostrzeliwane impulsami lasera, w których zakodowano 31 różnych bramek logicznych. Każdy ze 160 programów został uruchomiony 900 razy. Uzyskane wyniki porównano z teoretycznymi wyliczeniami i okazało się, że maszyna pracuje tak, jak to przewidziano. Stwierdzono, że każda bramka logiczna pracuje z ponad 90-procentową dokładnością, jednak po ich połączeniu system osiągnął dokładność około 79%. Działo się tak dlatego, że istnieją niewielkie różnice w intensywności impulsów z różnymi zakodowanymi bramkami. Ponadto impulsy muszą być rozdzielane, odbijane i przechodzą wiele innych operacji, przez co wprowadzane są kolejne błędy. Mimo osiągnięcia dobrych rezultatów, system musi być znacznie poprawiony. Naukowcy z NIST mówią, że musi on osiągnąć dokładność rzędu 99,99% zanim trafi do komputerów. By tego dokonać należy poprawić stabilność laserów i zmniejszyć liczbę błędów wynikających z interakcji światła z komponentami optycznymi.
  3. Dwaj doktoranci z Centrum Fotoniki Kwantowej University of Bristol, Alberto Politi i Jonathan Matthews, przeprowadzili eksperyment, podczas którego dokonali pierwszych w historii obliczeń z użyciem kwantowego optycznego układu scalonego. Przed układem postawiono zadanie znalezienia czynników pierwszych liczby 15. Do chipa wprowadzono cztery fotony, które wędrując przez falowody stworzyły bramki logiczne. Naukowcy uzyskali wyniki obliczeń sprawdzając, którymi falowodami fotony opuściły układ. Podczas obliczeń wykorzystano algorytm Shora. Warto w tym miejscu przypomnieć, że to właśnie dzięki pracom Petera Shora z Bell Laboratories i jego algorytmowi, który powstał w 1994 roku, świat zainteresował się komputerami kwantowymi. Wcześniej rozważano komputery kwantowe jako maszyny zdolne do przeprowadzania pewnych obliczeń z dziedziny fizyki kwantowej. Interesowały więc one bardzo wąskie grono specjalistów. Dopiero Shor pokazał, że komputer kwantowy będzie przydatny do rozkładu wielkich liczb na czynniki pierwsze, a więc przyda się do łamania szyfrów. System obliczeniowy zastosowany w Bristolu składał się ze źródła fotonów, wykrywacza fotonów i układu zdolnego do przeprowadzenia prostych obliczeń. Przed naukowcami pracującymi nad komputerami kwantowymi jeszcze wiele pracy. Maszyny, zdolne zagrozić współczesnym szyfrom powstaną nie wcześniej niż za 10 lat. Z kolei na w pełni funkcjonalny komputer kwantowy będziemy musieli zapewne poczekać co najmniej 20 lat.
  4. Profesor Harry Dorn z Virginia Tech to światowej sławy specjalista zajmujący się badaniami nad fullerenami. Właśnie odkrył nową dziedzinę chemii tych związków, dzięki której być może zostaną użyte do obliczeń kwantowych i znajdą zastosowanie jako półprzewodniki. Już w 1999 roku Dorn pokazał, w jaki sposób do składającej się z 80 atomów węgla fullerenowej "klatki" można wprowadzić atomy i jak zmieniać ich liczbę. Badania Dorna przyczyniły się do powstania doskonalszych materiałów do rezonansu magnetycznego i medycyny nuklearnej. Ostatnimi czasy Dorn próbował umieścić w fullerenie atomy gadolinu. W tym celu najpierw do fullerenu składającego się z 80 atomów węgla wprowadził dwa jony itru. Później jeden z atomów węgla "klatki" zastąpił atomem azotu. Wówczas jeden z elektronów azotu pozostał wolny. Dorn odkrył, że elektron ten, zamiast pozostać na powierzchni "klatki", przemieścił się do wnętrza, pomiędzy jony itru. Uzyskaliśmy w ten sposób bardzo niezwykłe uwięzienie elektronu pomiędzy dwoma atomami itru - mówi Dorn. Zjawisko to zostało potwierdzone obliczeniami profesora chemii Daniela Crawforda oraz badaniami krystalograficznymi przeprowadzonymi na Uniwersytecie Kalifornijskim przez profesora Alana Balcha. W ciągu ostatnich kilku dni Dorn przekonał się, że wspomniany elektron można usunąć z klatki. Możliwość manipulacji nim może być bardzo ważna dla rozwoju spintroniki czy obliczeń kwantowych. Połączenie dwóch atomów itru z jednym elektronem wykazuje unikatowe właściwości spinu, które można zmieniać. Poprzez zwiększenie polaryzacji spinu możemy zwiększyć czułość MRI oraz NMR. Dorn widzi jednak również znacznie ciekawsze zastosowanie dla swoich badań. Jeśli podmienimy jeden atom węgla nie azotem a borem, będziemy mieli o jeden elektron za mało. Uzyskamy w ten sposób materiał do stworzenia półprzewodnika - mówi profesor.
×
×
  • Dodaj nową pozycję...