Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'neurony' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 83 wyników

  1. Naukowcy z University of Leicester chcą lepiej zrozumieć, jak działa ludzki mózg, studiując budowę mózgu ślimaka. Badacze mają zamiar prześledzić rozwój układu nerwowego i procesy kontrolujące pourazową regenerację neuronów. Szefem projektu jest dr Volko Straub. Gazowy tlenek azotu (NO) to zarazem wróg i sprzymierzeniec. Może być wysoce toksyczny i zabójczy, ale znajduje się go również w mózgu, gdzie neurony wykorzystują go w procesie komunikowania się. Jest trucizną oraz substancją sygnałową (neuroprzekaźnikiem). Podczas rozwoju mózgu tlenek azotu wspiera wzrost komórek nerwowych i tworzenie się nowych połączeń między neuronami. Uczenie się także uruchamia proces formowania synaps i często wymaga obecności tlenku azotu. Naukowcy wiedzą niewiele ponad to, że tlenek jest istotny dla powodzenia procesu tworzenia połączeń neuronalnych. Trzeba między innymi sprecyzować mechanizm zaobserwowanego zjawiska. Badanie tego procesu u zwierząt wyższych jest trudne ze względu na stopień złożności układu nerwowego. Na szczęście ewolucja była bardzo konserwatywna. Zdecydowaliśmy się więc na analizę układu nerwowego pospolitego ślimaka wodnego [błotniarki stawowej — przyp. red.]. U ślimaka pojedynczy neuron jest stosunkowo duży, łatwy do wyodrębnienia i podatny na eksperymentalne manipulacje. Można go wyizolować z układu nerwowego i stworzyć hodowlę komórkową, gdzie dochodzi do wzrostu i utworzenia funkcjonalnych połączeń. Co ważne, podstawowe procesy oraz czynniki kontrolujące wzrost neuronów i formowanie połączeń są wspólne dla wielu zwierząt.
  2. Koty mogą cierpieć na charakterystyczną dla swojego gatunku postać choroby Alzheimera — ujawnili badacze z Uniwersytetu w Edynburgu. Studium starzejących się kotów pomogło zidentyfikować białko, które odkłada się w neuronach i powoduje stopniową (przypominającą ludzką) deteriorację. Eksperymenty były prowadzone przez naukowców z 4 uniwersytetów: w Edynburgu, St. Andrews, Bristolu oraz Kalifornii. Dr Danielle Gunn-Moore z pierwszej z wymienionych placówek powiedziała: Wiedzieliśmy od dawna, że u kotów występuje demencja, ale nasze badanie pokazało, że układ nerwowy zostaje uszkodzony.
  3. Wprowadzanie do mózgów chorych z parkinsonizmem ludzkich płodowych komórek macierzystych może prowadzić do formowania się guzów. Steven Goldman i zespół z Centrum Medycznego University of Rochester zauważyli, że po wprowadzeniu do mózgów szczurów ludzkie komórki macierzyste tworzyły struktury przypominające wczesne stadia nowotworów. Na łamach magazynu Nature Medicine naukowcy wyjaśniają, że szczury odnosiły niewątpliwe korzyści z wprowadzenia do ich organizmów komórek macierzystych, ale, niestety, część z nich zaczynała wzrastać w taki sposób, że mogło to doprowadzić do zmian nowotworowych. W terapii choroby Parkinsona (polegającej, w wielkim skrócie, na zanikaniu neuronów produkujących dopaminę) wypróbowano różne typy transplantacji komórek. Wszczepiane komórki miały zastępować te, które uległy zniszczeniu. Komórki macierzyste są szczególnie obiecującym materiałem, ponieważ można je przekształcić w żądaną tkankę i nie wywołują one reakcji układu odpornościowego. Zespół Goldmana pobrał ludzkie płodowe komórki macierzyste z jednodniowych płodów. Jak wspomnieliśmy, mogą się one przekształcać w komórki dowolnej tkanki, tym razem hodowano je jednak w substancjach "skłaniających" do utworzenia tkanki nerwowej. Wcześniej próbowano "nakłonić" komórki macierzyste do przekształcenia się w komórki wytwarzające dopaminę. Po transplantacji neuronów szczury chorujące na odpowiednik parkinsonizmu czuły się lepiej. Jednak wśród przeszczepionych komórek niektóre przestawały produkować neuroprzekaźnik i zaczynały się dzielić w sposób, który mógł doprowadzić do powstania guza. Naukowcy zabili zwierzęta, zanim było wiadomo, czy naprawdę się tak stanie. Podkreślili też, że przy jakichkolwiek próbach z udziałem ludzi należy zachować daleko posuniętą ostrożność. Badacze od dawna obawiali się, że komórki macierzyste mogą się przekształcać w nowotwory. Działo się tak z powodu cechy, która stanowi ich wielki plus, a zarazem minus: elastyczności.
  4. Zbyt duże ilości testosteronu zabijają komórki mózgu. Odkrycie to może pomóc w wyjaśnieniu, czemu nadużywanie steroidów wywołuje zmiany w zachowaniu, takie jak wzrost agresji czy skłonności samobójcze. Testy laboratoryjne wykazały, że niewielkie ilości męskiego hormonu płciowego oddziałują korzystnie na neurony, jednak większe jego stężenie powoduje samozniszczenie komórek w procesie przypominającym patologiczne zmiany np. w chorobie Alzheimera. Prowadząca badania Barbara Ehrlich z Yale University zauważa, że niedobrze jest, gdy testosteronu jest za mało lub za dużo, z najkorzystniejszą sytuacją mamy do czynienia w przypadku średnich stężeń. Testosteron jest kluczowy dla rozwoju, różnicowania i wzrostu komórek. Wytwarzają go zarówno kobiety, jak i mężczyźni, ale dla tych ostatnich typowe jest ok. 20-krotnie wyższe jego stężenie. Możliwe jest "przedawkowanie" testosteronu lub steroidów, które są w organizmie przekształcane w testosteron. Wcześniejsze badania wykazały, że nadmiar tego hormonu powoduje zmiany behawioralne. Potrafimy wykazać, że kiedy masz wysoki poziom steroidów, masz także wysokie stężenie testosteronu, a to z kolei może uszkodzić komórki nerwowe. Wiemy również, że "tracąc" mózg, tracisz jego funkcje — dowodzi Ehrlich. Zespół Amerykanów przeprowadził podobne próby z estrogenem. Byliśmy zaskoczeni, ale wygląda na to, że estrogen wykazuje w stosunku do neuronów działanie ochronne. W obecności estrogenu odnotowuje się mniej przypadków śmierci komórek [w wyniku tzw. apoptozy — przyp. red.]. Na łamach Journal of Biological Chemistry Ehrlich i jej zespół przestrzegają przed zażywaniem steroidów. Może to pomóc w zbudowaniu masy mięśniowej, wykazuje jednak długoterminowe negatywne oddziaływanie na funkcjonowanie mózgu. Apoptoza jest ważna dla mózgu, ponieważ musi on eliminować niektóre komórki. Ale jeśli ma ona miejsce zbyt często, traci się zbyt wiele neuronów, a to oznacza kłopoty. Podobny proces występuje w chorobach Alzheimera, Huntingtona i in. Nasze wyniki sugerują, że reakcje organizmu na podniesiony poziom testosteronu można porównywać z chorobami patofizjologicznymi.
  5. Hormony stresu wydają się przyspieszać formowanie charakterystycznych dla choroby Alzheimera zmian w mózgu. Jak twierdzą badacze, uczenie ludzi radzenia sobie ze stresem pomaga spowolnić postępy choroby. Młodym myszom przez tydzień wstrzykiwano deksametazon, podobny do występujących naturalnie w organizmie hormonów stresu syntetyczny związek. Podawana dawka glikokortykosteroidu odpowiadała stężeniu tych hormonów, które pojawia się pod wpływem stresu. Po siedmiu dniach poziom beta-amyloidu wzrósł w mózgu aż o 60%! Ze złogów beta-amyloidu tworzą się uszkadzające tkankę mózgu charakterystyczne blaszki. Zwiększało się również stężenie białka tau. Beta-amyloid wywołuje zmiany w budowie występującego w ośrodkowym układzie nerwowym w warunkach fizjologicznych białka tau. Tau stanowi część cytoszkieletu neuronów. Nie wiadomo, jaki jest dokładnie mechanizm patologicznych zmian, ale na pewno istnieje związek między nagromadzeniem się beta-amyloidu, zmianami w cytoszkielecie komórek nerwowych a ich śmiercią. Jest godne uwagi, że hormony stresu mogą wywoływać tak znaczące zmiany w tak krótkim okresie. Chociaż od pewnego czasu wiedzieliśmy, że na wczesnym etapie rozwoju choroby Alzheimera występuje podwyższony poziom hormonów stresu, po raz pierwszy zobaczyliśmy, że odgrywają one ważną rolę w zapoczątkowaniu patologicznych procesów — wyjaśnia profesor Frank LaFerla z Uniwersytetu Kalifornijskiego w Irvine. Pomiędzy stężeniami beta-amyloidu i białka tau a poziomem hormonów stresu istnieje sprzężenie zwrotne. Zwiększenie stężenia tych pierwszych wpływa na podniesienie poziomu drugich, a hormony przyspieszają z kolei formowanie się blaszek amyloidowych i kłębków neurofibrylarnych. Doniesienia Amerykanów opisano w Journal of Neuroscience.
  6. Mogą być brakującymi ogniwami genetyki ludzkiej ewolucji. O czym mowa? O obszarach DNA, które zmieniły się drastycznie po oddzieleniu się naszego gatunku od szympansów, chociaż wcześniej były niemal takie same przez tysiące lat. Naukowcy z USA, Belgii oraz Francji zidentyfikowali 49 takich regionów (HAR — human accelerated regions), wykazujących dużą aktywność genetyczną. W najbardziej aktywnym HAR1 od czasów oddzielenia się ludzi od szympansów ok. 6 mln lat temu zmianie uległo 18 spośród 118 nukleotydów. Dla porównania warto dodać, że w ciągu 310 milionów lat, które upłynęły od rozdzielenia linii ewolucyjnych kur i szympansów, zmieniły się tylko 2 nukleotydy. Mamy bardzo sugestywne dane, że omawiane zjawisko może mieć swój udział w krytycznym etapie rozwoju mózgu, ale musimy udowodnić, że tak rzeczywiście jest — powiedział Reuterowi szef zespołu badawczego David Haussler z Uniwersytetu Kalifornijskiego w Santa Cruz. To bardzo podniecające, posługiwać się ewolucją, by przyjrzeć się rejonom naszego genomu, które nie były do tej pory eksplorowane — twierdzi Haussler. Jest skrajnie nieprawdopodobne, aby ewolucja tylko jednego obszaru genomu doprowadziła do powstania różnic pomiędzy mózgami ludzi i innych naczelnych. Bardziej prawdopodobne natomiast, że zaszło wiele małych zmian, a każda z nich była niezwykle istotna, lecz żadna w pojedynkę nie wywołała wszystkich widocznych efektów. HAR1 jest częścią HAR1F — genu nowego RNA, wytwarzanego podczas kluczowego dla formowania się ludzkiego mózgu okresu pomiędzy 7. a 19. tygodniem ciąży. RNA jest produkowane przez neurony Cajala-Retziusa, które odgrywają ważną rolę w szóstej warstwie komórek kory mózgowej. Teraz pozostało "tylko" rozszyfrować funkcje pozostałych 48 obszarów HAR. Wyniki badań międzynarodowego zespołu naukowców opublikowano w środę (16 sierpnia) na łamach pisma Nature.
  7. Komórki nerwowe powstają w mózgu przez całe życiei to właśnie te neurony mogą odpowiadać za uczenie się nowychinformacji. Wiele z nich, niestety, obumiera jeszcze przed połączeniemsię z innymi dojrzałymi komórkami w sieć przesyłającą sygnały. Okazujesię, że obecność bądź nieobecność nowych informacji (reprezentowanaprzez neuroprzekaźnik glutaminian) może determinować przeżycie młodychneuronów. Fred Gage z Salk Institute for Biological Studies i jego współpracownicy podejrzewali, że brak sygnałów w mózgu ma znaczny wpływ na los młodych neuronów. Podobnie jak nowe dziecko w szkole, nowo powstały neuron musi w ciągu 3 tygodni nawiązywać kontakty (tworzyć synapsy) albo nie przeżyje. Aby przetestować swoją teorię, naukowcy stworzyli wirusy potrafiące blokować receptory glutaminianu — związku odpowiadającego za przekazywanie sygnału między neuronami. Po wstrzyknięciu do organizmu myszy wirus skutecznie "odciął" receptory NMDA w nowych komórkach nerwowych (dodatkowo zabarwiono je fluorescencyjnym barwnikiem, by łatwiej było śledzić ich losy). Przy braku impulsów z okolicznych komórek nie były one w stanie przeżyć dłużej niż kilka tygodni. Receptory NMDA modulują tworzenie się synapsy i determinują rodzaj podłączenia "wejścia" neuronów, a więc typ otrzymywanych informacji [...] — wyjaśnia Gage. Jak wynika z opublikowanych wczoraj (13 sierpnia) w Internecie wyników badań (Nature), życie w hipokampie to prawdziwa walka o przetrwanie. Wydarzenia, w których pośredniczą receptory NMDA, to współzawodnictwo dojrzałych neuronów między sobą i młodych z innymi nowo powstałymi oraz starszymi towarzyszami. Jeśli jesteś neuronem, jesteś wybierany do zespołu komórek najlepiej działających w danym środowisku. Wcześniejsze badania wykazały, że nowe neurony myszy rozwijały się dobrze, gdy poddawano je działaniu różnych bodźców. Do tego trzeba dołączyć odkrycie, że uczenie się polega na rearanżowaniu sieci neuronalnej przez nowo powstałe neurony.
  8. Osoby z autyzmem mają mniej neuronów w części mózgu zwanej jądrem migdałowatym (amygdala). Ponieważ odpowiada ono za przetwarzanie bodźców emocjonalnych, wyjaśniałoby to deficyty społeczne i komunikacyjne zauważalne u pacjentów autystycznych. Do takich wniosków udało się dojść na podstawie badań pośmiertnych. Podejrzewano, że w centrum przetwarzania emocji istnieje jakieś zaburzenie, ale nowe analizy po raz pierwszy dostarczyły prawdziwych dowodów ilościowych. David Amaral oraz Cynthia Mills Schumann z Uniwersytetu Kalifornijskiego zbadali mózgi 9 pacjentów z autyzmem oraz 10 zdrowych osób w podobnym wieku. Wszyscy badani byli mężczyznami. Zmarli w różny sposób, także wskutek utonięcia i wypadku samochodowego. Żaden nie cierpiał na epilepsję, która powoduje utratę neuronów w jądrze migdałowatym. Ich wiek wahał się do 10 do 44 lat. Wcześniej prowadzono badania mózgów osób autystycznych post mortem, ale wyniki komplikował fakt, że niektórzy cierpieli jednocześnie na padaczkę. Amaral i Schumann znaleźli znacząco mniej komórek nerwowych w amygdala mężczyzn z autyzmem. Warto tu przywołać jeden z bardziej uderzających przykładów. Dwudziestosiedmioletni zdrowy mężczyzna miał w jądrze migdałowatym 14 milionów neuronów, podczas gdy chory na autyzm 28-latek miał ich tylko 8,5 mln. Naukowcy liczyli neurony w trójwymiarowych próbkach (pod dużym powiększeniem). Odkryli, że chociaż rozmiary jądra migdałowatego zdrowych i chorych mężczyzn nie różniły się, panowie autystyczni jako grupa mieli mniej więcej o 2 mln mniej neuronów. Inne badania bazujące na obrazowaniu mózgu wykazały, że u autystycznych chłopców jądro migdałowate osiągało ostateczne (dorosłe) rozmiary w wieku ok. 8 lat, podczas gdy u niechorujących równolatków następowało to pod koniec okresu dojrzewania. Nadal nie wiadomo, czy u chorych z autyzmem mamy do czynienia z niedoborem neuronów także w innych częściach mózgu. Jedna z możliwości jest taka, że pacjenci autystyczni zawsze mają mniej komórek nerwowych w jądrze migdałowatym. Zgodnie z inną, procesy degeneracyjne zaczynają działać w późniejszych okresach życia, prowadząc do zmniejszenia się liczby neuronów. Potrzeba dalszych badań, by "oczyścić" wyniki naszych analiz. Rezultaty dociekań naukowców z Kalifornii zaprezentowano na łamach Journal of Neuroscience.
×
×
  • Dodaj nową pozycję...