Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mózg' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 419 wyników

  1. Naukowcy twierdzą, że udało im się wykryć część mózgu odpowiedzialną za uzależnienie od nikotyny. Według ekspertów, operacja chirurgiczna na tym obszarze może pomóc niektórym palaczom w uwolnieniu się od nałogu. Odkrycie jest właściwie dziełem przypadku. Okazało się bowiem, że 38-letni mężczyzna, który wypalał wcześniej 40 papierosów bez filtra dziennie, stracił nagle pociąg do nikotyny po uszkodzeniu podczas udaru tzw. wyspy (insula; płat kory mózgu leżący w głębi bruzdy bocznej). Dr Antoine Bechara z Uniwersytetu Południowej Kalifornii tłumaczy, że wyjście z nałogu to trochę jak wyłączenie światła. Uważa on, że wyspa odgrywa kluczową rolę także w innych uzależnieniach, np. w przejadaniu się czy narkomanii. Zespół dr. Bechary badał mózgi (wszystkie po urazach) 69 palaczy. U 19 osób doszło do uszkodzenia wyspy. Trzynaście przestało nagle palić i nigdy nie nachodziła ich chętka na papierosa, sześciu nie udało się zerwać z nałogiem (Science). Przypadek pana N., bo tak nazwali 38-latka naukowcy z USA, jest z pewnością pouczający i daje nadzieję niemałej liczbie palaczy z całego świata.
  2. Wielu lekarzy unika podawania noworodkom środków znieczulających podczas przeprowadzania rozmaitych procedur medycznych, ponieważ uważa, że nie odczuwają bólu. Takie przekonanie może być jednak mylne — donoszą naukowcy ze sztokholmskiego Karolinska Institute. Nowe techniki pomiarowe wykazały, że nawet wcześniaki przejawiają wszystkie symptomy świadomego odczuwania bólu — twierdzi Marco Bartocci. Przez wiele lat medycy przyjmowali, że płody, wcześniaki oraz nowo narodzone dzieci nie odczuwają bólu, ponieważ nie rozwinęły się u nich jeszcze niezbędne funkcje korowe. Reakcje maleństw na potencjalnie bolesne bodźce uznawano za nieświadome odruchy. Lekarze czuli się usprawiedliwieni, nie stosując znieczulenia podczas zabiegów, mając poczucie uniknięcia skutków ubocznych. Badania zespołu Bartocciego wykazały jednak, że mózgi przedwcześnie narodzonych dzieci są rozwinięte w o wiele większym stopniu niż do tej pory sądzono. Spektroskopia w podczerwieni unaoczniła, że powstałe w wyniku nakłuwania szpilką sygnały bólowe są przetwarzane w korze mózgowej wcześniaka dokładnie w ten sam sposób, co u dorosłej osoby. Wydaje się więc, że wszystkie znane warunki świadomego odczuwania bólu są spełnione, chociaż nadal nie uzyskano ostatecznych dowodów na rzeczywiste subiektywne doświadczanie bólu. Rezultaty badań ukażą się w najbliższym wydaniu pisma Pain.
  3. Kiedy wśród półek i skrzynek z różnymi produktami szukamy czereśni, łatwiej dostrzeżemy inne czerwone owoce i warzywa, np. pomidory, truskawki czy dojrzałe jabłka. Okazuje się także, że w poszukiwaniach tych bierze udział więcej neuronów niż do tej pory sądzono. Posługując się funkcjonalnym rezonansem magnetycznym (fMRI), naukowcy zaobserwowali systematyczne zmiany w aktywności mózgu badanych podczas śledzenia wzrokiem poruszających się obiektów (Neuron). Ta zwiększona aktywność pomaga wyszukiwać obiekty nawet wtedy, kiedy nie wiemy, gdzie mogą się znajdować – tłumaczy John Serences z Uniwersytetu Kalifornijskiego w Irvin. Serences i jego "wspólnik" profesor Geoffrey Boynton z Uniwersytetu Waszyngtońskiego przeprowadzili następujący eksperyment. Na ekranie komputera wyświetlano rozpierzchające się w różnych kierunkach obiekty. Zadanie wolontariuszy polegało na skupieniu uwagi tylko na obiektach przesuwających się w określonym kierunku, np. na prawo. Za pomocą fMRI Amerykanie zademonstrowali, że wzorce aktywności mózgu zmieniały się w zależności od wybranego kierunku, na którym należało się koncentrować. Zwracanie uwagi na ruch w jedną stronę zwiększało reaktywność mózgu na obiekty przemieszczające się w innych kierunkach, bez względu na to, w jakiej części widzenia się pojawiały. Zjawisko to zaobserwowano i udokumentowano po raz pierwszy. Być może dzięki temu odkryciu zrozumiemy szereg zaburzeń, np. ADHD.
  4. Psycholodzy badali zjawisko ziewania i stwierdzili, że nie robimy tego, ponieważ musimy się dotlenić, ale po to, by ochłodzić mózg. Manipulowano stężeniem tlenu i dwutlenku węgla we krwi, ale nie udało się w ten sposób spowodować ziewania. Wiadomo natomiast, że mózg zużywa jedną trzecią dostarczanej organizmowi energii, a podczas spalania kalorii powstaje ciepło. Ogrzany narząd trzeba więc jakoś ostudzić. Andrew i Gordon Gallup z Uniwersytetu w Albany podkreślają, że ludzki mózg pracuje wydajniej, gdy jego temperatura jest niższa. Ziewanie usprawnia przepływ krwi i doprowadzanie chłodnego powietrza. Aby potwierdzić lub obalić teorię, że ziewanie pojawiło się w toku ewolucji jako mechanizm chłodzenia mózgu, psycholodzy odtwarzali studentom college'u taśmy z nagraniami ziewających osób. Sami sumowali w tym czasie, ile razy widzowie zarazili się ziewaniem od osoby uwiecznionej na taśmie. W jednym eksperymencie ziewało 50% osób poinstruowanych, by oddychać normalnie lub przez usta. Ludzie, którym kazano oddychać tylko przez nos, nie ziewali natomiast wcale. W drugim eksperymencie wolontariusze robili sobie na czole okłady. Miały one różną temperaturę. Były chłodne, gorące lub w temperaturze otoczenia. Osoby z zimnym okładem nie ziewały, podczas gdy ludzie z ciepłymi kompresami tak. Naczynia krwionośne jamy nosowej i twarzy doprowadzają do mózgu chłodną bądź ciepłą krew. Gdy ochłodzimy więc czoło albo będziemy oddychać nosem, oziębimy krew, co wyeliminuje, a przynajmniej zmniejszy chęć ziewania. Ostatnie badania powiązały stwardnienie rozsiane (SD) z dysfunkcją układu termoregulacji. Nadmierne ziewanie jest jednym z objawów tej choroby, a niektórzy pacjenci wspominają o czasowym zniesieniu symptomów po ziewnięciu. Naukowcy z Albany twierdzą, że ziewanie nie doprowadza ani nie poprzedza snu, ale odracza go w czasie, ma bowiem pobudzić mózg do lepszego działania. Zarażanie się ziewaniem od innych członków grupy miało prawdopodobnie w przeszłości wzmagać czujność, aby nie dać się zaskoczyć niebezpieczeństwu.
  5. Badacze z Carnegie Mellon University (CMU) używają fluorescencyjnych nanocząsteczek do obrazowania guzów mózgu podczas biopsji i interwencji chirurgicznych. Nowa technologia jest na razie testowana na gryzoniach. Może być ona szczególnie pomocna przy precyzyjnym oznaczaniu glejaków, wyjątkowo agresywnych i często spotykanych guzów mózgu. Rokowania pacjentów z glejakami są bardzo złe. Średnio żyją oni mniej niż rok po postawieniu diagnozy. Częściowo dlatego, że glejaka jest trudno usunąć. Neurochirurdzy usuwając glejaki korzystają z obrazów uzyskanych przed operacją dzięki rezonansowi magnetycznemu (MRI). Mózg jednak ma konsystencję podobną do galarety i wycięcie jednego fragmentu powoduje, że reszta się przesuwa. Na obrazach MRI nie można więc polegać. Okazuje się, że w ponad połowie przypadków w mózgu pacjenta pozostają części guza. Pewnym rozwiązaniem jest wykonywanie MRI na bieżąco podczas operacji. Jednak sale operacyjne wyposażone w rezonans magnetyczny są bardzo drogie, a lekarze muszą używać specjalnych narzędzi, na które nie oddziałuje magnes urządzenia. Chemik Marcel Bruchez z CMU oraz Steven Toms, ordynator oddziału neurochirurgii w Geisinger Clinic wykorzystali nowatorski sposób precyzyjnego oznaczania glejaków. Stworzyli nanocząsteczki które, po pobudzeniu światłem widzialnym, emitują światło podczerwone. Promienie są wychwytywane przez małą kamerę i chirurg może obserwować je na ekranie. Rdzeń nanocząsteczek zbudowany jest z kadmu i tellurku, które są otoczone siarczkiem cynku, a całość zamknięta jest w polimerowej kapsule. Po wstrzyknięciu do krwioobiegu gryzonia nanocząsteczkami zajęły się makrofagi - komórki odpornościowe – które przetransportowały je do guza. Co ważne, nanocząsteczki nie trafiły do żadnego innego obszaru mózgu, skupiając się tylko w chorej tkance. W ten sposób została ona precyzyjnie oznaczona i podczas operacji lekarze będą na bieżąco widzieli jak przesunęła się chora tkanka po kolejnych nacięciach. Uczeni pracują teraz nad odpowiednimi urządzeniami, w które można wyposażyć sale operacyjne. Musi się wśród nich znaleźć kamera na podczerwień oraz odpowiednie filtry, które wyeliminują promieniowanie podczerwone z innych źródeł niż umieszczone w mózgu nanocząsteczki. Próbują też skonstruować wyposażoną w system optyczny igłę do biopsji. Za jej pomocą można by na bieżąco sprawdzać, czy jest jeszcze jakaś chora tkanka do wycięcia. Wenbin Lin, chemik z University of North Carolina zwraca uwagę, że stosowany w nanocząsteczkach kadm jest wysoce toksyczny. Bruchez odpowiada: martwi nas ten kadm, ale nanocząsteczki są tak zbudowane, że kadm nie może się z nich wydostać. Zastosowane polimery nie rozkładają się bowiem podczas normalnych procesów biologicznych. Mimo to naukowiec pracuje nad technologią, która pozwoli na zmniejszenie liczby koniecznych do zastosowania nanocząsteczek oraz nad zamknięciem ich w jeszcze bezpieczniejszym „pojemniku”.
  6. Wyłączanie genu wiązanego z chorobą Alzheimera korzystnie wpływało na inteligencję laboratoryjnych myszy. Były one o wiele wrażliwsze na zmiany zachodzące w otoczeniu, wyczuwały je dużo szybciej, niż "zwykłe" gryzonie (Nature Neuroscience). Naprawdę rzadko udaje się stworzyć mądrzejsze zwierzę — powiedział szef badań, dr James Bibb z University of Texas Southwestern Medical Center. Posługując się inżynierią genetyczną, zespół Bibba wyhodował myszy, u których można było wyłączyć gen Cdk5, kontrolujący produkcję pewnego mózgowego enzymu. Białko to powiązano z chorobami neurodegeneracyjnymi, charakteryzującymi się śmiercią neuronów. Wykazaliśmy, że można wyłączyć gen u dorosłych zwierząt. Kiedy wyhodowaliśmy młode, które urodziły się bez niego, zmarły tuż po przyjściu na świat. Amerykanie przeprowadzili ze zmienionymi genetycznie i przeciętnymi myszami serię testów. Te pierwsze osiągały lepsze rezultaty. Dla tych myszy wszystko było bardziej znaczące. Najwyraźniej zwiększenie wrażliwości na otaczający świat sprawiło, że stały się mądrzejsze. Bibb podkreślił, że gryzonie poprawiły wyniki osiągane w zadaniach wymagających uczenia bazującego na skojarzeniach. Mądre myszy szybciej uczyły się poruszania po wodnym labiryncie i zapamiętywały, że w określonej klatce rażono je prądem. Co naprawdę interesujące, nie tylko lepiej zapamiętywały, ale następnego dnia, kiedy powtarzały się te same okoliczności, zauważały, że nie porażono ich prądem. Dr Bibb wyjawił, że zainspirowały go odkrycia naukowców z Uniwersytetu w Princeton. W 1999 roku wyhodowali oni tzw. myszy Doogie'ego (od bohatera serialu wyświetlanego także w Polsce, Doogie'ego Housera, który był geniuszem i już jako dziecko został lekarzem). W przypadku tych zwierząt manipulowano innym genem pamięci asocjacyjnej: NR2B. Okazało się, że Cdk5 kontrolował NR2B. Ekipa Bibba pracuje nad nowymi lekami na pamięć. Naukowcy chcieliby, aby wpływały one nie tylko na chorych z alzheimeryzmem. Mogłyby one włączać i wyłączać gen bez konieczności uciekania się do metod inżynieryjnych. Wpływając selektywnie, pomagałyby modulować wspomnienia pacjentów z zespołem stresu pourazowego, uzależnionych czy cierpiących na depresję. Na razie nie wiadomo, jakie są długoterminowe skutki takiej terapii. Jeśli wszystkie synapsy są cały czas magicznie wzmacniane, to może być dobre na krótszą, ale już chyba nie na dłuższą metę.
  7. Pora roku czy miesiąc, podczas których poczęło się dziecko, wpływają na jego osiągnięcia szkolne. Badacze ze Szkoły Medycznej Indiana University połączyli wyniki uzyskane przez uczniów klas 3-10 z Indiany w wystandaryzowanym teście z miesiącem poczęcia. Okazało się, że dzieci spłodzone w okresie od maja do sierpnia wypadały gorzej od dzieci poczętych w innych miesiącach w zadaniach matematycznych i językowych. Związek między wynikiem uzyskanym w teście a porą poczęcia był znaczący bez względu na rasę, płeć oraz klasę, do której uczęszczał maluch. Szef zespołu naukowców dr Paul Winchester uważa, że za zaobserwowane zjawisko odpowiadają stosowane głównie latem pestycydy. Niższe wyniki w teście korelowały z wyższym stężeniem pestycydów i związków azotu (nitratów) w wodach powierzchniowych. Wystawienie na działanie pestycydów i nitratów zmienia stan hormonalny ciężarnej i środowisko rozwijającego się mózgu płodu. Wcześniejsze badania połączyły np. oddziaływanie pestycydów i związków azotu na kobietę spodziewającą się dziecka z niskim poziomem hormonów tarczycy. Niedoczynność tego gruczołu dokrewnego wiązała się natomiast z obniżonym ilorazem inteligencji potomstwa. Studium naukowców z Indiany nie potwierdziło w 100% hipotezy pestycydowej, ale dostarczyło silnych dowodów na jej poparcie. Trzeba dalszych badań, by rozstrzygnąć tę kwestię. Wiadomo jednak na pewno, że to nie miesiąc poczęcia sam w sobie odpowiada za wyniki osiągane w testach na inteligencję. Musi więc działać dodatkowy czynnik, niekorzystnie zmieniający warunki rozwoju płodowego.
  8. Amerykańscy naukowcy z Almaden Research Lab IBM-a oraz University of Nevada odtworzyli na superkomputerze BlueGene/L działanie mysiego mózgu. Zgodnie z danymi BBC, połowa mózgu gryzonia to ok. 8 milionów neuronów, a każdy tworzy do 8 tys. synaps. Maszyna zdolna do symulacji niezwykle złożonych procesów żywej kory gryzonia musiała zawierać 4096 procesorów, z których każdy dysponował 32 megabajtami pamięci. W ten sposób wirtualny mózg składał się z 8 tysięcy komórek nerwowych, a każda z nich tworzyła do 6.300 synaps. Eksperyment był tak skomplikowany, że mógł trwać tylko 10 sekund, zaś tempo dokonywania operacji nawet przeciętna mysz uznałaby za niskie (był to odpowiednik 1 sekundy czasu rzeczywistego). James Frye, Rajagopal Ananthanarayanan i Dharmendra S. Modha podsumowali uzyskane wyniki w publikacji pt. "Towards Real-Time, Mouse-Scale Cortical Simulations" (W kierunku przebiegającej w czasie rzeczywistym symulacji korowej mysiego mózgu). Oprócz "dużej" symulacji przeprowadzono także kilka pomniejszych. Udało się uzyskać "biologicznie spójne właściwości dynamiczne" w postaci impulsów nerwowych widocznych w obrębie sztucznej kory mózgowej. Wzorce rozchodzenia się pobudzenia przypominały te istniejące w naturze (były m.in. skoordynowane). W dodatku neurony zaczęły spontanicznie łączyć się w grupy. Odtworzono procesy, ale już nie strukturę mózgu myszy. Naukowcy nie ustają jednak w wysiłkach i pracują nad przyspieszeniem technologii, zwiększeniem jej wiarygodności neurobiologicznej, uszczegółowieniem reakcji neuronów i synaps oraz odtworzeniem anatomii mózgu, czyli struktur spotykanych w przyrodzie.
  9. Męski mężczyzna, który pozostaje twardy nawet wtedy, gdy cierpi, może odnosić korzyści ze swojej postawy. Jak twierdzą naukowcy z University of Missouri-Columbia, ma to miejsce zwłaszcza podczas rekonwalescencji po poważnych urazach. Zgodnie z wynikami niewielkich badań, które opublikowano w zeszłym roku w specjalistycznym piśmie Psychology of Men and Masculinity, stan zdrowia tego typu mężczyzn poprawia się w większym stopniu od momentu hospitalizacji do upływu roku od wypadku czy zachorowania. Panowie, którzy są silni lub mają jasną wizję tego, co chcą osiągnąć, dążą do osiągnięcia sukcesu i wyższego statusu społecznego. Może to im daje motywację do wytężonej pracy i większej wytrwałości — przekonuje Glenn Good, profesor nadzwyczajny psychologii z University of Missouri. Pięćdziesięciu dwóch uczestników studium miało od 18 do 91 lat. Doznali oni urazu mózgu lub rdzenia kręgowego i byli potem rehabilitowani. Większość ukończyła szkołę średnią, spora część (2/3) miała pracę. Wszyscy ustosunkowali się do 175 pytań/stwierdzeń dotyczących ich męskości, postawy wobec szukania psychologicznego wsparcia, zdolności wykonywania codziennych zadań, przeszkód uniemożliwiających realizację zamierzeń oraz ogólnej satysfakcji z życia. Łatwo się domyślić, że macho rzadko prosili o pomoc. Zaobserwowano jednak związek między przyznawaniem się do męskości (ryzykownymi zadaniami i poleganiem na sobie) a wspominaniem o mniejszej liczbie barier utrudniających funkcjonowanie w danej społeczności. Wymaga to potwierdzenia i głębszego wyjaśnienia w kolejnych badaniach, wydaje się jednak, że czucie się męskim pomaga mężczyznom w przezwyciężaniu trudności i powtarzaniu czegoś aż do skutku. Taki człowiek nie spocznie, zanim nie osiągnie założonego celu. Może im pomagać stwierdzenie: "Mimo że życie, jakie znałem, już się skończyło, mam inne cele (umieć wstawać lub chodzić) i chcę się upewnić, że uda mi się je osiągnąć" — tłumaczy Good. Wojskowi korzystają z wpojonego poczucia obowiązku, zdyscyplinowania. Good podkreśla, że męskość jest czymś nabytym w procesie socjalizacji, dlatego możliwe jest, by podczas zdrowienia dana osoba stała się na swoje potrzeby bardziej męska. Zwraca jednocześnie uwagę, że zbyt daleko posunięta męskość bywa krzywdząca dla otoczenia: partnerki czy dzieci. Pewna elastyczność odnośnie do momentu, kiedy warto zachowywać się bardziej męsko, jest naprawdę ważna.
  10. Mark Ashcraft, psycholog z University of Nevada twierdzi, że osoby, które martwią się, że nie rozwiążą postawionych przed nimi skomplikowanych zadań matematycznych, rzeczywiście mogą być niezdolne do ich rozwiązania. Strach przed matematyką może tak bardzo zaangażować mózg, że brakuje mu już zasobów, które pozwoliłyby uporać się z zadaniami. Sytuacja taka nie zachodzi w przypadku prostych zadań, gdyż te nie wymagają od mózgu wiele wysiłku. Jednak do rozwiązania trudnych zadań potrzebujemy dużo wolnej pamięci. A ta może być zajęta zamartwianiem się czekającymi nas trudnymi zadaniami. Z takim problemem może spotkać się nawet ktoś, kto jest dobrym matematykiem. Badaczka z University of Chicago, Sian Beilock twierdzi, że w przezwyciężeniu strachu pomaga zapisanie się na kursy przygotowawcze. Uważa również, że testy nie są, wobec tego, dobrym sposobem na decydowanie, kto zda egzamin, a kto nie. Naukowcy nie wiedzą, dlaczego opisane powyżej zjawisko występuje właśnie w przypadku matematyki.
  11. Neurolodzy ze Szkoły Medycznej Uniwersytetu Waszyngtońskiego badali, jak mózg wcześniaków reaguje na urazy. Odkryli, że podatność na uraz jest podobna do tej odnotowywanej w przypadku dojrzałego mózgu. Na modelu zwierzęcym zaobserwowali jednak, że różne obszary rozwijającego się mózgu mogą zostać uszkodzone przez jeden z neuroprzekaźników: kwas glutaminowy (aminokwas pobudzający, EAA). Jest on głównym neuroprzekaźnikiem ośrodkowego układu nerwowego. Szacuje się, że neurony glutaminergiczne stanowią 60% komórek nerwowych mózgu. Lekarze odkryli też uszkodzenia mózgu, które nie mogły być wynikiem działania kwasu glutaminowego. W odróżnieniu od dorosłych, u wcześniaków odnotowuje się głównie uszkodzenia istoty białej, z której zbudowane są połączenia pomiędzy poszczególnymi rejonami (Journal of Neuroscience).
  12. Zmysły wydają się ze sobą ściślej połączone niż do tej pory sądzono. Kombinując ze sobą bodźce, można więc dość łatwo oszukać mózg. Doświadczamy wtedy rzeczy, które w rzeczywistości nie miały w ogóle miejsca. Naukowcy odkryli, że badani, którym pomiędzy dwoma dźwiękami zaprezentowano krótki rozbłysk światła, widzieli po drugim z tonów kolejny krótki błysk. Bodźce prezentowano po sobie w szybkim tempie (Journal of Neuroscience). Oznacza to, że mózg łączy informacje wzrokowe ze słuchowymi w ciągu milisekund, czyli dużo szybciej, niż myśleli neurolodzy. Wcześniej uważano, że komunikacja i wymiana danych między zmysłami zachodzi na wyższym poziomie, w swego rodzaju stacjach pośredniczących. Po ich przetworzeniu miały one być odsyłane z powrotem do jednego lub/i drugiego zmysłu — wyjaśnia Steven Hillyard z Uniwersytetu Kalifornijskiego w San Diego. Szybkie porozumiewanie się między dwoma obszarami mózgu oznacza jednak, że istnieje jakieś bezpośrednie połączenie. Odkrycie Amerykanów pozostaje w zgodzie z wynikami wcześniejszych badań anatomicznych na małpach, które wykazało obecność ścieżek nerwowych łączących bezpośrednio korę wzrokową ze słuchową. Jak zauważa Mishra, brakowało jeszcze dowodu, że takie połączenie rzeczywiście przyspiesza komunikację. To właśnie udało się jego zespołowi. Trzydziestu czterech wolontariuszy 300-krotnie przeszło próbę dźwięk-błysk-dźwięk. Wszyscy doświadczyli złudzenia wzrokowego, tyle tylko, że jednym zdarzało się to częściej niż innym. Nieistniejący błysk postrzegano w 10-90% wszystkich prezentacji. Neurolodzy potrafili przewidzieć, czy dana osoba doświadczy złudzenia wzrokowego, obserwując aktywność elektryczną jej mózgu. Jeśli po drugim dźwięku utrzymywała się aktywność kory słuchowej, badany widział drugi błysk. Istniejące różnice w rodzaju i sile połączeń powstają w trakcie rozwoju osobniczego i najprawdopodobniej mogą się zmieniać pod wpływem doświadczeń.
  13. Naukowcy z MIT opracowali technikę odwracalnego wyłączania komórek mózgowych za pomocą impulsów światła. Możliwe więc stałoby się kontrolowanie aktywności neuronów odpowiedzialnych za padaczkę czy chorobę Parkinsona. Obecnie tego typu neurony usuwane są chirurgicznie. W przyszłości kontrolowanie aktywności neuronów może pozwolić na opracowanie takich metod leczenia chorób psychicznych i neurologicznych, które będą powodowały minimalne skutki uboczne lub nie będą powodowały ich wcale – mówi Edward Boyden, szef Neuroengineering and Neuromedia Group w MIT. Odkrycie było możliwe dzięki wykorzystaniu genu zwanego halorodopsyną, który znajduje się u bakterii żyjącej w bardzo słonych wodach, np. w Wielkim Jeziorze Słonym w stanie Utah. Bakteria ta, Natronomas pharaonis, wykorzystuje gen do kodowania białek, które pełnią rolę aktywowanej światłem pompy związków chloru, które zapewniają bakterii energię. Gdy neurony zostaną zmanipulowane tak, by wydzielały halodropsynę, naukowcy będą mogli oświetlać je żółtym światłem i regulować ich aktywność. Światło aktywuje pompę, która tłoczy jony chlorku do neuronów, zmniejszając ich napięcie elektryczne i uspokajając w ten sposób wyładowania. Technika ta może być szczególnie przydatna w leczeniu chorób spowodowanych nadmierną aktywnością elektryczną neuronów. W takich chorobach będzie można po prostu wyłączyć obwody, które zachowują się nieprawidłowo – mówi Boyden. Obecnie u osób z epilepsją stosuje się elektrody, które od czasu do czasu podają napięcie elektryczne do konkretnych obszarów mózgu, działając jak defibrylator i wyłączają nadaktywne neurony. Nowe odkrycie pozwoli wykonać to samo przy użyciu światła, nie elektryczności. Naukowcy jeszcze w bieżącym roku chcą rozpocząć testy na myszach.
  14. Francuscy lekarze odkryli przez przypadek, że leki uspokajające mogą na nowo pobudzać do życia poważnie uszkodzony mózg. To wielka nadzieja dla osób świadomych, które nie zapadły lub wybudziły się ze śpiączki. Pewna kobieta z południa Francji próbowała przed dwoma laty popełnić samobójstwo przez powieszenie. Doszło wtedy do niedotlenienia mózgu (hipoksji). Teraz bez pomocy drugiej osoby nie potrafi jeść ani się poruszać, nie mówi. Rozumie tylko pojedyncze słowa. Ponieważ cierpi na zaburzenia snu (bezsenność), medycy postanowili podać jej zolpidem (w Polsce tę substancję czynną zawiera preparat o nazwie Stilnox). Po 20 minutach chora zaczęła nagle rozmawiać z rodziną, jeść i ruszać się. Gdy lek stopniowo przestawał działać, czyli mniej więcej po 3 godzinach, wróciła do poprzedniego stanu. Od tego czasu pacjentce aplikuje się 3 tabletki medykamentu dziennie. Zespół Christine Brefel-Courbon ze Szpitala Uniwersyteckiego w Tuluzie zaobserwował, że po podaniu leku chora jest w stanie wstać i chodzić, a także powtarzać i odczytywać słowa. Nadal nie odzyskuje jednak mowy spontanicznej (Annals of Neurology). Emisyjna tomografia pozytronowa (PET), która pozwala ocenić przepływ krwi i aktywność metaboliczną różnych partii mózgu, wykazała, że zolpidem rozbudza nieaktywne bez tego obszary. Badacze uważają, że lek wypełnia luki w obwodach mózgowych powiązanych z motywacją, ruchem i mową. Inni specjaliści, np. Ralf Clauss z Royal Surrey County Hospital w Guildford, przypuszczają jednak, iż wpływ leków na mózg jest bardziej zgeneralizowany. PET często ujawnia "wyciszone" czy nieaktywne obszary mózgu, które niejednokrotnie znajdują się w sporej odległości od uszkodzonych regionów. Nie wiadomo, gdzie dokładnie się one pojawią. Clauss sądzi, że odpowiada za to niedobór jednego z neuroprzekaźników: GABA (kwasu γ-aminomasłowego). Zolpidem stymuluje receptory GABA-ergiczne, dlatego jest taki skuteczny. Zespołowi Claussa udało się usprawnić funkcjonowanie intelektualne pacjentów z uszkodzeniem mózgu wywołanym przez niedotlenienie (po udarze, zranieniu czy urazie okołoporodowym).
  15. Profesor Richard Beasley z Instytutu Badań Medycznych w Wellington odkrył, że jedna trzecia pacjentów przyjmowanych do szpitali z zakrzepicą żył głębokich (ZŻG) to pracownicy biurowi. Dzieje się tak, ponieważ codziennie spędzają wiele godzin w niemal bezwzględnym bezruchu, przesiadując przed ekranami komputerów. W 62-osobowej grupie, którą wzięto pod uwagę w badaniach, 34% stanowili ludzie zatrudnieni w biurach, a "tylko" 21% pasażerowie długodystansowych lotów (w przeszłości ZŻG zaliczano do objawów tzw. syndromu klasy ekonomicznej) — donosi gazeta New Zealand Herald. Gdy przez długi czas trzymamy opuszczone nogi, a kolana są zgięte, następuje zaciśnięcie naczyń i krew nie może się swobodnie przemieszczać. W żyłach głębokich nóg jest to szczególnie ważne, ponieważ to właśnie nimi do serca powraca aż 85% krwi. Jeśli w opisanej sytuacji powstanie skrzep, w jeszcze większym stopniu utrudni to przepływ krwi (pojawia się ból łydek). Przeważnie czop rozpuszcza się, gdy pasażer czy pracownik biura wstaną i rozprostują nogi, czasami się tak jednak nie dzieje. Zakrzep wędruje żyłą główną w górę. Przez prawą część serca może się przedostać do płuc, a dalej do mózgu. Duże czopy rozpadają się niekiedy na kilka mniejszych. ZŻG jest bardzo niebezpieczna, grozi m.in. zawałem serca lub udarem mózgu. Terapia polega na podawaniu leków rozrzedzających krew. Beasley podkreśla, że pracownicy biurowi, u których doszło do powstania zakrzepów, siedzieli przed komputerami przez 14 godzin dziennie. Niektórzy z nich nie wstawali przez 3-4 godziny. Problem był najbardziej nasilony wśród pracowników centrów obsługi klienta (call centre) oraz działów informatycznych. Badania ujawniły, że skrzepy formują się u 10% pasażerów samolotów z grupy podwyższonego ryzyka ZŻG i u 1% pozostałych podróżnych.
  16. Na dorocznym spotkaniu Amerykańskiego Stowarzyszenia Psychosomatycznego, które odbywa się w Budapeszcie, dr Sarah M. Conklin z Uniwersytetu w Pittsburghu przedstawiła wyniki badań swojego zespołu, wyjaśniając, dlaczego kwasy tłuszczowe omega-3 poprawiają nastrój. Zwiększają one objętość istoty szarej w obszarach mózgu zawiadujących emocjami i zachowaniem. Eksperymenty na zwierzętach wykazały, że zwiększenie dawek kwasów powodowało zmiany strukturalne w mózgu. Na zeszłorocznym mityngu Conklin opowiedziała o rezultatach innego studium. Jej zespół zaobserwował, że ludzie z niższym poziomem omega-3 we krwi byli bardziej impulsywni i negatywnie nastawieni do większości zagadnień. Pacjentów z wyższym stężeniem kwasów w krwioobiegu postrzegano natomiast jako zgodnych i rzadziej wspominających o objawach łagodnej czy średnio nasilonej depresji. A oto jak zaplanowano i przeprowadzono najnowsze badanie. Wzięło w nim udział 55 zdrowych dorosłych. Poproszono ich o określenie ilości przyjmowanych dziennie długołańcuchowych kwasów tłuszczowych typu omega-3 (chodziło o uśrednioną dawkę). Objętość istoty szarej oceniano za pomocą strukturalnego rezonansu magnetycznego w wysokiej rozdzielczości. Okazało się, że osoby dostarczające sobie najwięcej kwasów, miały więcej istoty szarej w obszarach mózgowia związanych z podnieceniem emocjonalnym i regulacją uczuć, a więc obustronnie w przedniej części kory zakrętu obręczy (anterior cingulate cortex, ACC), prawym ciele migdałowatym i prawym hipokampie.
  17. W eksperymentach na myszach wykazano, że dieta wysokotłuszczowa "znieczula" mózg na działanie hormonów hamujących apetyt. W ten sposób mózg staje się nieświadom otyłości ciała. Akademicy uważają, że podając ludziom leki pomagające mózgowi ponownie reagować na leptynę, będzie można w przyszłości leczyć otyłość. U zwierząt, a więc i u ludzi, komórki tłuszczowe wydzielają leptynę. Dostaje się ona do podwzgórza, które zawiaduje różnymi procesami fizjologicznymi, m.in. uczuciem głodu i pragnieniem. Teoretycznie powinno być tak, że gdy ciało staje się bardziej otłuszczone, uwalniania się więcej leptyny, co w efekcie doprowadza do spadku łaknienia. Michael Cowley i zespół z Oregon National Primate Research Center wykazali jednak, że nie wystarczy podanie lub samodzielne wytworzenie przez organizm hormonu, aby zwalczyć nadwagę czy otyłość. Dzieje się tak właśnie z powodu spadku wrażliwości mózgu na leptynę. W ramach eksperymentu identyczne genetycznie myszy podzielono na dwie grupy. Jednej podawano wysoko-, a drugiej niskokaloryczne pokarmy. Wszystkie gryzonie z drugiej grupy pozostały szczupłe, podczas gdy w drugiej część przytyła, a część nie. Nie wiadomo, dlaczego się tak stało. Następnie zwierzętom usuwano podwzgórze i badano, w jaki sposób reaguje ono na leptynę. Podwzgórza otyłych myszy nie wydzielały pod wpływem hormonu substancji hamujących apetyt. Mózgi szczupłych gryzoni (bez względu na rodzaj diety) reagowały natomiast normalnie. Podczas dalszych dociekań okazało się, że w neuronach grubych myszy gromadził się pewien związek chemiczny, a mianowicie SOCS-3. Naukowcy podejrzewają, że nie dopuszcza on do zarejestrowania w komórce sygnału wysyłanego przez leptynę. Cowley podkreśla, że badania jego zespołu powinny zmienić zapatrywania na otyłość. Społeczeństwo często uznaje ją za skutek braku silnej woli, podczas gdy ma ona podłoże biologiczne. W kolejnych eksperymentach otyłe myszy odchudzono, przestawiając je z diety wysokokalorycznej obfitującej w tłuszcze na dietę niskotłuszczową z taką samą liczbą kalorii. Neurony z ich podwzgórz zaczęły ponownie reagować na leptynę, co oznacza, że mamy do czynienia z procesem odwracalnym (Cell Metabolism).
  18. Badania przeprowadzone przez naukowców z University of Rochester dowodzą, że gry FPS, czyli popularne "strzelaniny” w rodzaju Unreal Tournament, pozytywnie wpływają na przetwarzanie przez mózg sygnałów wizualnych. Okazuje się, że osoby, które spędzają przy takich grach kilka godzin dziennie, są o około 20% lepsze w identyfikowaniu bodźców wzrokowych. Wystarczy 30 godzin spędzonych przy grze by zauważyć znaczącą poprawę w przetwarzaniu form przestrzennych. Oznacza to ni mniej, ni więcej, że gracz znacznie szybciej od osoby niegrającej wyłapie spośród wielu figur konkretny, zadany kształt. Profesor Daphne Bavelier i doktorant Shawn Green wybrali do swojego eksperymentu studentów, którzy w przeszłości grali bardzo niewiele lub w ogóle. Podzielili ich na dwie grupy. Jedna przez godzinę dziennie grała w Unreal Tournament, a druga w Tetris – grę wymagającą równie dużo kontroli ruchowo-wzrokowej, ale mniej skomplikowaną wizualnie. Gdy ludzie grają w gry akcji, zmienia się sposób pracy tych obszarów mózgu, które są odpowiedzialne za przetwarzanie bodźców wzrokowych. Takie gry początkowo bardzo obciążają mózg, który pracuje na granicy swoich możliwości. Bardzo szybko jednak uczy się on nowych rzeczy i dostosowuje do potrzeb użytkownika. Tak wyuczone umiejętności są później wykorzystywane w codziennym życiu – mówi Bavelier.
  19. Agencja informacyjna Xinhua poinformowała, że chińscy naukowcy wszczepili do mózgów gołębi elektrody, które pozwalały na zdalne sterowanie ich lotem. Dzięki mikroelektrodom pracownicy centrum robotyki na Shandong University of Science and Technology "nakazywali" ptakom lecieć w prawo, w lewo, w dół lub w górę. Implanty stymulują różne obszary mózgu. Sygnały elektryczne wysyłane za pośrednictwem komputera naśladują impulsy generowane w naturze przez sam mózg — tłumaczy nadzorujący badania Su Xuecheng. Podobne eksperymenty jak z gołębiami przeprowadzono dwa lata temu z myszami. Ich autorem był również Xuecheng. Chińczyk uważa, że "zwierzęce roboty" doprowadzą do połączenia dwóch gałęzi nauki, biologii oraz komunikacji elektronicznej, i stworzenia całkiem nowej. Według niego, to niepowtarzalna szansa na opracowanie metod leczenia chorób, w których dochodzi do uszkodzenia nerwów.
  20. Naukowcy zaobserwowali, że można znieść skutki picia przez matkę alkoholu w czasie ciąży, podając dziecku z płodowym zespołem alkoholowym (fetal alcohol syndrome, FAS) cholinę. Cholina to substancja witaminopodobna. Kiedyś zaliczano ją do grupy witamin B. Do dziś nazywa się ją witaminą Bt. W ograniczonym zakresie organizm może ją wytwarzać samodzielnie z kwasu foliowego, witaminy B12 oraz aminokwasów. Spore jej ilości znajdują się w wątróbce i innych podrobach, drożdżach, zielonym groszku, żółtku, maśle orzechowym, sałacie lodowej, kiełkach pszenicy, soi, a także chudym mięsie. Cholina wchodzi w skład lecytyny i sfingomieliny. Z niej syntetyzowany jest jeden z neuroprzekaźników zaangażowanych m.in. w naukę — acetylocholina. Badacze z Uniwersytetu Stanowego w San Diego tłumaczą, że cholina wpływa na rozwój mózgu i może pomóc w naprawie szkód poczynionych przez alkohol (Behavioral Neuroscience). Zespół Jennifer Thomas podawał 170 ciężarnym szczurzycom alkohol. Gdy urodziły się młode, części z nich aplikowano cholinę. Zgodnie z przypuszczeniami, zwierzęta były nadpobudliwe i miały problemy z nauką, ale ich stan poprawiał się pod wpływem witaminy Bt. Cholina nie jest panaceum na wszystkie objawy spektrum płodowych zaburzeń alkoholowych [FASD — fetal alcohol spectrum disorders]. Kobiety nadal muszą pamiętać o jego uszkadzającym wpływie na rozwijający się płód. Zaleca się, by kobiety w ciąży spożywały dziennie 450, a podczas karmienia piersią 550 mg choliny.
  21. Największy dzięcioł Ameryki Północnej, dzięcioł smugoszyi (Dryocopus pileatus), uderza dziobem w drzewo 20 razy na sekundę z prędkością ok. 24 km/h. Dlaczego nie cierpi po takich wyczynach na ból głowy? Zawdzięcza to mocnym mięśniom, strukturze kości przypominającej gąbkę oraz trzeciej powiece. To właśnie one ochraniają mózg przed urazami. Wskutek silnego uderzenia w głowę następuje pęknięcie naczyń krwionośnych siatkówki lub uszkodzenie nerwów — tłumaczy oftalmolog z Uniwersytetu Kalifornijskiego w Davis, Ivan Schwab. Widząc pacjentów po wypadkach samochodowych, dziwię się, że podobne objawy nie występują u dzięciołów. W tym miejscu warto wspomnieć, że zeszłej jesieni za badania nad bólami głowy u tychże ptaków Schwab dostał tzw. Ig Nobla (nazywanego inaczej anty-Noblem). Wyniki jego dociekań opublikowano jednak w British Journal of Ophthalmology. Nie tylko głowa dzięcioła jest zbudowana w taki sposób, by chronić mózg. Również ciało przejmuje na siebie siłę uderzeń. Na jedną milisekundę przed stuknięciem mięśnie szyi kurczą się, a ptak zamyka trzecią powiekę. Podatne na kompresję kości czaszki amortyzują uderzenie. Zamykanie powieki utrzymuje gałkę oczną we właściwym miejscu, daje też gwarancję, że odpryskujące kawałki drewna nie wpadną do oka. Powieki działają jak pas bezpieczeństwa i nie dopuszczają do wypadnięcia gałki ocznej — tłumaczył serwisowi LiveScience Schwab. Podczas uderzania głową mózgi ptaków pozostają nieruchome. U człowieka po przyłożeniu do czaszki takiej siły mózg poruszałby się w przód i w tył w płynie mózgowo-rdzeniowym. U dzięciołów na dobrą sprawę płyn ten jednak nie występuje.
  22. O zgubnym wpływie alkoholu na mózg wiadomo nie od dzisiaj. Niedawno dowiedzieliśmy się, że mózg potrafi wyleczyć szkody wyrządzone przez alkohol, a obecnie naukowcy donieśli, że wpływ alkoholu na ten organ może czasami być... zbawienny. Uczeni sprawdzili dane 1158 pacjentów jednego ze szpitali w Toronto, którzy trafili tam w latach 1988-2003 z powodu uszkodzeń mózgu wywołanych uderzeniem tępym przedmiotem. Były to przede wszystkim ofiary wypadków komunikacyjnych. Okazało się, że pacjenci, u których we krwi znajdowało się do 2,3 promila alkoholu mieli o 24% większą szansę na przeżycie, niż ci, którzy przed wypadkiem nie pili alkoholu. Po przekroczeniu granicy 2,3 promila prawdopodobieństwo zgonu z powodu urazu mózgu wzrastało o 73% w porównaniu z niepijącymi. Spośród tych pacjentów, których akta zbadano, a którzy mieli uszkodzenia mózgu i nie więcej niż 2,3 promila alkoholu we krwi zmarło 28%. Wśród osób, które nie piły alkoholu zmarło 36%. Uczeni porównali te wyniki z kartami 528 pacjentów, których przywieziono z ciężkimi ranami tułowia, ale których głowa nie ucierpiała. U tych osób nie wykryto żadnej zależności pomiędzy poziomem alkoholu, a szansami na przeżycie. Doktor Homer Tien z Uniwersytetu w Toronto podkreśla, że wyników badań nie należy interpretować w taki sposób, iż picie za kierownicą jest czymś pozytywnym. Jego zdaniem badania te wykazują, że możliwe jest opracowanie takiego lekarstwa, które będzie zwiększało szanse na przeżycie u pacjentów z urazami mózgu. Nie mamy obecnie żadnego tego typu leku. To wskazuje na pewną interesującą możliwość. Być może alkohol ma jakiś pozytywny wpływ na mózg, który uległ uszkodzeniu – mówi Tien. Nie zachęcamy jednak nikogo do picia i siadania za kierownicą. Szansa na to, że poniesie się śmierć jest znacznie wyższa, niż pozytywny wpływ alkoholu – dodał. Naukowcy przypuszczają, że niski i umiarkowany poziom alkoholu we krwi podczas wypadku może chronić przed wtórnymi uszkodzeniami mózgu, do których dochodzi gdy uszkodzonym w wyniku zdarzenia komórkom mózgu zaczyna brakować tlenu. Wówczas uszkodzony obszar zaczyna się powiększać.
  23. W jaki sposób kobiety kojarzą "ten ton" z określonymi rzeczami i dlaczego będąc w klubie go-go trudno im wmówić, że gra się właśnie z kumplami w brydża? Nie wspominając o tym, że wszyscy (bez względu na płeć) potrafimy rozpoznać swojego partnera po głosie, nie widząc go. Pewne badanie wykazało, że mózg kojarzy nowe sytuacje z towarzyszącymi im dźwiękami, tzn. tworzy połączenia między regionami kodującymi działanie z obszarami odpowiadającymi odgłosom. Odkrycia te mogą wyjaśnić, w jaki sposób uczymy się języka oraz jak wnioskujemy o wydarzeniach, słysząc jedynie dźwięki — uważają autorzy badania, Amir Lahav i Gottfried Schlaug z Beth Israel Deaconess Medical Center oraz Harvard Medical School. Opisywane doniesienia wpływają na rozumienie wielu złożonych procesów, takich jak mowa czy muzykowanie, i mogą wspomóc badania nad metodami rehabilitacyjnymi z wykorzystaniem zadań dźwiękowo-ruchowych — cieszy się dr Robert Zatorre z McGill University. Stanowią także poniekąd dowody na istnienie u ludzi układu neuronów lustrzanych. Po raz pierwszy opisano je na przełomie lat 80. i 90. u małp. Ulegają one aktywacji nie tylko wtedy, gdy zwierzę samo wykonuje jakąś czynność, lecz również wtedy, gdy obserwuje kogoś innego w działaniu albo słyszy towarzyszące mu dźwięki. Lahav i Schlaug przygotowali dla 9 wolontariuszy, którzy nigdy wcześniej nie uczyli się muzyki, specjalny program ćwiczeń gry na keyboardzie. Musieli się oni wytrenować w grze pięcionutowego (trwającego zaledwie 24 s) "utworu". Po zakończeniu nauki badani wysłuchali 3 fragmentów muzyki: 1) wyuczonego, 2) innej piosenki składającej się z tych samych nut i 3) utworu, do którego dodano kilka nut. Funkcjonalny rezonans magnetyczny (fMRI) wykazał, że znajome dźwięki aktywowały obszary zaangażowane w kontrolę ruchu z płatów czołowych i ciemieniowych. Pole Broca, w obrębie którego u małp mieszczą się neurony lustrzane, uaktywniał się najbardziej w momencie, kiedy badani słuchali wyuczonego fragmentu muzyki. Układ neuronów lustrzanych wydaje się kodować i odzwierciedlać wzorce konkretnych czynności. Umiejętność wnioskowania o tym, co się dzieje, kiedy nie można tego zobaczyć, rozwinęła się najprawdopodobniej z powodów ewolucyjnych. Słysząc w ciemności zbliżające się kroki, warto bowiem wiedzieć, czy lepiej wziąć nogi za pas...
  24. W jaskiniach gier hazardowych ludzie bardziej koncentrują się na traconych większych sumach niż na dużych wygranych. Posługując się funkcjonalnym rezonansem magnetycznym (fMRI), badacze z UCLA przyglądali się aktywności mózgu podczas obstawiania zakładów. Uczestnicy eksperymentu otrzymywali 30 dolarów. Następnie pytano ich, czy zgadzają się zagrać w każdą z 250 różnych gier, w których szanse na wygraną wynoszą 50% (np. czy przystają na rzut monetą, w wyniku którego mogą wygrać 30, a przegrać 20 dolarów). Każdą grę badani mogli całkowicie zaaprobować, zaaprobować w niewielkim stopniu, słabo odrzucić bądź też odrzucić całkowicie. Okazało się, że zazwyczaj ludziom trzeba było najpierw zagwarantować 50-proc. szanse na podwojenie danej sumy, by wyrazili chęć obstawiania. Przyglądając się jedynie aktywności mózgu podczas podejmowania decyzji, czy obstawiać, czy nie, naukowcy wiedzieli, jak ostatecznie zachowa się uczestnik eksperymentu. Osoby, które wykazują relatywnie większą wrażliwość neuronalną na stratę niż na wygraną, podchodzą do hazardu niechętnie. Dzieje się tak do momentu, aż poczują, że ich szanse na wygraną znacznie wzrosły. Największą skłonność do hazardu wykazują natomiast ludzie podobnie neurologicznie wrażliwi tak na wygraną, jak i na stratę — tłumaczy Craig Fox z zespołu badawczego. Ci ostatni rozgrzewali się, gdy wzrastały stawki, tych pierwszych mobilizowało zwiększenie wygranych i strat (Science). Studium ujawniło ponadto, że badani silniej reagowali na potencjalną stratę niż na wygraną. Podczas obrazowania mózgu okazało się, iż na wieść o możliwej wygranej aktywacji ulegał obszar pobudzany również w czasie zażywania kokainy, jedzenia czekolady czy przyglądania się pięknej twarzy — podsumowuje Russell Poldrack. Ośrodki nagrody włączane przez wizję zdobycia pieniędzy wygaszały się na wieść o stracie. Mózg większości osób zareaguje silniej, słysząc o możliwości przegrania 100 dol., a nie o studolarowej wygranej. Zgodnie z wynikami wcześniejszych badań, ludzie są nastawieni do ryzyka raczej awersyjnie. Oznacza to, że ważąc "za" i "przeciw" odnośnie do jakiegoś działania w przyszłości, będą się bardziej koncentrować na minusach. Tendencja ta wykracza daleko poza hazard. Kobieta tkwiąca w nieszczęśliwym związku nie odchodzi, na przykład, do momentu, kiedy jej perspektywy na życie bez partnera nie stają się dużo lepsze od aktualnej sytuacji — zauważa szefowa ekipy naukowców Sabrina Tom.
  25. Aby umieć odróżnić bukiet zapachowy i smakowy uzyskiwany przez zastosowanie winogron z różnych szczepów, np. pionot noir i cabernet sauvignon, wcale nie trzeba się zapisywać na kursy dla somelierów. Wystarczy sobie nalać parę kieliszków i wąchać oraz próbować. Dość szybko mózg pomoże całkiem zwyczajnej osobie stać się początkującym enologiem, czyli znawcą win. Studium naukowców z Northwestern University pokazało, że mózg uczy się odróżniać podobne zapachy poprzez bierne zdobywanie doświadczenia. Rzuciło to nieco światła na proces, za pośrednictwem którego od momentu narodzin zdobywamy umiejętność rozpoznawania tysięcy woni. Eksperyment Amerykanów po raz pierwszy ujawnił, jak i gdzie mózg modyfikuje oraz uaktualnia informacje na temat zapachów. Połowa badanych przez 3 minuty wdychała zapach miętowy, druga połowa kwiatowy. Po okresie wydłużonej ekspozycji zapachowej wolontariusze stawali się ekspertami albo w zakresie mięty, albo w zakresie kwiatów (w zależności o tego, jaką woń im prezentowano). Gdy potem członkowie pierwszej grupy stykali się z jakimś miętowym zapachem, potrafili lepiej różnicować podobne wonie z całej gamy. Nie inaczej było w przypadku osób z grupy kwiatowej. Innymi słowy: badani wystawieni na działanie jednego zapachu miętowego stawali się ekspertami w dziedzinie innych miętowych woni. Testy wykazały, że umiejętności te utrzymywały się przez co najmniej 24 godziny (Neuron). Kiedy przez dłuższy czas masz kontakt z jednym zapachem, stajesz się ekspertem w zakresie woni należących do tej samej źródłowej kategorii — zauważa Jay Gottfried, profesor nadzwyczajny neurologii. Chcąc zmierzyć aktywność mózgu wolontariuszy w czasie eksperymentu, badacze posłużyli się rezonansem magnetycznym (MRI). Zobaczyli, że przedłużona ekspozycja zapachowa silniej aktywowała korę okołooczodołową (region związany z powonieniem, emocjami oraz motywacją). Pokrywało się to z poprawą umiejętności odróżniania podobnych zapachów. Wcześniej nikt nie wiedział, która część mózgu odpowiada za tego typu uczenie. My odkryliśmy, że nasilenie reakcji w obrębie kory okołooczodołowej pozwala przewidzieć, jak dobrym ekspertem zapachowym może się stać wskutek biernego uczenia dana osoba — tłumaczy Wen Li, szefowa badań. Informacje o zapachu nie są statyczne ani sztywno powiązane z jakimiś obszarami korowymi. Przeciwnie: są wysoce podatne na zmianę i mogą się nagle zmienić pod wpływem doświadczenia zmysłowego. Tę "giętkość" nazywa się plastycznością neuronalną.
×
×
  • Dodaj nową pozycję...