Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'laser' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 113 wyników

  1. Na Uniwersytecie Kalifornijskim w Los Angeles (UCLA) powstał najszybszy na świecie czytnik kodów paskowych. Czytnik pracuje z prędkością 25 milionów ramek na sekundę. Obecne czytniki wykorzystują jedną z dwóch technologii. Pierwsza z nich zakłada wykorzystanie lasera, który oświetla kod paskowy i bada natężenie światła odbitego od białych i czarnych obszarów kodu. Prędkość pracy czytnika jest ograniczona w tym przypadku do około 1000 ramek na sekundę. Czynnikiem decydującym o szybkości pracy jest tutaj prędkość przesuwania się lasera. Druga z technologii, pracująca z podobną prędkością, korzysta z kamery cyfrowej, która wykonuje zdjęcie kodu. Jest ono następnie przetwarzane przez komputer. Tutaj prędkość ograniczają możliwości wykonywania zdjęć przez samą kamerę. Badacze z UCLA zastosowali poszerzoną dyspersyjną transformację Fouriera, dzięki czemu mogli odczytywać kod z prędkością 25 MHz. Opracowana przez nich technologia CWEETS Scanner (chirped wavelenght electronic encoded time domain sampling) polega na wykorzystaniu bardzo krótkich impulsów lasera, które oświetlają kod, tworząc jego "mapę". Odbite światło jest następnie "tłumaczone" na impulsy elektryczne przez prosty przetwornik. Naukowcy z UCLA zdecydowali się opracować tak szybki czytnik, gdyż lawinowo rośnie liczba przedmiotów oznaczanych kodami paskowymi i coraz częściej w wielkich magazynach stosuje się całe sieci czujników, odpowiadających za rejestrowanie przepływu towarów. Skaner z Los Angeles powinien znakomicie ułatwić zarządzanie ruchem.
  2. Francuscy lekarze poinformowali o dokonaniu pierwszego laserowego usunięcia guza mózgu u w pełni świadomego pacjenta. W paryskim szpitalu Pitié-Salpêtrière pacjentowi, któremu podano tylko znieczulenie miejscowe, wywiercono w czaszce otwór o średnicy 3 milimetrów. Następnie wsunięto przezeń światłowód wyposażony w laser. Dzięki rezonansowi magnetycznemu lekarze na bieżąco korygowali położenie światłowodu. Gdy narzędzia były już wewnątrz głowy chorego, przeprowadzono komputerową symulację operacji usunięcia guza. Następnie uruchomiono laser, który w ciągu dwóch minut podgrzał i zabił komórki nowotworowe. Po zakończeniu operacji pacjent jeszcze tego samego dnia wrócił do domu. Francuzi informują, ze w ciągu ostatnich dwóch lat przeprowadzili 15 takich pionierskich operacji. Poddano im chorych, u których guzy nie reagowały na standardowe metody leczenia, a specjaliści oceniali, że pacjentom pozostało nie więcej niż 3 miesiące życia. Spośród 15 operowanych w 6 przypadkach usuwano całego guza. U pięciu z takich pacjentów nowotwór nie powrócił przez 9 miesięcy. Zabiegi można było wykonać dzięki rewolucyjnemu laserowi, który powstał w USA. Urządzenie jest na bieżąco chłodzone, dzięki czemu jego użycie nie powoduje powstawania skrzepów. Francuzi mówią, że ich technika może pozwolić na powstanie nowego rodzaju leczenia, które nazwali "interwencyjnym MRI". Jednak, jak przyznali, brakuje im środków na dalsze badania. Potrzebują 2 milionów euro. Nie należy się jednak spodziewać, że nowa technika szybko się upowszechni. Przez najbliższe miesiące, a może nawet lata, to, co osiągnięto we Francji będzie przedmiotem szczegółowych analiz.
  3. Eksperci z Uniwersytetu Nottingham opracowali technikę, która może zrewolucjonizować biologię molekularną. Dzięki zastosowaniu superczułego mikroskopu i światła laserowego są w stanie obserwować w czasie rzeczywistym pojedyncze cząsteczki leku docierające do komórek. Badacze skupili się na analizie aktywności receptora adenozynowego A3 - białka na powierzchni komórek umożliwiającego komórce rozpoznanie cząsteczek adenozyny (ważnej substancji przeciwzapalnej) i odpowiednią reakcję na jej obecność. Można jednak wierzyć, że dzięki odpowiednim modyfikacjom będzie można używać opracowanej metody także do analizy aktywności innych receptorów. Receptor adenozynowy A3, zlokalizowany w mikroskopijnych strukturach błony komórkowej zwanych mikrodomenami, odgrywa istotną rolę w hamowaniu rozwoju stanu zapalnego. Jego aktywacja za pomocą leków jest skuteczną metodą ograniczającą szkody spowodowane m.in. niedokrwieniem serca czy reumatoidalnym zapaleniem stawów. Ze względu na rozmiary mikrodomen dotychczas nie była jednak możliwa bezpośrednia obserwacja działania leczniczych substancji. Metoda opracowana na Uniwersytecie Nottingham umożliwia, po raz pierwszy w historii, wykonanie tak precyzyjnej analizy. Technika działa w oparciu o zjawisko fluorescencji. Naukowcy połączyli cząsteczki badanego leku ze specjalnymi "znacznikami" i dodali je do komórek. Dzięki zastosowaniu techniki zwanej fluorescencyjną spektroskopią korelacyjną możliwa była obserwacja mikroskopowa świecenia badanych cząsteczek pod wpływem ich oświetlania przez laser. Osiągnięto przy tym niespotykaną dotąd precyzję - zastosowanie nowej metody pozwoliło na obserwację pojedynczych molekuł leku. Co więcej, możliwa była analiza interakcji preparatu z mikrodomenami w czasie rzeczywistym. Obecnie badacze skupiają się przede wszystkim na analizie receptora adenozynowego A3, lecz oceniają, że możliwe jest również zastosowanie fluorescencyjnej spektroskopii korelacyjnej do obserwacji różnego rodzaju związków chemicznych. Pozwoliłoby to na uzyskanie znacznie dokładniejszych informacji na temat kinetyki interakcji różnych substancji chemicznych z powierzchnią komórek, a to z kolei ułatwiłoby zdobywanie wiedzy na temat wielu znanych leków i pracę nad nowymi.
  4. Boeing poinformował o zakończonych sukcesem testach ATL (Advanced Tactical Laser). Jest to montowany w samolocie system laserowy, który będzie służył do zwalczania przeciwnika. ATL został uruchomiony na pokładzie lecącego samolotu, jednak promień lasera został przechwycony przez kalorymetr i nie opuścił maszyny. Prawdziwe testy w strzelaniu do celów naziemnych zostaną przeprowadzone jeszcze w bieżącym roku. ATL może pracować w dwóch trybach, zmienianych na bieżąco przez operatora. Jeden z nich służy do zabijania żołnierzy przeciwnika, drugi umożliwia jedynie uszkadzanie urządzeń (np. przestrzeliwanie opon). Kolejną zaletą systemu jest fakt, że obserwator widzi tylko skutki ostrzału, a nie jest w stanie dostrzec promienia lasera. Z nieoficjalnych informacji wiadomo, że testy wykazały, iż ATL charakteryzuje się niewiarygodną celnością. Teoretycznie jest on w stanie w ciągu 26 sekund przestrzelić 32 opony, uszkodzić 11 anten nadawczo-odbiorczych, trzy wyrzutnie rakiet, cztery moździerze i 5 karabinów maszynowych w konwoju pojazdów, nie zabijając przy tym żadnego żołnierza czy cywila znajdującego się w pobliżu. W ciągu najbliższych miesięcy powinniśmy się dowiedzieć, czy teoria sprawdzi się w praktyce.
  5. Przed około 20 laty zaprezentowano teorię, mówiącą, że w nieuporządkowanym materiale istnieją "kanały", przez które może przenikać światło. Teoretycznie przewidziano, że materiały, przez które nic nie widać, mogą stać się przezroczyste. Dwóch holenderskich naukowców udowodniło właśnie, że teoria jest prawdziwa. Gdy światło dociera do nieuporządkowanego materiału, różne długości fali są odbijane i pochłaniane. Jednak wspomniana na wstępie teoria mówi, że w takich nieuporządkowanych materiałach zawsze występują "kanały", przez które światło może przeniknąć do wnętrza. Wraz ze wzrostem grubości materiału kanałów tych jest coraz mniej, ale zawsze jakieś pozostaną. Teoria mówi, że powinno być możliwe takie przygotowanie światła, by różne długości fali wzmacniały się nawzajem (tzw. konstruktywna interferencja) i przechodziły przez otwarte kanały. Allard Mosk i Ivo Vellekoop z Universiteit Twente pokazali, w jaki sposób można znaleźć te teoretycznie przewidziane kanały. Naukowcy skierowali laser na nieprzezroczystą warstwę tlenku cynku. Z drugiej strony warstwy ustawili aparat cyfrowy, który mierzył docierające doń światło. Po wykryciu światła, wykorzystali dane z aparatu do ustalenia właściwego kształtu fali światła. Kontrolowali go za pomocą wyświetlacza ciekłokrystalicznego, który selektywnie przepuszczał poszczególne części światła lasera. Dzięki manipulacji samym światłem Holendrzy byli w stanie aż o 44% zwiększyć jego ilość, która dotarła do aparatu. Gdy zwiększyli grubość warstwy tlenku cynku z 5,7 do 11,3 mikrometra ilość światła przechodzącego przez warstwę niemal się nie zmieniła. Odpowiednie przeliczenie uzyskanych eksperymentalnie wyników pokazało, że maksymalnie aż 2/3 światła może przeniknąć przez ich warstwę. Zgadza się to z przewidywaniami omówionej teorii. John Pendry, wybitny fizyk teoretyczny pracujący w Imperial College London, chwali prace holenderskich kolegów. Zauważa, że po raz pierwszy przeprowadzili dowód na prawdziwość wspomnianej teorii. Pendry mówi, iż zwiększenie przenikalności fali elektromagnetycznej będzie użyteczne przy obrazowaniu medycznym i terapii oraz posłuży do poprawy jakości sygnału telefonii komórkowej wewnątrz budynków. Z nieuporządkowaniem i rozpraszaniem mamy do czynienia bez przerwy i zwykle są to zjawiska niepożądane. Dzięki ich zrozumieniu możemy jednak wykorzystać je do swoich potrzeb - dodaje Pendry.
  6. Naukowcy z Universytetu Harvarda i japońskiej firmy Hamamatsu Photonics stworzyli laser, który nie potrzebuje soczewek. Obecnie używane półprzewodnikowe lasery wymagają użycia drogich soczewek, działających jak kolimatory. Nie tylko podnoszą one cenę urządzenia, ale powodują, że jest ono dość duże. Amerykańsko-japoński zespół stworzył kolimator plazmonowy, zastępując nim soczewki. Znajduje się on bezpośrednio na lustrze lasera, dzięki czemu znacząco zredukowano wielkość urządzenia. Kolimator plazmonowy nadaje się do zastosowania we wszystkich laserach półprzewodnikowych. Nasze badania otwierają drogę do używania plazmonowych struktur umieszczonych na laserze w celu uzyskania dowolnej polaryzacji. To święty Graal spintroniki i kwantowego przetwarzania informacji - mówi profesor Federico Capasso. Naukowcy twierdzą, że po udoskonaleniu urządzenia, będzie można zastąpić nim wszystkie lasery wykorzystywane w telekomunikacji, dzięki czemu możliwe będzie np. obniżenie kosztów budowy sieci optycznych. Obecnie lustra stosowane w półprzewodnikowych laserach nie kolimują światła idealnie, a dywergencja (rozbieżność) może sięgać nawet 25 stopni. Dlatego też używa się, dość dużych w porównaniu z samym laserem, soczewek. Naukowcy odkryli, że jeśli do lustra przymocujemy matrycę z odpowiednio wykonanymi nacięciami o długości mniejszej niż długość fali światła emitowanej przez laser, to powstaną plazmony, które uporządkują wiązkę światła, działając jak kolimator. Nowa technika daje też nadzieją na to, że możliwe będzie kontrolowanie spójności przestrzennej światła, co z kolei pozwoli na sterowanie kierunkiem wiązki lasera, bez konieczności używania luster, pryzmatów czy soczewek.
  7. Naukowcy z University of Texas opatentowali laserowy mikroskalpel, który pozwala na usuwanie z tkanki pojedynczych komórek. Ich pomysł polega na połączeniu w jednym femtosekundowego lasera i dwufotonowego mikroskopu fluorescencyjnego. Powstałe w ten sposób urządzenie może brać na cel pojedyncze komórki i ingerować w tkankę na głębokość do 250 mikrometrów. Doktor Adela Ben-Yakar z University of Texas mówi, że nowy mikroskalpel przyda się przy zabiegach endoskopowych. Umożliwi np. precyzyjne usuwanie komórek nowotworowych z mózgu, pozwoli na bezpieczne operowanie strun głosowych i innych delikatnych tkanek. Laserowe skalpele używane są w medycynie od dawna. Są bardziej precyzyjne niż ich metalowe odpowiedniki, jednak niszczą zdrowe komórki. Ich działanie polega bowiem na podgrzewaniu komórek, które mają być usunięte. Generują na tyle dużo ciepła, że zabijają też otaczającą je tkankę. Użyty przez naukowców z Teksasu laser generuje impulsy światła trwające zaledwie femtosekundy. Dzięki temu tworzone przezeń ciepło zabija tylko jedną, wybraną komórkę. Podobne lasery używane są np. w oftalmochirurgii, jednak obecnie są to na tyle duże urządzenia, że mogą być wykorzystywane jedynie do operacji na tkankach znajdujących się na powierzchni ciała. Podobnie używany jest dwufotonowy mikroskop fluorescencyjny. Dopiero prace uczonych z University of Texas umożliwią wprowadzenie tych urządzeń do ciała pacjenta i wykorzystanie ich przy operacjach endoskopowych.
  8. Jak odtworzyć brakujący fragment kości? Ortopedzi mają na to swoje sposoby, a teraz będą mogli do nich dołączyć... pieczenie. Badacze z Fraunhofer Institute opracowali bowiem prototyp ciekawego urządzenia, które najpierw wylicza gęstość/porowatość kości pacjenta, a następnie wypieka implant ze sproszkowanego metalu. Kości nie są jednakowo gęste we wszystkich miejscach, dlatego oprogramowanie musi przeprowadzić wyliczenia dla konkretnego odcinka. Gdy już wiadomo, jakim wymogom należy się podporządkować, można rozpocząć rekonstrukcję. W ten sposób da się odtworzyć nawet skomplikowane kształty. W miejscach, gdzie kość powinna być gęstsza, promień lasera silniej spieka cieniutkie warstwy proszku. To jak pieczenie ciasta – twierdzi Andreas Burblies, rzecznik jednego z wydziałów Instytutu. Pozostałości luźnego pyłu są usuwane. "Produkt końcowy jest elementem z otwartymi porami. Każdy punkt cechuje się właściwą gęstością, a zatem określoną stabilnością". Inżynierowie ulepszyli metodę. Teraz mogą zmieniać wewnętrzną strukturę już po wypieczeniu, prowadząc precyzyjne wiercenia. Umieją uzyskiwać bardzo lekkie, a zarazem wytrzymałe konstrukcje, co stanowi wabik dla wielu gałęzi przemysłu, np. motoryzacyjnego czy lotnictwa. Proszek przygotowuje się biomateriałów, m.in. z tytanu i stali.
  9. Aparatura medyczna, wykorzystująca zjawisko rezonansu magnetycznego, jest dla lekarza bezcenną pomocą diagnostyczną. Sprzęt MRI znany jest również z potężnych rozmiarów i bardzo wysokich cen. Jednak dzięki Johnowi Kitchingowi – fizykowi z National Institute of Standards and Technology w Boulder, stan Kolorado – skanery tego typu mogą stać się sprzętem powszechnego użytku. Amerykanin wraz z pięcioma współpracownikami buduje czujniki pola magnetycznego (tzw. magnetometry atomowe), które niemal dorównują czułością swym dużym krewniakom, ale mają rozmiary ziarenka ryżu. Miniaturowy magnetometr składa się z trzech podzespołów: standardowego lasera pracującego w podczerwieni, również typowego detektora promieniowania podczerwonego oraz umieszczonego między nimi sześcianu wykonanego z krzemu i szkła, wewnątrz którego znajdują się opary cezu. Opisywana "kanapka" jest zamocowana na krzemowym podłożu. Jeśli urządzenie znajduje się w miejscu pozbawionym pola magnetycznego, światło bez przeszkód mija atomy cezu. Z kolei w obecności nawet najsłabszych pól zmienia się ułożenie wspomnianych atomów, co powoduje, że kostka staje się dla podczerwieni mniej przezroczysta. Zmiana ta jest proporcjonalna to natężenia pola. Największym osiągnięciem naukowców jest zbudowanie komory magnetometru o przekątnej trzech milimetrów. Udało im się to przez wykonanie bocznych ścian "kostki" z krzemu za pomocą fotolitografii. Następnie zamknęli oni komorę ściankami ze szkła, przedtem wypełniając ją parami cezu. Aby utrzymać ten pierwiastek w stanie gazowym, podczas pracy czujnik jest podgrzewany. Obecnie naukowcy budują pojedyncze egzemplarze opisywanych magnetometrów. Opracowana przez nich metoda jest jednak przystosowana do wymagań produkcji masowej. Przenośne urządzenia używające odpowiednio dużej liczby takich czujników mogłyby zrewolucjonizować konstrukcję maszyn MRI i NMR – te pierwsze można by instalować nawet w ambulansach. Inne zastosowanie to szybkie i precyzyjne lokalizowanie ładunków wybuchowych, a w wypadku spektroskopów NMR – poszukiwania podziemnych złóż surowców.
  10. Oporne szczepy bakterii to spory problem dla współczesnej medycyny. Coraz trudniej jest walczyć z mikroorganizmami, które bardzo szybko opracowują strategie obronne przed kolejnymi antybiotykami i środkami chemicznymi jakimi próbuje się je zabić. Naukowcy z University College London opracowali wyjątkowo skuteczną metodę zwalczania chorobotwórczych drobnoustrojów. Jej największą zaletą jest fakt, że najprawdopodobniej bakterie nie będą w stanie wypracować mechanizmów obronnych. Nowa metoda wykorzystuje nieszkodliwą dla człowieka indocjaninę zieloną oraz pracujący w bliskiej podczerwieni laser. Światło lasera nie musi mieć kontaktu z bakteriami. Wystarczy, że pobudzi indocjaninę. Wówczas barwnik ten wydziela reaktywne formy tlenu, które uszkadzają bakterie, prowadząc do ich śmierci. Uszkodzenia są tak rozległe, że naukowcy sądzą, iż bakterie nigdy nie wytworzą oporności na tę metodę. Akademicy podczas swoich eksperymentów wykorzystali laser o mocy 500 mW, który emitował światło o długości fali 808 nm. Testy wykazały, że metoda ta zabija powyżej 99,99% gram-ujemnych Pseudomonas aeruginosa oraz powyżej 99,99% gram-dodatnich Staphylococcus aureus i Streptococcus pyogenes. Osiągnięcie jest o tyle istotne, że pierwszy z wymienionych mikroorganizmów jest odpowiedzialny za większość infekcji przy zranieniach. Co więcej światło w bliskiej podczerwieni jest w stanie penetrować tkankę do pewnej głębokości. Dzięki temu możliwe będzie nałożenie barwnika na ranę, a gdy zostanie on wchłonięty, laser może go aktywować, zabijając bakterie znajdujące się wewnątrz organizmu.
  11. Inżynierowie Intela stworzyli najbardziej wydajny układ scalony przeznaczony do zastosowań telekomunikacyjnych. Kość jest w stanie kodować w świetle dane z prędkością 200 gigabitów na sekundę. Co ciekawe, układ wykonano z krzemu. Obecnie najbardziej wydajne układy tego typu pracują z prędkością 100 gigabitów na sekundę i nie korzystają z krzemu. Mają jednak tę wadę, że nie można ich wydajności zwiększać tak tanim kosztem, jak w przypadku układów krzemowych. Z drugiej jednak strony trzeba pamiętać, że przyszłością fotoniki wydają się takie materiały jak arsenek galu czy fosforek indu. Materiały te mają lepsze właściwości optyczne, a zatem bardziej nadają się do pracy z wykorzystywanym w telekomunikacji światłem. Nowa kość Intela rozbija strumień światła na osiem osobnych kanałów. Każdy z nich działa jak modulator, a więc koduje dane w świetle. Po ich zakodowaniu ponownie tworzony jest pojedynczy strumień. Mario Paniccia, dyrektor intelowskiego laboratorium zajmującego się krzemem i fotoniką, poinformował, że podczas testów każdy modulator pracował z niemal identyczną prędkością, która wynosiła 25 Gb/s. Dodał przy tym, że kanały testowano osobno, ale wkrótce zostaną opublikowane wyniki testów całości. Jednocześnie pracujące kanały mogą nawzajem się zakłócać, powodując spadek wydajności całego układu, jednak już wstępne wyniki pokazują, że, dzięki odpowiedniej architekturze, zakłócenia będą minimalne. Prowadzone przez Paniccię laboratorium to jeden z najważniejszych ośrodków pracujących nad krzemową fotoniką. Przed czterema laty powstał tam pierwszy krzemowy modulator działający z prędkością 1 Gb/s. Rok później stworzono krzemowy laser, a w 2006 roku - laser łączący fosforek indu z krzemem, co dowiodło, że lasery do zastosowań telekomunikacyjnych można budować z krzemu. Przed rokiem zaś informowaliśmy, że Paniccia i jego zespół stworzyli modulator, którego prędkość wynosiła 40 gigabitów na sekundę.
  12. Pierwszy na świecie optyczny rozrusznik serca został przetestowany i opisany na łamach czasopisma Optics Express. Grupa naukowców z Uniwersytetu w japońskiej Osace wykazali, że błyski światła o odpowiednich parametrach mogą pobudzić komórki mięśniowe serca (kardiomiocyty) do skurczów. Jeżeli podasz tego typu komórkom wystarczająco silny impuls światła laserowego w bardzo krótkim czasie, uzyskusz gigantyczną odpowiedź, tłumaczy Nicholas Smith, szef zespołu pracującego nad wynalazkiem. Światło lasera wpływa na komórki poprzez aktywację tzw. kanałów jonowych, czyli białek zdolnych do kontrolowanego uwalniania jonów (w tym przypadku chodzi o naładowane dodatnio jony wapnia). Powoduje to zmiany ładunku elektrycznego w poszczególnych częściach komórki, przez co dochodzi do skurczu. Naukowcom udało się uzyskać, w zależności od potrzeb, dwa dokładnie przeciwne mechanizmy. W pierwszym eksperymencie dowiedli, że rytmiczne pobudzanie kardiomiocytów do skurczu może wymusić na nich "przyjęcie" narzuconego rytmu skurczów, co przypomina do złudzenia pracę tradycyjnego rozrusznika serca. Drugie doświadczenie polegało na wywołaniu odwrotnego efektu: dzięki pobudzaniu pojedynczej komórki do kurczenia się z częstotliwością niezgodną z pozostałymi, udało się wywołać stan podobny do fibrylacji, czyli braku koordynacji pomiędzy poszczególnymi kardiomiocytami. Wywołanie w hodowli komórkowej takiego stanu może być bardzo pomocne przy eksperymentach nad lekami, których zadaniem jest przywracanie prawidłowego rytmu serca. Badania nad urządzeniem przeprowadzono dotychczas wyłącznie na tzw. liniach komórkowych, czyli komórkach hodowanych w laboratorium, poza żywym organizmem. Niestety, obecnie stosowana wersja lasera powoduje poważne uszkodzenie komórek przy wielokrotnej ekspozycji na światło, toteż ewentualne zastosowanie tego typu rozrusznika jako implantu jest mało prawdopodobne. Wszystko wskazuje więc na to, że przez kilka najbliższych lat pozycja stosowanych obecnie rozruszników, działających w oparciu o wysyłanie do serca impulsów elektrycznych, jest niezagrożona.
  13. Kong-Thon Tsen, profesor fizyki z Arizona State University i jego syn Shaw-Wei Tsen, student patologii z Uniwersytetu Johna Hopkinsa, opracowali nowy sposób zabijania wirusów. Stworzyli oni laser USP (Ultra-short Pulse), który emituje impulsy zbyt słabe, by uszkodzić komórkę ludzkiego organizmu, jednak podczas testów bez żadnego problemu zabijał wirusa mozaiki tytoniowej. Laser emituje superszybkie impulsy, których długość trwania liczona jest w femtosekundach (10-15 sekundy). Częstotliwość tych impulsów jest tak dobrana, że wprawiają one w drgania białkową otoczkę chroniącą materiał genetyczny wirusa. Każdy kolejny impuls wzmacnia drgania aż do momentu, gdy otoczka rozpada się na nieszkodliwe molekuły. Panowie Tsen chcą teraz sprawdzić, czy ich USP będzie w stanie podobnie niszczyć wirusy HIV oraz żółtaczki zakaźnej. Ta technika może być bardzo użyteczna podczas niszczenia znanych i jeszcze nieznanych wirusów – mówią wynalazcy. Dzięki niej transfuzja krwi będzie bardzo bezpieczna – dodają. Jeśli laser znalazłby zastosowanie w bankach krwi, to można by za jego pomocą w łatwy sposób odkażać krew. W tej chwili USP nie nadaje się do zabijania wirusów w ciele człowieka. Jednak niewykluczone, że w przyszłości zostanie na tyle udoskonalony, iż będzie w stanie to robić. Teoretycznie można by również, chociaż sami Tsenowie tego nie sugerują, usuwać wirusy z krwioobiegu osób cierpiących np. na wirusowe zapalenie płuc czy AIDS. Wystarczyłoby podłączyć pacjenta do systemu zewnętrznego krążenia sprzężonego z UPS, który oczyszczałby krew chorego. Anonimowy przedstawiciel amerykańskiej Agencji ds. Żywności i Leków (FDA) mówi, że lasery USP mają potencjalnie setki zastosowań. Może zostać użyty do niszczenia wirusów, udoskonalenia laserów okulistycznych czy usuwania komórka po komórce guzów nowotworowych. Przed kilkoma miesiącami Agencja podpisała z firmą Raydiance kontrakt na rozwijanie USP do zastosowań medycznych. Same lasery USP są znane od ponad 25 lat, jednak dopiero niedawno udało się je zminiaturyzować na tyle, że można je stosować w praktyce. Tego typu urządzenia będą wkrótce wykorzystywane na polach bitew, być może będą napędzały pojazdy kosmiczne, a badania panów Tsen dają nadzieję, iż będą też leczyły chorych.
  14. Na University of Texas powstał najpotężniejszy laser na świecie. Ma on moc jednego petawata, czyli kwadryliona (1024) watów. To 2000 razy więcej niż łączna moc wszystkich elektrowni na terenie USA. Laser jest jaśniejszy niż powierzchnia Słońca. Po jego włączeniu uniwersytet nie staje w płomieniach dlatego, że urządzenie uruchamiane jest na 10 trylionowych (0,0000000000001) części sekundy. Potężny laser zostanie wykorzystany do badania materii w niezwykle ekstremalnych warunkach. Amerykańscy naukowcy zbadają dzięki niemu gazy poddane temperaturom wyższym niż panujące na Słońcu czy ciała stałe poddane ciśnieniu rzędu miliardów atmosfer. Dzięki temu możliwe będzie symulowanie w laboratorium wielu procesów zachodzących w przestrzeni kosmicznej. Akademicy będą w stanie symulować narodziny supernowych czy badać to, co dzieje się wewnątrz brązowych karłów. Możliwe też będzie sprawdzanie teorii dotyczących nowych metod produkcji energii.
  15. Naukowcy z Harvard-Smithsonian Center for Astrophysics opracowali technologię, która może przynieść przełom w astronomii. Dzięki ich pracom wyszukiwanie planet podobnych do Ziemi, a więc takich, na których może zaistnieć życie w znanych nam formach, stanie się znacznie łatwiejsze. Amerykańscy naukowcy wykorzystali stosunkowo niedawno odkrytą technologię laserową i dzięki niej stukrotnie zwiększyli dokładność analiz spektrograficznych. Sara Seager, profesor z MIT, mówi, że jeśli nowa technologia będzie współpracowała z współczesnymi teleskopami, to będziemy świadkami olbrzymiego przełomu. Jej kolega, George Ricker wyjaśnia, że gdy planeta krąży wokół gwiazdy, to oddziałuje na nią za pomocą własnej grawitacji i zakłóca jej ruch. Te zakłócenia powodują, zgodnie z efektem Dopplera, niewielkie zmiany w długościach fali światła, które dociera do nas z danej gwiazdy. Analizując to światło spektrografem możemy wykryć planety. Im większa jest planeta, tym łatwiej ją zauważyć. Najczęściej więc odkrywane są planety należące do kategorii gorących Jowiszy, czyli duże, gazowe ciała niebieskie. Na nich jednak nie może powstać życie takie, jak znamy je z Ziemi. Współczesne spektrografy nadają się do wykrywania w ruchach gwiazd zakłóceń rzędu około 1 metra na sekundę. Takie zmiany są jednak wywoływane przez duże planety jak Jowisz, a nie małe skaliste jak Ziemia. Naukowcy już w latach 80. ubiegłego wieku zaczęli się zastanawiać nad wykorzystanie lasera do zwiększenia rozdzielczości spektrografu, ale nie wiedzieli jak to zrobić. Dopiero Ronald Walsworth i Chih-Hao Li wpadli na pomysł, by połączyć laser i interferometr Fabry'ego-Perota, dzięki czemu powstała bardzo precyzyjna "linijka" pozwalająca zbadać właściwości światła z odległych gwiazd. W najbliższym czasie zostanie ona zamontowana w Multiple Mirror Telescope (MMT) na Mount Hopkins w Arizonie.
  16. Zwykle podczas tłumaczenia, dlaczego nie da się zobaczyć obiektów świata atomowego, słuchaczom przedstawiana jest zasada nieoznaczoności Heisenberga oraz porównywane są rozmiary niewielkich przedmiotów (włos, ziarno piasku), z długością fali światła, a następnie atomami i elektronami. I wszystko byłoby pięknie objaśnione, gdyby nie powstał film, na którym widać poruszający się elektron. Udostępnione niedawno nagranie pokazuje wspomnianą cząstkę w chwili uderzania w atom. Długość zapisu odpowiada przejściu pojedynczej fali światła. W kadrze widać rozkład energii elektronu. Dotychczas podejmowane próby wykonania takiego filmu dawały zbyt rozmyty obraz – ogromna prędkość "głównego bohatera" uniemożliwiała uzyskanie nieporuszonych zdjęć. Naukowcy ze szwedzkiego Lund University poszli zatem w ślady fotografów i użyli "lampy błyskowej". Za pomocą jednego lasera wyrwali elektron z orbity, aby wywołać filmowane zdarzenie. W roli flesza wykorzystali natomiast laser wytwarzający attosekundowe impulsy światła. Do niedawna fizycy i chemicy mogli o podobnym urządzeniu jedynie pomarzyć. Ponieważ dotychczas uzyskiwane impulsy attosekudowe były zbyt słabe, aby mogły dać wyraźny obraz, szczytem możliwości były eksperymenty z udziałem tysiąckrotnie wolniejszych laserów femtosekudowych (1 fs = 10-15 s, 1 as = 10-18 s, okrążenie jądra atomu przez elektron to około 150 as). Rozwiązaniem problemu okazało się wielokrotne oświetlanie tego samego momentu cyklicznie powtarzanej "sceny", niemal identycznie jak w zdjęciach stroboskopowych. Fizycy mają zamiar wykorzystać stworzoną przez siebie technikę w kolejnych eksperymentach. Uzyskane dzięki niej obrazy pozwolą potwierdzić teorie naukowe przez niemal bezpośrednią obserwację. Ponadto zdjęcia ukażą zachowanie reszty atomu w chwili pozbawiania go elektronu, np. sposobu wypełniania powstałej luki przez inne elektrony. Aby lepiej zrozumieć osiągnięcie Szwedów, warto powtórzyć za jednym z szefów zespołu badawczego, Johanem Mauritssonem: jedna attosekunda tak ma się tak do sekundy, jak sekunda do wieku Wszechświata.
  17. Choć stosowanie przez armię laserów bojowych wysokiej mocy jest raczej zagadnieniem teoretycznym, już powstaje materiał umożliwiający ochronę przed taką bronią. Badania prowadzone w ośrodku China Lake Naval Warfare Center mają doprowadzić do powstania tarczy nie tylko dla najdroższych machin bojowych, jakimi są okręty, ale też drobniejszego sprzętu, a nawet żołnierzy. Podstawą nowej technologii obronnej są tzw. metamateriały. Wykonane z nich osłony będą w stanie odbijać promienie lasera dzięki ujemnemu współczynnikowi załamania światła. Rozmiary struktur decydujących o właściwościach "tarczy" mają być na tyle małe, aby zabezpieczenie było skuteczne w wypadku każdego niemal typu lasera. Naukowcy rozważają zastosowanie kompozytu składającego się z trzech warstw o klasycznych właściwościach oraz umieszczonych między nimi metamateriałów. "Przekładaniec" ma niewiele ważyć i być na tyle cienki, by możliwe było jego powszechne użycie. Mimo że wspomniane badania mają zapewnione finansowanie, pomysłodawcy nietypowej tarczy wiedzą, że czeka ich trudne zadanie. Ciekawe, czy zdążą je wykonać, zanim lasery dołączą do standardowego uzbrojenia jednostek wojskowych świata.
  18. Chociaż naukowcy nie są pewni, czy wirusy można uznać za formę życia, poświęcają sporo czasu na wynajdywanie nowych metod ich zabijania. Najnowszy sposób na pozbycie się niebezpiecznych cząstek materii organicznej to wibracje. Badacze z Arizona State University posłużyli się modelem matematycznym, aby znaleźć częstotliwości, które mogą doprowadzić do unieszkodliwienia prostych wirusów. Odpowiednio dobrane wibracje potrafią bowiem uszkodzić kapsyd (białkową powłokę) wirusa, bez której ten ostatni nie może atakować komórek. Praca Amerykanów pozwoli lepiej wykorzystać inne niedawne odkrycie, dzięki któremu wiemy, że impuls światła laserowego odpowiednio dobranej częstotliwości potrafi wywołać opisane wibracje. Jeśli znana jest częstotliwość rezonansowa, do zniszczenia wirusa wystarcza wygenerowanie serii impulsów świetlnych o tej częstotliwości i wypełnieniu 25%. Problemem było jednak znalezienie właściwej częstotliwości – szukano jej metodą prób i błędów. Dzięki wspomnianemu modelowi można ją znaleźć poprzez analizę wibracji każdego spośród milionów atomów wirusowej powłoki. Naukowcy musieli rozwiązać także inny problem: symulacja tak dużej liczby atomów pochłaniałaby kilkaset terabajtów pamięci operacyjnej komputera. Na szczęście znaleźli oni znacznie mniej pamięciożerną metodę wykonania obliczeń. Dla pokazania możliwości modelu, badacze obliczyli najskuteczniejszą częstotliwość dla wirusa nekrozy tytoniu (60 GHz). Obecnie pracują oni nad analizą bardziej skomplikowanych powłok, a ponadto zastanawiają się, jak za pomocą wysokich częstotliwości likwidować wirusy znajdujące się w ludzkim ciele. Gra jest warta świeczki, ponieważ metoda ta nie szkodzi normalnym komórkom (wpadają one w rezonans przy znacznie niższych częstotliwościach), a ponadto wirusy raczej nie będą w stanie wykształcić odporności na ultradźwięki.
  19. O niezwykłych możliwościach, jakie daje nam światło laserowe, przekonaliśmy się już wiele razy i nie raz się jeszcze przekonamy. Jeden z najnowszych sposobów jego wykorzystania opracował zespół naukowców z amerykańskich ośrodków National Institute of Standards and Technology oraz University of Colorado. Mowa o technice spektroskopowej analizy wydychanych gazów, dzięki której możliwe będzie tanie, szybkie i całkowicie nieinwazyjne wykrywanie różnorodnych chorób, m.in. astmy i nowotworów. Według autorów metody, jej podstawową zaletą jest możliwość jednoczesnej analizy wielu różnych cząsteczek w badanym gazie. Dzieje się tak, ponieważ próbka oddechu jest wpuszczana do obszaru między dwoma lustrami, tzw. komory rezonansowej. Te same lustra wielokrotnie odbijają impuls światła laserowego analizującego gaz. Liczba wspomnianych odbić jest tak duża, że oświetlana jest praktycznie cała objętość próbki. Porównując właściwości światła wchodzącego do komory z promieniem ją opuszczającym, można uzyskać niezwykle precyzyjne informacje na temat składu badanego gazu. Podczas prób przeanalizowano oddech grupy studentów. Natychmiast udało się zidentyfikować wśród nich palacza – wydychał on pięciokrotnie więcej tlenku węgla niż koledzy. Równie proste jest diagnozowanie niektórych chorób – na przykład nadmiar metylaminy wskazuje na problemy z wątrobą i nerkami, aceton może świadczyć o cukrzycy, a tlenki azotu – o astmie. Rzeczywista analiza jest znaczne dokładniejsza, ponieważ bierze pod uwagę całe grupy związków świadczących o danym schorzeniu. Choć wyniki te są bardzo obiecujące, dokładność opisywanej metody będzie musiała zostać potwierdzona podczas testów klinicznych. Po weryfikacji metoda ta będzie mogła dołączyć środków stosowanych podczas badań lekarskich.
  20. Platynowy, srebrny, złoty... nazwy tych kolorów mogą stać się równie egzotyczne co fokstrot, cyklamen czy ugier. To sprawka naukowców z Institute of Optics w University of Rochester, którzy znaleźli sposób by nadać niemal dowolny kolor dowolnym metalom, bez używania jakichkolwiek barwników. Metoda, opracowana przez prowadzącego badania Chunlei Guo, wykorzystuje światlo lasera do zmiany właściwości powierzchni metalu. Jeszcze rok temu techniką tą udawało się zabarwić metal na głęboką czerń. Obecnie paleta barw jest znacznie bogatsza. Do dyspozycji mamy m.in. złote aluminium i platynę czy niebieski tytan. Równie dobre efekty uzyskano podczas prób z wolframem, srebrem oraz złotem. Aby laser mógł zmienić kolor metalu, musi oświetlić go niezwykle krótkim, trwającym femtosekundy (1 fs = 10-15 s), impulsem światła. Jednocześnie jest to światło bardzo intensywne, o mocy porównywalnej z produkowaną w całej sieci energetycznej Ameryki Północnej. W ten sposób na powierzchn metalu powstają struktury, które odbijają jedną lub kilka długości fal światła. Zmianę koloru uzyskuje się przez odpowiednie dobranie czasu trwania, mocy oraz liczby impulsów. Naukowcom udało się także uzyskać efekt opalizowania barw, jednak wymaga on dość skomplikowanych przygotowań, m.in. pokrycia powierzchni mikroskopijnymi liniami. Już teraz "pomalowanie" metalu laserem ma ważne zalety: kolory nie blakną i nie ma farby, która mogłaby się złuszczać. Co więcej, do uzyskania różnych kolorów wykorzystywany jest ten sam laser. To spore ułatwienie dla projektantów linii technologicznych. Obecnie "malowanie" kawałka metalu o rozmiarach monety twa około 30 minut. Twórcy opisywanej metody pracują teraz nad przyspieszeniem procesu oraz nad dobraniem parametrów potrzebnych do uzyskania niedostępnych jeszcze kolorów.
  21. Marzeniem speców od telekomunikacji jest urządzenie, które będzie w stanie w stanie przetwarzać sygnały optyczne z pominięciem klasycznych układów elektronicznych. Jednak wbrew tym trendom firma Photonic Power Systems (obecnie należąca do JDS Uniphase) ma zamiar wykorzystać światłowody do zasilania... zwykłych urządzeń elektrycznych. Pomysł jest pozornie absurdalny – przecież miedziane przewody są bardzo sprawne i powszechnie dostępne. Ma on jednak bardzo ważną zaletę: umożliwia odseparowanie odbiornika energii od reszty instalacji elektrycznej. Wspomniana cecha umożliwia m.in. montaż czujników poziomu paliwa w zbiornikach bez obaw o powstanie przepięć czy zwarć, a w konsekwencji – grożących zapłonem iskier. Ponadto system taki jest odporny na zakłócenia elektromagnetyczne, ma spore znaczenie m.in. w stacjach bazowych sieci komórkowych oraz rozrusznikach serca. Podstawą nietypowej metody zasilania są laser (źródło energii), światłowód oraz bateria miniaturowych ogniw fotowoltaicznych, przekształcających światło na energię elektryczną. Ogniwa te mają rozmiar 2×2 lub 1×1 mm, a ich wydajność osiąga 40-50% – jest to dwukrotnie więcej niż w powszechnie stosowanych bateriach słonecznych. Pierwsze urządzenia bazujące na opisanym systemie już są instalowane w sieciach energetycznych, gdzie zastępują duże i sprawiające wiele problemów transformatory, służące do pomiaru prądów o wysokim natężeniu.
  22. Brytyjscy naukowcy opracowali nowy rodzaj skanera ultradźwiękowego, który jest w stanie zbudować precyzyjny, trójwymiarowy obraz naczyń krwionośnych znajdujących się wewnątrz guzów nowotworowych. Za pomocą takiego narzędzia, nazwanego tomografem fotoakustycznym, można łatwiej ustalić granicę między tkaną zdrową a zmienioną chorobowo, co z kolei pozwoli zwiększyć skuteczność zabiegów leczniczych. Urządzenie, które powstało w University College London, znacznie różni się od typowych ultrasonografów. Przede wszystkim, zamiast fal ultradźwiękowych, do prześwietlania ciała pacjenta użyto w nim bardzo krótkich impulsów podczerwonego lasera. Gdy światło jest pochłaniane przez komórki, te na krótko rozszerzają się, co z kolei powoduje powstanie ultradźwięków. Odgłosy te są przechwytywane przez specjalny czujnik tomografu i analizowane. Okazało się, siła uzyskanego dźwięku zależy od stopnia pochłaniania światła przez tkankę. Ponieważ najwyższy współczynnik absorpcji w bliskiej podczerwieni ma hemoglobina, skaner generuje bardzo wyraźne obrazy naczyń krwionośnych. Choć opisywane urządzenie najlepiej nadaje się do badania tkanek znajdujących się blisko powierzchni skóry, jest ono w stanie rejestrować również obraz miejsc znajdujących się na głębokości kilku centymetrów. Niestety, tomografu fotoakustycznego jeszcze nie można spotkać w gabinetach lekarskich. Obecnie działające prototypy pracują stosunkowo powoli, a wykorzystany w nich czujnik nie jest przystosowany do badania zakrzywionych powierzchni. Trwają prace nad udoskonaleniem urządzenia.
  23. Naukowcy z Florida State University (USA) i Universidad Nacional de Rosario (Argentyna) rozwiązali zagadkę, która zastanawiała chemików przez niemal 70 lat. Co więcej, nie tylko odpowiedzieli na dręczące naukę pytanie, ale również umożliwili w ten sposób zbudowanie doskonalszych laserów i pamięci komputerowych. Naresh S. Dalal (Floryda), Jorge Lasave, Sergio Koval i Ricardo Migoni z Rosario odpowiedzieli na pytanie, dlaczego kryształy ADP (kwaśny fosforan amonu – NH4H2PO4) zachowują się w sposób nietypowy. ADP został odkryty w 1938 roku. Szybko zauważono, że ma on, niezrozumiałe przed dziesiątki lat, właściwości elektryczne. Amerykańsko-argentyński zespół wykorzystał superkomputer z Florydy i dzięki jego obliczeniom dowiedział się, co powoduje te niezwykłe właściwości. ADP jak i wiele innych kryształów, jest materiałem ferroelektrycznym. Materiały takie, podobnie jak magnesy, wykazują spontaniczną polaryzację i charakteryzują się dużą przenikalnością dielektryczną. Ferroelektryki mogą pozostawać w określonym stanie przez długi czas i utrzymują go nawet po odłączeniu zewnętrznego źródła zasilania. Ta właściwość powoduje, że ADP i podobne materiały są bardzo przydatne podczas przechowywania i transmisji danych. ADP jest szeroko używany do budowy pamięci, w technologiach optycznych, laserach itp. – mówi profesor Dalal. Jednak tym, co czyni ADP wyjątkowym jest fakt, iż zawsze można w nim znaleźć dodatkową fazę – zwaną antyferroelektryczną. Gdy mamy do czynienia z antyferroelektrycznością, to jedna warstwa molekuł w krysztale wytwarza pole ujemne i dodatnie, a druga warstwa takie same pola, ale ułożone przeciwnie. Taki ‘przekładaniec’ widać w całym krysztale, warstwa po warstwie – mówi Dalal. Dzięki superkomputerowi akademicy mogli przeprowadzić obliczenia niedostępne w laboratorium. Udało im się, na przykład, teoretycznie zmienić kąt nachylenia jonów amonu i zmierzyć wpływ takiej manipulacji na ładunki elektryczne w krysztale. Odkryliśmy, że pozycja jonów amonu oraz obecność niedoskonałości w strukturze kryształu, decydują o tym, czy zachowuje się on jak ferroelektryk, czy jak antyferroelektryk – dodał profesor Dalal. Zauważył on, że przeprowadzone badania są ważne z dwóch powodów. Po pierwsze pozwalają na zrozumienie, a co za tym idzie i skonstruowanie, materiałów wykazujących jednocześnie właściwości ferroelektryczne i antyferroelektryczne. To z kolei umożliwi zbudowanie nowych rodzają pamięci i, być może, przyczyni się do rozwoju komputerów kwantowych. Po drugie, zastosowana metodologia to nowy sposób testowania materiałów. Superkomputery umożliwiają symulowanie eksperymentów, których wykonanie w laboratorium jest niemożliwe.
  24. Koreańscy naukowcy stworzyli mikroskopijną wersję najbardziej znanej rzeźby Auguste'a Rodina – Myśliciela. Wykonana za pomocą lasera rzeźba jest dwukrotnie większa od czerwonej krwinki i ma 20 mikrometrów wysokości. Pod mikroskopem widać nie tylko mięśnie, ale nawet pięści wyrzeźbionej postaci. Nowa technologia, wykorzystana do wyrzeźbienia Myśliciela, posłuży do stworzenia nowoczesnych biosensorów i innych mikroskopijnych urządzeń. Uczeni na całym świecie od ponad 10 lat pracują nad laserową technologią pozwalającą na tworzenie miniaturowych trójwymiarowych obiektów. Koreańczycy użyli jednocześnie wielu różnych długości fali światła. Pozwoliło to na "utwardzenie” wnętrza rzeźby. Tworzone wcześniej obiekty charakteryzowały się twardszą powłoką, ale miękkim wnętrzem, co czyniło je wrażliwymi na zmiany ciśnienia.
  25. Naukowcy z Japońskiej Agencji Badania Kosmosu (JAXA) i uniwersytetu w Osace pracują nad laserem, który przetwarza światło Słońca w promień lasera. Dotychczas udało się opracować urządzenie, które jest czterokrotnie bardziej efektywne, niż to osiągnęli inni badacze. Celem Japończyków jest opracowanie systemu, który będzie w przestrzeni kosmicznej zbierał energię słoneczną, przetwarzał ją na światło laserowe, a następnie promień będzie wysyłany na Ziemię, gdzie posłuży do... produkcji energii elektrycznej. Japoński system przechowuje energię Słońca w spiekanej płycie wykonanej m.in. z takich materiałów jak chrom czy neodym. Gdy energia lasera jest zbyt mała, promień lasera oświetla płytę, a wówczas zebrana w niej energia przesyłana jest do lasera. Podczas testów udało się zwiększyć moc lasera z 0,5 wata do 180 watów. W tej chwili system jest w stanie wykorzystać 40% przechwyconej energii słonecznej. Japończycy uważają, że przed rokiem 2030 będzie on gotowy do zamontowania na satelitach.
×
×
  • Dodaj nową pozycję...