Search the Community
Showing results for tags 'kropla'.
Found 8 results
-
Inżynierowie z MIT i Penn State University odkryli, że w odpowiednich warunkach krople zwykłej czystej wody umieszczone na przezroczystym podłożu tworzą żywe kolory bez dodatku atramentów czy tuszy. W artykule opublikowanym na łamach Nature uczeni informują, że na powierzchni pokrytej mgiełką z kropli wody oświetlonych pojedynczą lampą można uzyskać żywe kolory pod warunkiem, że wszystkie krople są tych samych rozmiarów. Mamy tutaj do czynienia z iryzacją, która zachodzi gdy światło wchodzi w interakcje ze strukturą geometryczną obiektu. Amerykańscy naukowcy stworzyli model, który pozwala przewidzieć, jaki kolor uzyskamy z danej kropli w zależności od jej struktury i warunków. Model ten może zostać wykorzystany do projektowania papierków lakmusowych bazujących na niewielkich kroplach czy do tworzenia zmieniających kolor tuszy i barwników używanych w produktach kosmetycznych. Syntetyczne barwniki używane w produktach konsumenckich w celu uzyskania żywych barw mogą nie być tak bezpieczne dla zdrowia, jak powinny. Użycie niektórych z nich jest mocno ograniczone, dlatego też przemysł poszukuje innych możliwości produkcji barwników, mówi Mathias Kolle, profesor z MIT. W ubiegłym roku Amy Goodling i Lauren Zarzar z Penn State badały przezroczyste krople wykonane z mieszanin olejów o różnej gęstości. Obserwowały ich interakcje na szalce Petriego. W pewnym momencie zauważyły, że krople są zadziwiająco błękitne. Zrobiły więc zdjęcie i wysłały do profesora Kolle z pytaniem, skąd się bierze taki kolor. Uczony początkowo sądził, że ma do czynienia z rozpraszaniem, podobnym do tego, które tworzy tęczę. Jednak krople nie były sferami ale półsferami na płaskiej powierzchni. Okazało się, że mamy do czynienia z innym zjawiskiem. Półsfery łamią symetrię, a wklęśnięta powierzchnia sfer powoduje, że pojawia się zjawisko nieobecne w idealnych sferach – całkowite wewnętrzne odbicie (TIR). Po trafieniu do wnętrza półsfery światło może odbić się kilkukrotnie, a sposób, w jaki promienie wchodzą w interakcje podczas opuszczania półsfery decyduje o tym, czy uzyskamy kolor czy nie. Na przykład dwa promienie białego światła wchodzące i wychodzące z półsfery pod tym samym kątem mogą w jej wnętrzu odbijać się zupełnie inaczej. Jeśli jeden z nich odbije się trzy razy, będzie miał dłuższą drogę niż ten, który odbije się dwukrotnie, zatem opuści półsferę nieco później. Jeśli dojdzie do interferencji, to różnica faz spowoduje, że zobaczymy kolor, a zjawisko to będzie znacznie silniejsze w mniejszych niż w większych kroplach. Uzyskany kolor zależy też od struktury półsfer, na przykład od ich rozmiaru i krzywizn. Naukowcy stworzyli matematyczny model, pozwalający im przewidzieć, jaki kolor otrzymają w danych warunkach, a następnie przetestowali go w laboratorium. Na szalce Petriego stworzyli cały zbiór kropli o identycznych rozmiarach, a następnie oświetlili je pojedynczym promieniem białego światła. Następnie całość rejestrowali za pomocą kamery, która krążyła wokół szalki. Zaobserwowali dzięki temu jak zmieniają się kolory w miarę zmiany kąta obserwacji. W ramach innego eksperymentu stworzyli na szalce krople o różnych rozmiarach i sprawdzali, jaki ma to wpływ na kolor. Okazało się, że w miarę jak kropla była coraz większa uzyskany kolor był coraz bardziej czerwony, ale po przekroczeniu pewnej granicy wielkości kropli powracał do niebieskiego. To zjawisko, które było zgodne z modelem teoretycznym, gdyż im większa kropla tym większe przesunięcie faz promieni światła. Ponadto sprawdzono też wpływ krzywizn kropli na kolor. Różne krzywizny uzyskano umieszczając krople na mniej lub bardziej hydrofobowych podłożach. Co jednak najbardziej interesujące z punktu widzenia praktycznych zastosowań, uczeni uzyskali podobne efekty w stałym materiale. Wydrukowali krople o różnych kształtach, wielkościach i z różnego rodzaju przezroczystych polimerów, a po poddaniu ich działaniu promieni światła okazało się, że również i w ten sposób można uzyskiwać żywe kolory. « powrót do artykułu
-
Co robią zmiennocieplne komary, by nie przegrzać się w wyniku spożycia dużych ilości gorącej krwi gatunków stałocieplnych? Ronią kilka kropli cennej cieczy. Nie tylko żywią się więc krwią, ale i urządzają sobie krwawe orzeźwiające kąpiele. Podczas żerowania na ciepłokrwistym gospodarzu, np. człowieku, komary połykają w krótkim czasie duże ilości gorącej krwi. Zamierzaliśmy ustalić, do jakiego stopnia owady narażają się na ryzyko przegrzania - opowiada Claudio Lazzari z Université François Rabelais. I czemu pozbywają się świeżej krwi, która jest cennym i niebezpiecznym w pozyskiwaniu pokarmem. Intuicyjnie naukowcy z Tours zakładali, że chodzi o chłodzenie, ponieważ choć ciepłota ciała owadów zależy od temperatury otoczenia, to np. pszczoły i mszyce potrafią ją kontrolować za pomocą kropli nektaru czy soku roślin. Lazzari i Chloé Lahondère posłużyli się termowizorem. Dzięki temu mogli zaobserwować różnice w temperaturze części ciała komara w czasie żerowania. Okazało się, że temperatura głowy była niemal taka sama jak temperatura jedzonej krwi, jednak pozostałe części owada miały właściwie temperaturę otoczenia. Gdy komary pożywiały się wodą z cukrem, nie zaobserwowano ani różnic w temperaturze (heterotermii), ani chłodzenia wyparnego. Blokowanie lub opóźnianie sekrecji cieczy może mieć dwojakiego rodzaju wpływ na fizjologię komarów [autorzy raportu wspominają o równowadze wodnej i termicznej]. Pośrednio oddziałuje to na mikroorganizmy [zarodźce] przenoszone przez komary; chodzi o modyfikację środowiska termicznego, z jakim się stykają. Chronione są zatem owady oraz pasożyty (pierwotniaki) i symbionty. Francuzi podkreślają, że owady żywiące się krwią znajdują się w wyjątkowej sytuacji, bo przeżywają stres cieplny przy każdym posiłku. Podczas gdy inne owady tylko od czasu do czasu muszą się przenieść w chłodniejsze miejsce czy dostosować utratę wody. U pożywiających się krwią komarów krople cieczy pojawiają się i są utrzymywane w tylnej części odwłoka.
-
Badacze z Uniwersytetu w Leeds, Durham University oraz GlaxoSmithKline (GSK) pracują nad ulepszeniem technologii drukowania tabletek na zamówienie. Wg nich, to sposób na bezpieczniejsze i szybciej działające leki. GSK opracowało metodę drukowania substancji czynnych leku na tabletkach. Obecnie proces można by jednak zastosować jedynie do 0,5% wszystkich medykamentów podawanych w formie pigułek. Naukowcy mają nadzieję, że dzięki najnowszemu projektowi odsetek ten wzrośnie do 40%. Niektóre substancje czynne można rozpuścić w cieczy, która się będzie potem zachowywać jak zwykły tusz [...]. Jeśli jednak pracujesz ze związkami nierozpuszczalnymi, cząsteczki leku pozostają zawieszone w cieczy, co nadaje preparatowi zupełnie inny charakter i stwarza problemy przy próbach wykorzystania podczas drukowania – wyjaśnia dr Nik Kapur z Leeds. Poza tym, dodaje akademik, w przypadku części tabletek, by uzyskać właściwą dawkę, potrzebne będą wyższe stężenia aktywnych czynników, co wpłynie na zachowanie cieczy. W dodatku kropla leku jest 20-krotnie większa od kropli tuszu w standardowym systemie drukarki atramentowej. Eksperci zespołu będą zatem musieli rozwiązać problem, ile kropelek powinno trafić na tabletkę i jak zwiększyć zawartość substancji czynnych w kropli. Nie obejdzie się też bez określenia właściwości i zachowania zawiesiny, kształtu i rozmiarów dyszy drukarki oraz sposobów pompowania zawiesiny przez urządzenie. Brytyjczycy sądzą, że drukowany lek powinien działać szybciej, ponieważ substancja czynna znajduje się na powierzchni i nie musi minąć pewien czas, potrzebny na rozłożenie osłonki w układzie pokarmowym i wchłonięcie do krwiobiegu. Co więcej, w przyszłości możliwe stanie się drukowanie wielu leków na jednej pigułce. Dla pacjentów z wieloma dolegliwościami lub leczonych kilkoma preparatami naraz oznacza to wymierne odciążenie żołądka i pamięci. Przy takim scenariuszu farmaceutycznym poprawi się także kontrola jakości. Skoro każda preformowana tabletka zawiera tyle samo substancji czynnej, można pominąć niektóre procedury kontrolne i medykament szybciej trafi do odbiorców. Pierwsze tabletki zaczęto przygotowywać w starożytnym Egipcie. Obecnie, mimo postępu technologicznego, zasadniczo niewiele się w tym procesie zmieniło: śladowe ilości substancji czynnych miesza się z wypełniaczami, które pozwalają nadać pigułce poręczny do połknięcia rozmiar (inaczej byłyby zbyt małe do zaaplikowania). Problem polega jednak na tym, by w każdej tabletce znalazła się odpowiednia dawka związku czynnego. W tym celu losowo sprawdza się jakąś część partii schodzącej z linii produkcyjnej.
- 5 replies
-
- tabletki
- drukowanie
- (and 9 more)
-
Kontrolowanie rozprzestrzeniania się cieczy po powierzchniach jest niezwykle ważne zarówno podczas tworzenia mikromacierzy DNA, w drukarkach atramentowych czy systemach lab-on-chip. Dotychczas jednak uczeni potrafili kontrolować ilość rozprzestrzeniającej się cieczy, ale nie kierunek jej wędrówki. Badacze z MIT-u (Massachusetts Institute of Technology) zaproponowali nową technikę, dzięki której możliwe jest zmuszenie kropli, by przesuwała się tylko w określonym kierunku. Okazało się, że utworzenie miniaturowych struktur na powierzchni, wymusza na kroplach ruch w określonym kierunku. System opracowany przez profesor Evelyn N. Wang i studentów Kuang-Han Chu i Rong Xiao jest całkowicie pasywny. Miniaturowe struktury na powierzchni powodują, że kropla może poruszać się tylko w jednym kierunku. Wystarczy umieścić ją na odpowiednio przygotowanej powierzchni, by rozpoczęła wędrówkę. Uczeni z MIT-u umieścili na krzemie małe krzemowe włókna, które z jednej strony pokryto złotem, by zgięły się w konkretnym kierunku. Naukowcy, chcąc udowodnić, że ruch kropli jest wywołany tylko i wyłącznie odpowiednim ukształtowaniem powierzchni, a nie jakąś reakcją chemiczną zachodzącą pomiędzy złotem a krzemem, użyli polimeru do pokrycia testowanej powierzchni, dzięki czemu woda miała kontakt tylko z jednym rodzajem materiału. Także i wówczas kropla poruszała się w określonym kierunku. Profesor Wang zauważa, że co prawda badania jej zespołu znajdują się w bardzo wczesnym stadium, ale znajdą zastosowanie zarówno w mikrobiologii, systemach testujących, urządzeniach odsalających wodę czy chłodzących układy scalone.
- 3 replies
-
- Rong Xiao
- Kuang-Han Chu
-
(and 4 more)
Tagged with:
-
Od co najmniej 200 lat wiemy, że obiekty o przeciwnych ładunkach przyciągają się. Najnowsze badania wykazały jednak, że krople silnie naładowane przeciwnymi ładunkami... odpychają się. Do odkrycia tego zjawiska doszło przypadkiem w 2005 roku, gdy William Ristenpart z Uniwersytetu Kalifornijskiego w Davis badał ładunki elektryczne w kroplach wody umieszczonych w oleju. Zwykle dwie przeciwnie naładowane krople przyciągały się, co wywoływało ich deformację, utworzenie się stożka Taylora, a następnie zlanie się kropli. Jednak, gdy Ristenpart przypadkowo zbyt mocno naładował krople, zauważył, że odbijały się one od siebie. Badania niezwykłego zjawiska zajęło uczonemu i jego kolegom trzy ostatnie lata. W końcu naukowcy odkryli, że gdy krople są słabo lub średnio naładowane, tworzące się stożki Taylora są dość krótkie, szerokie, a na ich czubkach występują duże kąty. Przy silnym naładowaniu, krople przyciągają się tak mocno, że stożki stają się długie, wąskie z ostrymi kątami. Kluczem do rozwiązania zagadki okazały się właśnie różnice w kształtach stożków Taylora. W punkcie kontaktu dwóch kropli zewnętrzne pole elektryczne nie odgrywa już żadnej roli. To, czy krople się zleją zależy wyłącznie od kształtu małego "mostu" tworzonego przez stykające się stożki Taylora. Jeśli tworzą go krótkie, szerokie elementy, wówczas napięcie powierzchniowe kropli przyciąga je do siebie i tworzą jedną dużą kroplę. Jeśli jednak mamy do czynienia z dwoma wąskimi elementami, to napięcie powierzchniowe odpycha je od siebie i krople się odbijają. Badania Ristenparta będą miały kolosalne znacznie w wielu dziedzinach życia, w których wykorzystywane są zjawiska elektrostatyczne. Wyjaśniają one np. dlaczego, pomimo udoskonalania od stu lat odpowiednich technik, przemysł petrochemiczny nie jest w stanie uzyskać lepszych wyników podczas elektrostatycznego usuwania wody z ropy naftowej. Dokonane odkrycie pozwoli produkować doskonalsze farby, produkować lepsze włókna sztuczne, ulepszyć technikę spektrometrii masowej. Znajdą zastosowanie wszędzie tam, gdzie konieczne jest precyzyjne kontrolowanie niewielkich kropli cieczy. Niewykluczone, że z badań Ristenparta skorzystają też klimatolodzy, gdyż opisane zjawisko może mieć wpływ na formowanie się chmur.
- 21 replies
-
- zlewanie
- stożek Taylora
- (and 5 more)
-
Z artykułu w Geophisical Research Letters możemy dowiedzieć się, że najprawdopodobniej dotychczas naukowcy przeceniali intensywność opadów deszczu. Najnowsze badania przeprowadzone przez zespół Gillermo Montero-Martineza z Meksykańskiego Narodowego Uniwersytetu Autonomicznego, wykazały, że przeceniana jest wielkość kropli i, co za tym idzie, ilość wody, która spadła na ziemię. Meksykanie zbadali 64 000 kropli, które spadły na Mexico City. Dotychczas sądzono, że duże krople spadają szybciej niż małe. Ponadto prędkość kropli ograniczana jest tzw. szybkością graniczną, wyznaczaną przez moment, w którym przyciąganie ziemskie jest równoważone przez tarcie. Meteorolodzy, opierając się na takich założeniach, wykorzystują obecnie radary mierzące prędkość kropli. Na tej podstawie oceniana jest ich wielkość oraz całkowita ilość opadów. Montero-Martinez odkrył, że część małych kropli nie tylko opada szybciej niż duże krople, ale czyni to z prędkością większą niż prędkośc graniczna. Naukowcy użyli zestawu spektrometrów, który pozwolił zbadać im rozszczepianie się światła w opadających kroplach oraz systemów do analizy cząstek i modeli matematycznych umożliwiających ocenę kształtów i wielkości kropli. Uczeni zauważyli, że opadające duże krople wchłaniają mniejsze krople i czasem się rozpadają na takie o średniej wielkości. Te z kolei przez około pół sekundy po rozpadzie poruszają się z prędkością dużej kropli, z której pochodzą, a więc szybciej niż wynosi prędkość graniczna dla średnich kropli. A to oznacza, że dotychczas były one uznawane za duże krople. Meteorolodzy już wcześniej zauważyli, że istnieje jakiś błąd pomiarowy, ale przypisano go uderzeniom kropli w instrumenty pomiarowe. Eksperci zgadzają się, że badania Meksykanów pozwolą na skonstruowanie doskonalszych instrumentów pomiarowych, które umożliwią lepsze przewidywanie pogody.
-
- pogoda
- meteorologia
-
(and 3 more)
Tagged with:
-
Wydawałoby się, że w dziedzinie horrorów nic już nie może zaskoczyć, podobnie jak w przypadku armatury sanitarnej i papieru toaletowego. Japończycy, mistrzowie grozy, znów jednak zaskoczyli. Koji Suzuki, autor sfilmowanej powieści Ring, dał się przekonać wytwórni papieru Hayashi Paper Corp. do napisania horroru, który został w całości wydrukowany na kolejnych kawałkach rolki. Kropla składa się z 9 rozdziałów i traktuje o złym duchu z publicznej toalety. Czytanie horroru w otoczeniu przypominającym scenerię z książki może być, wg przedstawicieli producenta, niezapomnianym przeżyciem. Każda rolka jest pakowana oddzielnie w czarny woreczek z nadrukiem. Całość przypomina okładkę lub plakat, a zamazana twarz z cieknącą z oka łzą (krwią) wygląda naprawdę niepokojąco. Powieść wydano na razie po japońsku, a między znakami widnieją niebieskie plamy krwi. W najnowszym horrorze Suzuki odwołuje się do wierzeń z Kraju Kwitnącej Wiśni, zgodnie z którymi duchy i złe moce zamieszkują najmniejsze pomieszczenia w domu. Sprzedaż Kropli rozpocznie się 6 czerwca. Za 86-centymetrową rolkę trzeba będzie zapłacić 210 jenów, czyli ok. 2,20 dol.
- 6 replies
-
- Hayashi Paper Corp.
- rolka
-
(and 4 more)
Tagged with:
-
Mając w głowie obraz kropli deszczu odbijających się od ziemi podczas ulewy, naukowcy sądzili, że drobiny wody rozbryzgują się, dotykając powierzchni gleby, ściany czy innych obiektów. Tymczasem okazało się, że dzieje się to, zanim kropla dotrze do przeszkody. Shreyas Mandre i zespół z Uniwersytetu Harvarda przeprowadzili szereg symulacji komputerowych. Śledzili, co dzieje się z drobiną wody, która w coś uderza. Wzięli pod uwagę kilka czynników, m.in. ciśnienie powietrza i napięcie powierzchniowe cieczy. Zauważyli, że tzw. typowa kropla, która ma ok. 2 mm szerokości i porusza się z prędkością kilku metrów na sekundę, na parę mikrosekund przed uderzeniem spręża przed sobą powietrze. Ta swego rodzaju poduszka powietrzna spłaszcza kroplę i doprowadza do jej rozpryśnięcia. Fizycy wierzą, że to dzięki temu zjawisku widuje się drobinki cieczy tworzące charakterystyczną koronę. Jest ono mniej prawdopodobne przy silniejszym tarciu powierzchniowym. Wbrew pozorom, wiedza ta przyda się nie tylko meteorologom czy gleboznawcom zgłębiającym tajniki erozji. Mandre podpowiada, że warto by ją wykorzystać podczas projektowania materiałów zapobiegających rozbryzgiwaniu, którymi pokrywałoby się kuchenki czy blaty stołów.