Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'hipokamp' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 47 wyników

  1. Umiejętność zapamiętywania nowych porcji danych może zależeć nie tylko od tego, jak wiele razy mamy z nimi kontakt, lecz także od tego, czy mózg usunie informacje zapisane wcześniej w jego pamięci krótkotrwałej - uważają naukowcy z japońskiego Uniwersytetu w Toyamie. O odkryciu poinformowało prestiżowe czasopismo Cell. Aby mózg zarejestrował nowe wspomnienia, najpierw muszą one trafić do hipokampa - centrum pamięci krótkotrwałej. Jeżeli będą powtarzane dostatecznie wiele razy lub - na drodze nieustalonych bliżej zjawisk - mózg uzna je za ważne, zostają one przepisane do centrów pamięci trwałej, takich jak kora nowa. Dzięki serii eksperymentów na szczurach japońscy badacze ustalili ważne szczegóły na temat działania tymczasowego "bufora wspomnień", jakim jest hipokamp. Zespół Kaoru Inokuchiego traktował mózgi zwierząt wysokimi dawkami promieniowania. Ku zaskoczeniu badaczy okazało się, że ekspozycja na ten czynnik blokuje powstawanie nowych neuronów (co akurat nie zaskoczyło nikogo), lecz także prowadzi do utrwalenia połączeń pomiędzy neuronami hipokampa, co objawiało się wydłużeniem okresu przechowywania wspomnień należących do pamięci krótkotrwałej. Kolejny etap eksperymentu polegał na skłanianiu zwierząt do ćwiczeń. Metoda ta, znana ze swojej zdolności do stymulacji rozwoju nowych neuronów (neurogenezy), miała na celu wywołanie reorganizacji hipokampa i wytworzenie nowych połączeń pomiędzy komórkami nerwowymi. Jak się okazało, szczurom z badanej grupy rzeczywiście udawało się zapamiętywać więcej, lecz stawało się to kosztem usunięcia części danych z hipokampa i ich przeniesienia do obszarów odpowiedzialnych za pamięć długotrwałą. Zwiększona neurogeneza wywołana przez ćwiczenia mogła przyśpieszyć usuwanie wspomnień z hipokampa i równocześnie ułatwiać ich transfer do kory nowej, ocenia Inokuchi. Pojemność pamięci hipokampa jest ograniczona, ale dzięki ćwiczeniom mogliśmy zwiększyć [ogólną pojemność mózgu], zaznacza też badacz. Jednocześnie, jak podkreśla, może to oznaczać, że upośledzenie neurogenezy może prowadzić do zapełnienia hipokampa i zablokowania powstawania nowych wspomnień. Należy zaznaczyć, że badania prowadzone przez japońskich naukowców dotyczyły wyłącznie wspomnień związanych ze strachem. Autorzy liczą jednak, że podobne mechanizmy powinny dotyczyć także bardziej "przyjaznych" sygnałów.
  2. Badacze z Princeton University utrwalili aktywność pojedynczych neuronów mysiego hipokampa podczas przemierzania wirtualnego labiryntu. Wg nich, rytmiczne wyładowania można by powiązać z położeniem zwierzęcia. Amerykanie mają nadzieję, że ich metoda pozwoli odkryć, w jaki sposób aktywność neuronów formuje nowe ślady pamięciowe i oddziałuje na zachowanie. W rzeczywistości cyfrowej gryzonie biegały, choć ich głowa była unieruchomiona. Pozwoliło to biologom na uzyskanie ciągłego zapisu aktywności pojedynczego neuronu. Wzięli oni na cel komórki miejsca hipokampa (ang. place cells), po raz pierwszy opisane w 1978 r. przez O'Keefe'a i Dostrovsky'ego u szczurów. Uaktywniają się one, gdy lokalizacja w środowisku odpowiada obsługiwanemu przez nie polu. Wcześniej specjaliści badali ich działanie za pomocą elektrod zewnątrzkomórkowych. Jak jednak zauważa prof. David Tank, w ten sposób określano aktywność, lecz już nie to, jak jest generowana. Jego ekipa zastosowała inną technikę, dzięki której udało się utrwalić aktywność wewnątrz neuronu. Podczas eksperymentu myszy przebierały właściwie tylko łapami. Poza tym nie przemieszczały się, ponieważ umieszczano je na kuli lewitującej nad ziemią, czyli na czymś w rodzaju minipoduszkowca. Myszy łatwo chodzić i biegać po takiej powierzchni – to zupełnie jak kołowrotek [widywany w akwariach chomików]. Przesuwając kulę, gryzoń kontrolował swoje ruchy w wirtualnym labiryncie. Na końcu każdego czekała nagroda. Gdy zwierzę miało ochotę na kolejną, musiało się odwrócić i biec do drugiego końca. Komórki miejsca stawały się aktywne w określonych okolicach korytarza. Wyładowania grup neuronów wrażliwych na położenie następowały w szczególnym rytmie [...]. Patrząc na czasowanie aktywności, można zatem powiedzieć, gdzie mysz się znajduje. Niewykluczone, że timing stanowi rodzaj kodu, który jest jakoś przekładany na pamięć. Profesor Tank nadmienia, że nadal nie wiadomo, jaką dokładnie funkcję spełniają komórki miejsca. Czy stanowią fundamentalną część systemu nawigacyjnego mózgu, czy też ich rola jest bardziej uogólniona i polega na umożliwieniu zapamiętywania sekwencji zdarzeń.
  3. Badacze z Uniwersytetu w Chicago odkryli, że guzy nowotworowe wytwarzają substancje, które wpływają na pogorszenie nastroju. Depresja u chorych nie jest więc wyłącznie wynikiem porażającej diagnozy czy efektem ubocznym chemioterapii (Proceedings of the National Academy of Sciences). Amerykanie tłumaczą, że guz wytwarza duże ilości związków obniżających nastrój. Są one transportowane do mózgu, gdzie oddziałują na hipokamp, czyli strukturę układu limbicznego odpowiadającą za pamięć i emocje. Co więcej, naukowcy spostrzegli, że kiedy zaczyna się rozwijać nowotwór, działanie mechanizmów hamujących substancje depresyjne również zostaje zaburzone. Akademicy z Chicago przeprowadzili badania na ok. 100 szczurach (część z nich chorowała na nowotwór). Zauważyli, że gryzonie z guzami były mniej zmotywowane do ucieczki, gdy poddawano je testowi polegającemu na pływaniu. Wg specjalistów, stan ten przypominał ludzką depresję. Chore zwierzęta nie miały też ochoty na słodzoną wodę, która wśród zdrowych szczurów uchodzi za prawdziwy przysmak. W porównaniu do gryzoni w pełni sił, we krwi i hipokampie osobników z guzami występował podwyższony poziom cytokin. Są to cząsteczki białkowe, które wpływają na namnażanie, wzrost i stymulowanie komórek zaangażowanych w reakcję układu odpornościowego. W ramach wcześniejszych studiów powiązano je z depresją. W organizmie gryzoni z chorobą nowotworową powstawało mniej hormonu stresu kortykosteronu, który w normalnych okolicznościach reguluje wpływ cytokin. Dr Brian Prendergast, szef zespołu badawczego, podkreśla, że w tym przypadku badanie behawioralnych reakcji na guzy jest szczególnie użyteczne, gdyż szczury nie mają świadomości choroby. Dlatego zmiany w ich zachowaniu są z dużym prawdopodobieństwem rezultatem działania czynników czysto biologicznych.
  4. U młodych, zdrowych dorosłych, którzy zostali przez naturę wyposażeni w główny czynnik ryzyka wystąpienia choroby Alzheimera – pewien wariant genu kodującego białko apolipoproteinę APOE – występuje dodatkowa aktywność w rejonach mózgu związanych z pamięcią. Są one "włączone" nawet wtedy, gdy mózg odpoczywa, co skłoniło naukowców do wysunięcia hipotezy o wypaleniu i jego zgubnych skutkach. Gdy dana osoba ma tylko jeden wariant epsilon 4, szanse wystąpienia alzheimeryzmu wzrastają 4-krotnie, natomiast przy 2 alellach ryzyko skacze już 12-krotnie. Nie wiadomo, na jakiej zasadzie działa feralny wariant, lecz u osób, u których go znaleziono, hipokamp (struktura odpowiadająca za pamięć) jest zazwyczaj mniejszy. Clare Mackay z Uniwersytetu Oksfordzkiego i jej współpracownicy z Imperial College London przeprowadzili badanie obrazowe mózgu 18 ludzi z wariantem epsilon 4 oraz 18 osób z innymi allelami. W tym czasie ochotnicy wykonywali zadania pamięciowe lub sobie po prostu leżeli. W porównaniu do grupy kontrolnej, podczas testów pamięciowych hipokamp właścicieli epsilonów 4 był bardziej aktywny, lecz nie przekładało się to w żaden sposób na uzyskiwane wyniki. Oznacza to zatem trwonienie energii. W czasie, gdy wolontariusze mieli odpoczywać, obserwowano aktywność domyślnych regionów mózgu (ang. default brain regions), które kontrolują samopostrzeganie i uaktywniają się, gdy człowiek nie myśli o niczym szczególnym albo myśli o sobie. I znowu u ludzi z wariantami epsilon 4 obszary z hipokampa były bardziej aktywne. Fakt, że natrafiliśmy na różnice w hipokampie, jest bardzo ekscytujący – podkreśla Mackay. W jaki sposób zespół połączył i wyjaśnił uzyskane dane? Otóż uznano, że wariant epsilon 4 może prowadzić do nadmiernego eksploatowania pamięci na wczesnych etapach życia, a w takim razie alzheimeryzm byłby rodzajem wypalenia. Nie da się jednak stwierdzić, czy istnieje związek przyczynowo-skutkowy, czy też po prostu dodatkowa aktywność w hipokampie stanowi przejaw niewydolności procesów pamięciowych.
  5. Pociąg do ciągłych zmian lub zamiłowanie do wszystkiego, co znane, to kwestia budowy mózgu. Okazało się bowiem, że u osób żądnych przygód wykształciły się bardziej rozbudowane połączenia między hipokampem, ważnym ośrodkiem pamięci, a brzusznym prążkowiem, centrum nagrody (Nature Neuroscience). Zespół naukowców z Uniwersytetu w Bonn, który pracował pod przewodnictwem doktora Bernda Webera, zebrał grupę 20 młodych kobiet i mężczyzn. Dobierano ich podług zamiłowania do nowości (PN) i zależności od nagród (ZN). Wymienione cechy stanowią połowę wymiarów temperamentu, wyodrębnianych w psychobiologicznej koncepcji osobowości Roberta C. Cloningera. Jak zachowują się ludzie z silnie wyrażonym PN, łatwo stwierdzić, natomiast osoby z wysokim ZN poszukują aprobaty społecznej i trzymają się udeptanych ścieżek. Poszukiwanie nowości wiąże się z niską aktywnością układu dopaminergicznego, a uzależnienie od nagrody z niewielką aktywnością układu noradrenergicznego. Podczas badania obrazowego mózgu akademicy wpadli na trop różnic w strukturze połączeń. Byliśmy dość zaskoczeni, widząc unikatowe dla każdego z typów osobowościowych warianty połączeń między brzusznym prążkowiem i hipokampem. Ponieważ hipokamp przechowuje ślady pamięciowe, a prążkowie to jedno z mózgowych centrów nagrody, neurolodzy opisali następujący mechanizm. Gdy wśród wspomnień nie udaje się odszukać danych na temat jakiegoś doświadczenia, do prążkowia wysyłana jest wiadomość. W przypadku osób zorientowanych na nowości (często zmieniających pracę i wyjeżdżających co roku w inne miejsce) zaczynają się wtedy wydzielać duże ilości związków odpowiadających za odczuwanie przyjemności. Ochotnicy wypełniali kwestionariusze osobowościowe. Dzięki temu dało się ich umiejscowić na skali, której jeden koniec stanowiło poszukiwanie nowości, a drugi zależność od nagród. Potem poddano ich badaniu traktografem dyfuzyjnym (ang. diffusion tractography). Kilka lat temu technika ta została opracowana przez Timothy'ego Behrensa z Uniwersytetu Oksfordzkiego. Umożliwia ona obserwowanie połączeń między pojedynczymi neuronami. Do tej pory dało się to zrobić jedynie podczas sekcji zwłok. Warunkiem wstępnym było przeprowadzenie żmudnego procesu barwienia pobranych wycinków. W kwestionariuszach znalazły się takie oto stwierdzenia: Lubię wypróbowywać nowe rzeczy tylko dla zabawy lub dlatego, że stanowi to wyzwanie i, alternatywnie, Wolę zostać w domu niż podróżować lub badać nieznane zjawiska. U osób w pełni zgadzających się z twierdzeniem Chcę zadowolić innych ludzi w jak największym stopniu (odwrotność to hasło Nie dbam o to, czy otoczenie akceptuje mnie lub mój sposób działania) odkryto rozbudowane połączenie między płatem czołowym a brzusznym prążkowiem. Nie było to dla Webera dużym zaskoczeniem, gdyż płat czołowy wpływa na przestrzeganie norm społecznych.
  6. W ludzkim mózgu odnaleziono neuron humoru, który żywo reaguje na śmieszne sceny. Komórka uaktywniała się zarówno podczas oglądania fragmentów Simpsonów, jak i podczas późniejszego przypominania ich sobie. Ten sam neuron rozświetlał się, choć w mniejszym stopniu, podczas projekcji Kronik Seinfelda. Dr Hagar Gelbard-Sagiv z Instytutu Nauki Weizmanna, profesor Itzhak Fried z Uniwersytetu Kalifornijskiego w Los Angeles i zespół przeprowadzili eksperymenty z udziałem 13 chorych na padaczkę. Do ich mózgów wszczepiono wcześniej elektrody, które miały pomóc w wytropieniu ogniska napadów. Pozwalały też śledzić podczas oglądania komedii aktywność pojedynczych komórek istotnego dla pamięci hipokampa i powiązanych z nim struktur. Kiedy po jakimś czasie chorzy przypominali sobie śmieszne fragmenty, z zegarmistrzowską precyzją uaktywniały się dokładnie te same komórki nerwowe. U jednego z pacjentów w korze śródwęchowej wytypowano neuron, który najbardziej żywiołowo reagował na Simpsonów (w sumie wyświetlono 48 fragmentów różnych komedii). Gdy na ekranie pojawiały się charakterystyczne animowane postaci, wyładowania odnotowywano aż 15 razy na sekundę, a podczas wyświetlania innych humorystycznych urywków lub podczas przerw zaledwie kilka razy na sekundę. Stan większego pobudzenia utrzymywał się przez kilkanaście sekund i to nawet po zakończeniu klipu. Ten sam neuron słabo odpowiadał na Kronik Seinfelda. Ponieważ na co dzień stykamy się z nieskończoną liczbą bodźców, każdy neuron musi reagować na więcej niż jeden fragment. Nie wiadomo jednak, na jakiej zasadzie decyduje się, który będzie reagował na co.
  7. Kiedy podczas autopsji okazywało się, że w mózgu osoby, która zmarła, ciesząc się świetną pamięcią i przenikliwym intelektem, znajduje się wiele złogów amyloidowych i niezwiązanych z błoną splotów białkowych (ang. neurofibryllary tangles, NFT), patolodzy zawsze zastanawiali się, czemu nie zachorowała na alzheimeryzm. Teraz wreszcie udało się ustalić, że zawdzięczała to większemu od przeciętnego hipokampowi. Dr Deniz Erten-Lyons z Oregon Health and Science University w Portland ma nadzieję, że dzięki odkryciu jego zespołu uda się opracować skuteczne metody zapobiegania chorobie Alzheimera (chA). Amerykanie porównali mózgi 12 osób, które zmarły, ciesząc się doskonałą sprawnością intelektualną, choć miały wiele zmian charakterystycznych dla choroby Alzheimera, z mózgami 23 ludzi, którzy mieli podobną ilość blaszek, lecz przed śmiercią zdiagnozowano u nich chA. Naukowcy zauważyli, że objętość hipokampa w pierwszej grupie była o 20% większa niż u pacjentów z demencją. Nie znaleziono innych różnic demograficznych, klinicznych czy patologicznych. Prawidłowość tę obserwowano bez względu na płeć, wiek oraz ogólną objętość mózgu. Hipokamp jest parzystą strukturą należącą do układu limbicznego (tzw. mózgu gadziego). Odpowiada przede wszystkim za pamięć. Inaczej nazywa się go rogiem Ammona. Jest zlokalizowany w przyśrodkowej ścianie komór bocznych.
  8. Brak snu może zastopować wytwarzanie przez mózg nowych neuronów. Badania na szczurach, które przeprowadzili naukowcy z Princeton University, wykazały, że takie zachowanie wpływa negatywnie na hipokamp, rejon mózgu zaangażowany w tworzenie się wspomnień (Proceedings of the National Academy of Science). Według brytyjskich akademików, ciekawe byłoby, gdyby się okazało, że niedobór snu ma takie same konsekwencje, co jego całkowity brak. Naukowcy porównywali zwierzęta pozbawiane snu przez 72 godziny z wyspanymi gryzoniami. U tych pierwszych wykryto podwyższony poziom hormonu stresu kortykosteronu. Wytwarzały one również znacznie mniej neuronów w określonym obszarze hipokampa. Kiedy utrzymywano stały poziom kortykosteronu, eliminowano efekt zmniejszenia liczby podziałów komórek nerwowych. Rezultaty sugerują, że będące wynikiem pozbawienia snu podwyższone stężenie hormonu stresu wyjaśnia zahamowanie neurogenezy, czyli powstawania nowych neuronów w dorosłym mózgu. W ciągu 7 dni szczury powróciły do swoich pierwotnych wzorców snu. Po dwóch tygodniach mózg nadal nadrabiał straty w proliferacji. Szefowa badań, dr Elizabeth Gould, mówi, że nie wiadomo, jaką rolę spełnia produkcja nowych neuronów u dorosłych. Jednak supresja neurogenezy może leżeć u podłoża deficytów poznawczych [np. zaburzeń koncentracji uwagi — przyp. red.] związanych z przedłużającym się okresem pozbawienia snu.
  9. Doktor Suzanne Higgs z Uniwersytetu w Birmingham odkryła zjawisko, które z pewnością docenią osoby odchudzające się. Skupianie uwagi na niedawno zjedzonym posiłku zmniejsza chęć sięgania po przekąski. W eksperymencie wzięło udział 47 studentek. Po zjedzeniu obfitego lunchu poproszono je o przeznaczenie 30 minut na przemyślenie pewnej kwestii. Połowa miała opisać detale ostatniego posiłku, a reszta szczegóły związane z dojazdem do kampusa. Potem wszystkie panie zaczęto częstować ciasteczkami. Wcześniej jednak, by zamaskować prawdziwy cel naukowców, przeprowadzono test smakowy. Kobiety, które myślały o jedzeniu, sięgały po herbatniki mniej chętnie (aż o 40%) niż przedstawicielki płci pięknej dumające o podróżach. Dr Higgs zwraca uwagę, że inne studia sugerowały, że myślenie o jedzeniu zwiększa ilość spożywanych potem pokarmów, zwłaszcza u ludzi, którzy się odchudzają. Pani psycholog przedstawia jednak wyjaśnienie rozbieżności uzyskanych wyników. Wg niej, różnica polega na tym, że jej eksperyment polegał na przypominaniu sobie konkretnego posiłku, a nie na aktywowaniu ogólnych wspomnień pokarmu. Naukowcy przypuszczają, że świeże ślady pamięciowe znajdują się w tej samej części mózgu, która odgrywa ważną rolę w podejmowaniu decyzji, czyli w hipokampie. Jedna z możliwości jest taka, że wspomnienie ostatniego posiłku wzmacnia oddziaływanie tej konkretnej informacji na proces decyzyjny. Efekt wzmagał się z upływem czasu. Po trzech godzinach od lunchu różnice w apetycie obu grup stawały się bardziej widoczne. Odkryta zależność między pamięcią a wagą ciała jest niezwykle ważna. Badania sugerują, że to, jak dobrze ktoś pamięta [ostatni posiłek], może być czynnikiem pozwalającym wyjaśnić, czemu pewni ludzie jedzą więcej od innych. Co więcej, zjawisko to tłumaczy, przynajmniej częściowo, obserwowany ostatnimi laty zatrważający wzrost liczby osób otyłych. Bardzo często jemy, oglądając telewizję, czytając bądź siedząc przed komputerem. Najprawdopodobniej utrudnia to zapamiętywanie, a więc i odtwarzanie listy zjedzonych produktów. W ten sposób nieświadomie sabotujemy plany zrzucenia kilku zbędnych kilogramów. Eksperci sugerują, że leki wzmagające aktywność hipokampa mogłyby hamować apetyt.
  10. Nie tylko długotrwały, ale także chwilowy silny stres wpływa ujemnie na pamięć i uczenie. Badacze z Uniwersytetu Kalifornijskiego w Irvine zauważyli, że wydzielające się wtedy hormony upośledzają komunikację między neuronami uczestniczącymi w formowaniu i przetwarzaniu wspomnień (Journal of Neuroscience). Kiedyś sądzono, że takie skutki może mieć stres utrzymujący się tygodniami lub nawet miesiącami, teraz okazało się, że wystarczy jedno wyjątkowo nieprzyjemne zdarzenie. Szefowa badań, dr Tallie Baram, podkreśla, że stres jest nieodłączną częścią naszego życia. Najnowsze odkrycia w tej dziedzinie mogą jednak pomóc w opracowaniu skuteczniejszych leków, poza tym pozwalają wyjaśnić zapominalstwo niektórych osób i niemożność zapamiętania czegokolwiek podczas stresujących wydarzeń. Wcześniejsze studia koncentrowały się na określaniu wpływu kortyzolu na pamięć. Zespół Baram skupił się na hormonie uwalniającym kortykotropinę (ang. corticotropin releasing hormone, CRH). Okazało się, że gdy pod wpływem zdenerwowania w hipokampie, strukturze układu limbicznego niezwykle istotnej dla pamięci, wydzielał się CRH, zachodził proces niszczenia wypustek neuronów. Siłą rzeczy nie mogło dojść do przebudowy i zmiany "przepustowości" synaps. Zjawisko zaobserwowano u gryzoni: szczurów i myszy. Na późniejszych etapach eksperymentu wykazano, że hamowanie działania hormonu nie dopuszczało do wystąpienia zaburzeń pamięci i uczenia. Przyszłe leki powinny więc bazować na podobnym mechanizmie blokowania odpowiednich receptorów.
  11. Japońscy naukowcy umieścili w mózgu myszy niewielki aparat. Chcieli obejrzeć, w jaki sposób tworzą się ślady pamięciowe (Journal of Neuroscience Methods). Wymiary aparatu cyfrowego to 3x2,3x2,4 mm - wylicza Jun Ohta, profesor z Nara Institute of Science and Technology. Przy eksperymencie Ohta współpracował z naukowcami z Kinki University. Urządzenie wszczepiono do hipokampa. Zwierzęciu wstrzykiwano substancję, która zaczynała świecić podczas aktywności mózgu. Aparat wyłapywał to i wtedy jego wyświetlacz pokazywał błękitny poblask. Teraz Japończycy planują użycie kamery u chodzącego gryzonia. Chcieliby ją też wykorzystać w przypadku ludzi, ale nastąpi to najwcześniej za 10 lat. Można by wtedy pomóc osobom z chorobą Parkinsona, ponieważ urządzenie utrwalałoby aktywność mózgu wyzwalającą drżenie i inne objawy.
  12. Zapach silnego samca powoduje, że mózg samicy zaczyna rosnąć, ponieważ pojawiają się w nim nowe neurony. Podobnego efektu nie zaobserwowano w przypadku kontaktu z osobnikami zajmującymi niższą pozycję w hierarchii lub wykastrowanymi. To właśnie opisane zjawisko odpowiada za preferencje seksualne myszy, ale nie tylko ich. Feromony oddziałują, według naukowców, na dwa obszary dorosłego mózgu, w których najczęściej tworzą się nowe komórki nerwowe: 1) opuszkę węchową (odpowiadającą, jak sama nazwa wskazuje, za odbieranie zapachów) i 2) hipokamp (strukturę związaną z powstawaniem i przechowywaniem wspomnień). Kiedy u samic myszy nie dopuszczano do wzrostu mózgu w odpowiedzi na woń wydzielaną przez supersamca, przestawał się jej podobać i nie pociągał jej seksualnie. Żeńskie feromony wywoływały u samców ten sam efekt, ale był on znacznie mniej spektakularny (Nature Neuroscience). Neurolodzy z Uniwersytetu w Calgary zidentyfikowali, jakie hormony oddziałują w ten sposób na mózg. Jak mówi Samuel Weiss, można je będzie w przyszłości wykorzystać do naprawy lub polepszenia działania uszkodzonych przez uraz czy chorobę rejonów mózgu. Trzeba jednak podkreślić, że pytanie, czy i ewentualnie jak feromony wpływają na ludzi, pozostaje nadal otwarte.
  13. Rodzina wirusów wywołujących całą gamę chorób, od przeziębienia poczynając, na polio kończąc, może prawdopodobnie infekować mózg i systematycznie go uszkadzać — donoszą badacze z Mayo Clinic w Minnesocie. Nasze studium sugeruje, że wywołana wirusem utrata pamięci akumuluje się w ciągu życia danej jednostki, doprowadzając ostatecznie do mających znaczenie kliniczne deficytów pamięciowych — poinformował Charles Howe, który opisał odkrycia całego zespołu na łamach magazynu Neurobiology of Disease. Grupa wirusów, o której mowa, to tzw. pikornawirusy. Rodzina Picornaviridae obejmuje ok. 200 gatunków wirusów RNA. Większość z nich jest dla człowieka chorobotwórcza. Rocznie infekują one ok. 1 mld osób. Uważamy, że pikornawirusy przemieszczają się w obrębie mózgu i wywołują różnego rodzaju uszkodzenia. Poliowirusy powodują na przykład paraliż — tłumaczy Howe. Mogą one uszkadzać rdzeń kręgowy oraz różne części mózgu odpowiedzialne za funkcje motoryczne. Działo się tak w przypadku wirusa mysiego, którym się zajmowaliśmy. Uszkadzał on ponadto obszary mózgu odpowiedzialne za pamięć. Naukowcy z Mayo Clinic zarażali myszy wirusem TMEV (Theiler’s murine encephalomyelitis virus), który przypomina ludzkiego poliowirusa. Zainfekowane gryzonie miały później kłopoty z poruszaniem się po labiryntach. Niektóre osobniki przejawiały tylko nieznaczne problemy, podczas gdy inne w ogóle nie umiały sobie poradzić z tego typu zadaniem. Po śmierci zbadano mózgi zwierząt i połączono stopień uszkodzenia hipokampa z obserwowanymi zaburzeniami uczenia i pamięci. Jeden z pikornawirusów szczególnie często powoduje uszkodzenia ośrodkowego układu nerwowego. Jest to popularny w Azji enterowirus 71. Wywołuje on zapalenie mózgu, które w wielu przypadkach prowadzi do śpiączki, a następnie śmierci. Nasze odkrycia wskazują, że zakażenie pikornawirusami powoduje zużycie rezerw poznawczych [angażuje zapasowe obszary mózgu — przyp. red.], zwiększając prawdopodobieństwo upośledzenia funkcjonowania intelektualnego w miarę starzenia się organizmu. Sądzimy, że łagodne postaci utraty pamięci i funkcji poznawczych o nieznanej etiologii mogą być w rzeczywistości wynikiem kumulujących się latami uszkodzeń hipokampa, pojawiających się wskutek nawracających zakażeń pikornawirusami. Wiadomo także, że inne wirusy, np. wirus HIV czy wirus opryszczki, zabijają komórki mózgu.
  14. Cebula jest tak pospolitym składnikiem wielu dań, że przestaliśmy zwracać na nią uwagę. Tymczasem naukowcy z Hokkaido Tokai University w Japonii odkryli, że u osób, które cierpią na związaną najczęściej z wiekiem utratę pamięci, jedzenie lekko podgotowanej cebuli poprawia zdolność przypominania sobie różnych faktów. Eksperci mają nadzieję, że odkrycie to przyda się podczas obmyślania metod leczenia chorób neurodegeneracyjnych, takich jak alzheimeryzm czy parkinsonizm. Japońscy lekarze zaobserwowali, że jeden z przeciwutleniaczy cebuli łączy się z toksycznymi substancjami odkładającymi się w mózgu i ułatwia ich wypłukiwanie z organizmu. Związek ten zawiera siarkę i wchodzi w skład wielu roślin z rodziny czosnkowatych, w tym samego czosnku. Jak zauważa Ian Marber, dziennikarz specjalizujący się w tematyce zdrowotnej, ekstrakt z cebuli wspomaga działanie hipokampa, czyli struktury mózgowej odpowiedzialnej zarówno za emocje, jak i pamięć. By cebula zachowała właściwości propamięciowe, musi być podgotowana lub podsmażona na wolnym ogniu, ale nie przegotowana. Eksperci doceniają badania Japończyków, uważają jednak, że wpływ wywierany przez cebulę jest raczej słaby. W wielu kulturach jada się to warzywo w różnych postaciach od tysiącleci, ale mimo wszystko ludzie chorują na alzheimeryzm i cierpią na demencję. Ostatnie badania francuskie wykazały, że flawonoidy zmniejszają związaną z wiekiem utratę pamięci, tymczasem cebula zawiera więcej kwercetyny niż herbata czy jabłka. Wielu archeologów, botaników i historyków kulinarnych uważa, że cebula pochodzi z centralnej Azji. Inne badania sugerują z kolei, że zaczęto ją uprawiać w Iranie i zachodnim Pakistanie. Wszyscy zgadzają się co do tego, że "udomowiono" ją ok. 5000 lat temu. Obecnie to 6. pod względem wielkości upraw roślina świata. Nie tylko poprawia pamięć, ale także pomaga w walce z przeziębieniem, chorobami serca, cukrzycą oraz osteoporozą. Poprawia krążenie, obniża ciśnienie krwi, a także zapobiega tworzeniu się skrzepów, zmniejszając lepkość krwi. Podnosi poziom dobrego cholesterolu HDL, pomaga w oczyszczaniu oskrzeli z wydzieliny i zabija bakterie. Aby ograniczyć łzawienie, warto przed krojeniem potrzymać ją przez 30 min w lodówce. Pozostawienie korzeni także ogranicza wydzielanie się wywołujących je gazów. Dr Hiroyuki Nishimura, rektor Hokkaido Tokai University, otrzymał w zeszłym roku honorową nagrodę japońskiego urzędu patentowego za badania w zakresie chemii żywności.
  15. Wirus HIV może powodować deficyty w zakresie uczenia się i pamięci, ponieważ przypuszcza atak ze zdwojoną siłą na neurony mózgu. Już wcześniej wiedziano, że białka gp120 z powierzchni wirusa zabijają dojrzałe komórki nerwowe, zaburzając zachodzące w nich procesy biochemiczne. Teraz jednak wykazano, iż blokując proliferację (namnażanie), nie dopuszczają do powstania w hipokampie zastępów nowych komórek, które mogłyby zastąpić te szwankujące. Warto przypomnieć, że hipokamp jest kluczowym dla uczenia się i pamięci rejonem mózgu. W normalnych okolicznościach młode neurony są integrowane z już istniejącymi obwodami. Uważa się, że odpowiadają za określone formy uczenia się i pamięci. Wyniki badań naukowców z Uniwersytetu Kalifornijskiego w San Diego ukazały się w specjalistycznym piśmie Cell Stem Cell. Eksperymenty prowadzono na myszach. To podwójne uderzenie na mózg. Białka wirusa HIV nie tylko uszkadzają neurony, ale również nie dopuszczają do ich naprawy – tłumaczy dr Marcus Kaul. Dzięki terapiom antyretrowirusowym udało się obniżyć liczebność wirusa w organizmie pacjentów. To z kolei zmniejszyło nasilenie demencji. Dolegliwość ta staje się jednak coraz powszechniejsza, ponieważ ludzie z HIV żyją dłużej. Pojawia się też dodatkowy problem: leki zwalczające wirusy mają trudności z dostaniem się do mózgu. Dr Kaul uważa, że tę postać otępienia można by leczyć, wspomagając samonaprawę mózgu albo zabezpieczając mechanizmy naprawcze.
  16. Ćwiczenia fizyczne stymulują wzrost nowych neuronów. To by wyjaśniało, dlaczego ruch pozwala wygrać z depresją. Zespół Astrid Bjornebekk z Karolinska Institute badał dwie grupy szczurów. Jedną zmodyfikowano genetycznie w taki sposób, by zwierzęta przejawiały zachowania depresyjne, druga była grupą kontrolną. Przez miesiąc (30 dni) jedne gryzonie miały wolny dostęp do kołowrotka, a inne nie. Aby zbadać wpływ możliwości biegania na szczury, posłużono się prostym testem. Zmierzono czas, przez jaki po umieszczeniu w wodzie zwierzęta biernie się unosiły w toni lub, dla odmiany, aktywnie pływały. Naukowcy wiedzą bowiem, że przygnębione szczury (podobnie jak chorujący na depresję ludzie) przez większość czasu nie poruszają się. Po 30 dniach biegania u zwierząt zaobserwowano efekt antydepresyjny – wyjaśnia Bjornebekk. Rozochocone szczury pływały o wiele dłużej niż zasmucone gryzonie. Naukowcy przebadali ponadto neurony w obrębie hipokampa, który odpowiada za pamięć i uczenie się. Okazało się, że komórki nerwowe rozrosły się. Wcześniejsze studia nad ludzkim hipokampem wykazały, iż u osób w depresji kurczy się on. Uznaje się to za przyczynę problemów powiązanych z tą chorobą (International Journal of Neuropsychopharmacology). Bieganie miało na szczury podobny wpływ, jak leczenie inhibitorami zwrotnego wychwytu serotoniny.
  17. Ćwiczenia fizyczne poprawiają nie tylko kondycję ciała, ale i mózgu. Dzieje się tak, ponieważ sprzyjają pojawianiu się nowych neuronów, czyli neurogenezie, w obszarze związanym z pamięcią i jej utratą. W badaniach na myszach wykazano, że młode komórki nerwowe pojawiały się w zakręcie zębatym hipokampa (fascia dentata). Jest to region, którego dotyczy zaczynająca się u większości ludzi po 30. roku życia związana z wiekiem utrata pamięci. Obrazowanie mózgu za pomocą rezonansu magnetycznego pomogło udokumentować procesy zachodzące w centralnym układzie nerwowym myszy. To samo urządzenie wykorzystano do skanowaniu ludzkiego mózgu przed i po gimnastyce. Zaobserwowano podobne zjawisko, co oznacza, że u naszego gatunku wysiłek fizyczny również sprzyja neurogenezie w obrębie zakrętu zębatego (Proceedings of the National Academy of Sciences). Żadne z wcześniejszych badań nie analizowało systematycznie różnych fragmentów hipokampa i nie zidentyfikowało regionu pozostającego pod największym wpływem aktywności ruchowej — opowiada dr Scott Small, neurolog z Centrum Medycznego Columbia University. Fred Gage z Salk Institute w La Jolla jako pierwszy wykazał, że ćwiczenia mogą doprowadzać do rozwoju nowych neuronów w mysim odpowiedniku zakrętu zębatego. Potem zespół naukowców wspólnie pracował nad metodą pomiaru przepływu krwi przez ludzki mózg, który śledzono za pomocą MRI. Odkąd u myszy odkryto opisane wyżej zjawisko, chcieliśmy określić, jak gimnastyka wpływa na objętość krwi przepływającej przez hipokamp u ludzi. Do eksperymentu zaangażowano 11 dorosłych. Przez 3 miesiące ćwiczyli oni intensywnie aerobik. Przed rozpoczęciem programu i po jego zakończeniu poddano ich badaniu rezonansem magnetycznym. Gimnastyka zwiększała dopływ krwi do zakrętu zębatego. W dodatku im więcej dana osoba ćwiczyła, tym większy skok przepływu odnotowywano. W dalszej kolejności naukowcy chcą sprawdzić, jaki schemat ćwiczeń najkorzystniej wpływa na funkcjonowanie poznawcze i najskuteczniej zapobiega naturalnemu pogorszeniu pamięci.
  18. Na dorocznym spotkaniu Amerykańskiego Stowarzyszenia Psychosomatycznego, które odbywa się w Budapeszcie, dr Sarah M. Conklin z Uniwersytetu w Pittsburghu przedstawiła wyniki badań swojego zespołu, wyjaśniając, dlaczego kwasy tłuszczowe omega-3 poprawiają nastrój. Zwiększają one objętość istoty szarej w obszarach mózgu zawiadujących emocjami i zachowaniem. Eksperymenty na zwierzętach wykazały, że zwiększenie dawek kwasów powodowało zmiany strukturalne w mózgu. Na zeszłorocznym mityngu Conklin opowiedziała o rezultatach innego studium. Jej zespół zaobserwował, że ludzie z niższym poziomem omega-3 we krwi byli bardziej impulsywni i negatywnie nastawieni do większości zagadnień. Pacjentów z wyższym stężeniem kwasów w krwioobiegu postrzegano natomiast jako zgodnych i rzadziej wspominających o objawach łagodnej czy średnio nasilonej depresji. A oto jak zaplanowano i przeprowadzono najnowsze badanie. Wzięło w nim udział 55 zdrowych dorosłych. Poproszono ich o określenie ilości przyjmowanych dziennie długołańcuchowych kwasów tłuszczowych typu omega-3 (chodziło o uśrednioną dawkę). Objętość istoty szarej oceniano za pomocą strukturalnego rezonansu magnetycznego w wysokiej rozdzielczości. Okazało się, że osoby dostarczające sobie najwięcej kwasów, miały więcej istoty szarej w obszarach mózgowia związanych z podnieceniem emocjonalnym i regulacją uczuć, a więc obustronnie w przedniej części kory zakrętu obręczy (anterior cingulate cortex, ACC), prawym ciele migdałowatym i prawym hipokampie.
  19. Eksperymenty na myszach wykazały, że osoby z zespołem Downa mogą poprawić funkcjonowanie pamięci, zażywając preparaty z wyciągiem z miłorzębu. Zespół Downa to najczęstsza przyczyna upośledzenia umysłowego. Nazywa się go inaczej trisomią 21. chromosomu. Oznacza to, że w każdej komórce ciała zamiast 46 znajduje się 47 chromosomów. Chore osoby cierpią m.in. na zaburzenia pamięci deklaratywnej, czyli dotyczącej faktów (dlatego czasem nazywa się ją właśnie p. faktów). Prawdopodobnie dzieje się tak dlatego, że komórki hipokampa są hamowane w zbyt dużym stopniu przez jeden z neuroprzekaźników: GABA (kwas γ-aminomasłowy). Craig Garner i zespół z Uniwersytetu Stanforda podawali myszom z zespołem Downa ekstrakt z miłorzębu (zawierający bilobalid) lub korazol. Obie substancje blokują działanie GABA. Gryzonie, które przez 17 dni piły korazol z mlekiem czekoladowym lub dostawały zastrzyki z miłorzębu, znacznie lepiej wypadały w testach pamięciowych, polegających np. na wskazaniu widzianego wcześniej obiektu z demonstrowanej aktualnie pary. Polepszone funkcjonowanie obserwowano jeszcze przez 3 miesiące od zakończenia suplementacji, co oznacza, że powoduje ona jakieś długoterminowe zmiany w mózgu. Z biegiem czasu uczysz mózg tłumienia nadmiernego hamowania w obrębie hipokampa — tłumaczy Garner.
  20. Inteligencja w starszym wieku zależy od "świeżych dostaw" nowych neuronów. Tak przynajmniej podpowiadają badania na myszach. Kiedy dorosłe gryzonie uczyły się rozwiązywania jakichś zadań, nowo powstałe komórki nerwowe były niemal trzykrotnie bardziej aktywne od starszych neuronów. Odkrycie potwierdza inne podobne doniesienia, że dorosły mózg potrzebuje napływu młodych komórek, aby podtrzymywać stały poziom funkcjonowania. Zespół Paula Franklanda ze Szpitala dla Chorych Dzieci w Toronto wstrzykiwał myszom związek chemiczny, który barwił tylko powstałe później neurony. Po upływie tygodnia myszy 1) uczono nowej umiejętności poruszania się po labiryncie, 2) a potem badano komórki hipokampa, czyli regionu mózgu odpowiedzialnego za pamięć i uczenie. Wydłużano czas, który upływał między tymi dwoma etapami a zastrzykiem. Zabarwione neurony hipokampa badano pod kątem obecności określonych białek. Musiały się one uformować, jeśli komórka była rzeczywiście aktywna i powstały niezbędne dla procesu uczenia się nowe połączenia. Naukowcy zauważyli, że zabarwione neurony były bardziej aktywne, kiedy uczenie się przebiegało krótko po zastrzyku, a więc tuż po narodzinach komórek. U myszy uczących się labiryntu w 6 tyg. od iniekcji odnotowano 3-krotnie wyższą aktywność niż u gryzoni szkolonych w 8 tyg. od zastrzyku, u których neurony były już w pełni dojrzałe. Komórki młodsze niż 6-tygodniowe również były mniej aktywne. Według Franklanda, oznacza to, że neurony w tym wieku są przez mózg oddelegowywane do tworzenia obwodów ugruntowujących nowe wspomnienia (Nature Neuroscience).
  21. Nie od dzisiaj wiadomo, że podczas snu utrwalamy sobie wspomnienia nabyte w ciągu dnia. Amerykańscy uczeni postanowili sprawdzić, czy podobnie dzieje się w przypadku innych ssaków. W 2001 roku Matthew A. Wilson i Daoyun Ji z należącego do MIT Picower Institute for Learning and Memory prowadzili badania, które wykazały podwyższoną aktywność hipokampu u śpiących szczurów. Hipokamp odpowiada właśnie za pamięć. Obecnie ci sami uczeni postanowili sprawdzić, czy szczury śnią. Naukowcy podłączyli do mózgu szczurów elektrody i zaczęli rejestrować wyniki. Okazało się, że w czasie snu aktywizuje się nie tylko hipokamp, ale i kora wzrokowa. Co więcej, porównanie aktywności poszczególnych neuronów u szczurów, które przemierzały labirynt, a później spały, wykazało, że we śnie dochodzi do aktywizacji dokładnie tych samych neuronów. Uczeni wysnuli z tego wniosek, że zwierzęta nie tylko utrwalały sobie zdobytą w labiryncie wiedzę, ale śniło im się, że po nim wędrują.
  22. Komórki nerwowe powstają w mózgu przez całe życiei to właśnie te neurony mogą odpowiadać za uczenie się nowychinformacji. Wiele z nich, niestety, obumiera jeszcze przed połączeniemsię z innymi dojrzałymi komórkami w sieć przesyłającą sygnały. Okazujesię, że obecność bądź nieobecność nowych informacji (reprezentowanaprzez neuroprzekaźnik glutaminian) może determinować przeżycie młodychneuronów. Fred Gage z Salk Institute for Biological Studies i jego współpracownicy podejrzewali, że brak sygnałów w mózgu ma znaczny wpływ na los młodych neuronów. Podobnie jak nowe dziecko w szkole, nowo powstały neuron musi w ciągu 3 tygodni nawiązywać kontakty (tworzyć synapsy) albo nie przeżyje. Aby przetestować swoją teorię, naukowcy stworzyli wirusy potrafiące blokować receptory glutaminianu — związku odpowiadającego za przekazywanie sygnału między neuronami. Po wstrzyknięciu do organizmu myszy wirus skutecznie "odciął" receptory NMDA w nowych komórkach nerwowych (dodatkowo zabarwiono je fluorescencyjnym barwnikiem, by łatwiej było śledzić ich losy). Przy braku impulsów z okolicznych komórek nie były one w stanie przeżyć dłużej niż kilka tygodni. Receptory NMDA modulują tworzenie się synapsy i determinują rodzaj podłączenia "wejścia" neuronów, a więc typ otrzymywanych informacji [...] — wyjaśnia Gage. Jak wynika z opublikowanych wczoraj (13 sierpnia) w Internecie wyników badań (Nature), życie w hipokampie to prawdziwa walka o przetrwanie. Wydarzenia, w których pośredniczą receptory NMDA, to współzawodnictwo dojrzałych neuronów między sobą i młodych z innymi nowo powstałymi oraz starszymi towarzyszami. Jeśli jesteś neuronem, jesteś wybierany do zespołu komórek najlepiej działających w danym środowisku. Wcześniejsze badania wykazały, że nowe neurony myszy rozwijały się dobrze, gdy poddawano je działaniu różnych bodźców. Do tego trzeba dołączyć odkrycie, że uczenie się polega na rearanżowaniu sieci neuronalnej przez nowo powstałe neurony.
×
×
  • Dodaj nową pozycję...