Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'drgania' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 10 wyników

  1. Jak wrócić do domu, gdy się jest małą mrówką i mieszka na pustyni? Można korzystać z polaryzacji światła słonecznego, liczenia kroków czy dwutlenku węgla wydychanego przez owady w gnieździe. Okazuje się też, że w wyjątkowych sytuacjach udaje się skorzystać ze wskazówek magnetycznych i wibracyjnych. Naukowcy z Instytutu Ekologii Chemicznej Maxa Plancka w Jenie przeprowadzili eksperymenty na mrówkach z rodzaju Cataglyphis w ich naturalnym środowisku w Tunezji i Turcji. Wyniki studium ukazały się w pismach PLoS ONE i Current Biology. Niemcy sprawdzali, czy przy braku wskazówek innego rodzaju mrówki posłużą się magnetyzmem i drganiami. Jak ujawnia doktorantka Cornelia Buehlmann, dokładnie tak było. Wytrenowane C. noda bez problemu wskazywały swoje gniazdo, kiedy przed wejściem do niego zamontowano zasilane bateriami urządzenie wibracyjne. By wykluczyć elektromagnetyczny wpływ urządzenia, umieszczono je też w taki sposób, że nie miało kontaktu z gruntem. Wtedy wytrenowane mrówki zachowywały się tak samo jak ich towarzyszki z grupy kontrolnej - poruszały się bez celu. Jeśli nad gruntem w pobliżu wejścia do gniazda umieszczono dwa silne magnesy neodymowe, które wytwarzały pole o natężeniu ok. 21 militesli (pole magnetyczne Ziemi wynosi, dla porównania, 0,041 militesli), mrówki znowu bez problemu trafiały do domu. Nie wiadomo, który ze zmysłów mrówki wykorzystują, orientując się na podstawie sztucznego pola magnetycznego wokół gniazda. To nie oznacza, że mrówki mają narząd czuciowy do wykrywania pól magnetycznych. Ich zachowanie może również być wynikiem zmienionych wzorców komunikacji elektrycznej między neuronami, które owady zapamiętują. Co ciekawe, reakcja pojawia się, choć w naturze C. noda nie spotkają się raczej ani z drganiami, ani z silnymi magnesami. Jak widać, przystosowując się do nieprzyjaznych życiu środowisk, mrówki mogą polegać na wszystkich zmysłach. Zamieszkujące tunezyjskie pustynie solne mrówki Cataglyphis fortis polegają na zapachu gniazda. Podczas eksperymentów poruszały się pod wiatr (czyli jakby wzdłuż "śladu" dwutlenku węgla z gniazda), jeśli stężenie CO2 nie było zbyt wysokie i odpowiadało poziomowi występującemu zwykle wokół norki. Jak jednak rozpoznać własne gniazdo, skoro bez względu na kolonię owady wydzielają taki sam gaz? Niemcy wyjaśniają, że mrówki polegają głównie na integracji trasy - polaryzacji światła i liczeniu kroków. Gdy mrówki przeniesiono w pobliże gniazda po tym, jak udały się do źródła pokarmu, unikały podążania za wyziewami z własnej norki, bo nie pasowała im liczba kroków.
  2. Ćmy rolnice tasiemki (Noctua pronuba) są tak wyczulone na ultradźwięki polujących nietoperzy, że neurony w ich uchu reagują na ruch błony bębenkowej odpowiadający wielkości atomu. Biolodzy z Uniwersytetu w Bristolu tłumaczą, że gdyby błonę bębenkową przeskalować, by miała grubość ściany z cegieł, owad byłby w stanie wykryć przemieszczenie ścianki na grubość włosa. Brytyjczycy tłumaczą, że u motyli występuje narząd tympanalny, który stanowi rodzaj rezonatora pokrytego cienką błoną bębenkową. Znajdują się na niej skolopofory, zbudowane z trzech komórek - jednej nerwowej i dwóch okrywających. Podobnie jak w naszym uchu wewnętrznym, drgania są przekształcane w impulsy elektryczne. Wibracje można opisać za pomocą częstotliwości (jak szybko błona się porusza) oraz natężenia (jak bardzo się przemieszcza). Dotąd nie wiedziano jednak, które z właściwości dźwięku są przekładane na sygnał nerwowy. Zespół dr Hannah ter Hofstede spróbował więc jednocześnie monitorować aktywność neuronów ćmy i drgania błony bębenkowej w czasie podawania dźwięków o różnych częstotliwościach i natężeniu. Brytyjczycy zauważyli, że do pobudzenia komórek nerwowych wystarczyło przemieszczenie błony rzędu 140 pikometrów, co odpowiada wielkości niektórych atomów. Gdyby neurony po prostu wykrywały dźwięki, to drobne przesunięcie byłoby takie samo dla wszystkich częstotliwości, różniłaby się tylko prędkość wibracji. [W świetle uzyskanych wyników wygląda jednak na to], że neurony słuchowe są aktywowane przez niewielkie przemieszczenia błony bębenkowej, a nie częstotliwość jej drgań - tłumaczy dr Holger Goerlitz. Pewnym wyjątkiem są niskie dźwięki o częstotliwości poniżej 15 kHz, w przypadku których do pobudzenia neuronów dochodziło przy większych przemieszczeniach błony bębenkowej. Ćmy są głuche na niskie, nieszkodliwe dźwięki z tła [muszą być naprawdę głośne, by je odnotowały], co umożliwia im dokładniejsze dostrojenie do ważniejszych odgłosów: ultradźwięków wydawanych przez polujące na nie drapieżniki - podsumowuje dr Hannah ter Hofstede.
  3. Muszki owocowe (Drosophila melanogaster) potrafią odróżnić dwa izotopy wodoru: prot ("zwykły" wodór) i deuter (D). Odkrycie to dużo wnosi do rozumienia działania powonienia. Wiele wskazuje bowiem na to, że dla rozpoznania zapachu istotniejsza jest częstotliwość drgań wiązań niż kształt cząsteczki. Dr Efthimios Skoulakis z Centrum Badań Biomedycznych Aleksandra Fleminga w Grecji prezentował owadom acetofenon (C8H8O), organiczny związek chemiczny o intensywnym zapachu kojarzącym się z zasuszonymi różami. Do eksperymentów zespół wykorzystywał labirynt o kształcie litery T. W jednej odnodze znajdowała się cząsteczka ze zwykłym wodorem, a w drugiej z wodorem zastąpionym deuterem. Muszki mogły wybierać, gdzie się skierują. D. melanogaster znane są ze swego doskonałego węchu. Zademonstrowały go także i w tym przypadku. Zdecydowanie wolały cząsteczki acetofenonu z większą liczbą atomów protu. Awersja do cząsteczki wysyconej deuterem rosła z liczbą atomów podstawionych D. Gdy do tego samego labiryntu wprowadzono owady pozbawione węchu przez modyfikacje genetyczne, nie uwidaczniały się żadne preferencje. Grecko-amerykański zespół dodatkowo potwierdził, że muszki owocowe odróżniają cząsteczki z protem i deuterem. Owady uczono unikania poszczególnych wersji acetofenonu, stosując delikatne rażenie prądem (naukowcy uciekli się więc do warunkowania). Skoulakis podkreśla, że uzyskane wyniki wydają się potwierdzać teorię węchu zaproponowaną w 1996 r. przez współautora opisywanego studium doktora Lukę Turina z MIT-u. Postulował on, że substancje zapachowe są wykrywane dzięki drganiom, a nie unikatowemu kształtowi cząsteczek. W jądrze deuteru znajdują się proton i neutron, a w jądrze protu tylko proton. Waga atomu D jest więc ok. 2-krotnie większa, co sprawia, że wiązania między nim a innymi atomami w cząsteczce drgają wolniej. Teoria Turina jest inna od teorii cząsteczki pasującej do kształtu białka receptorowego jak klucz do zamka. Jej autor sądzi, że cząsteczka odorantu pokona błonę receptora tylko wtedy, gdy jej wiązania będą drgać ze ściśle określoną częstotliwością. Acetofenon z protem drga inaczej od acetofenonu z deuterem, cząsteczki pachną więc inaczej, mimo że mają identyczny kształt. Na kolejnym etapie badań ekipa uciekła się do nitryli, gdzie częstotliwość drgań jest podobna do odnotowywanej w obrębie wiązań deuter-węgiel. Okazało się, że także i one nie przypadły muszkom do gustu i kręciły na nie nosem. Dr Turin ujawnia, że istnieją niepublikowane dane, że psy mogą mieć podobne zdolności co owocówki i ignorują zapachy, które nauczono je wykrywać, jeśli prot zamieniono na deuter.
  4. Mimo iż receptory odpowedzialne za odczuwanie drobnych wibracji są znane od lat, dokładny mechanizm ich działania pozostawał przez wiele lat niejasny. Ich zagadkę rozwiązali dopero naukowcy z Centrum Medycyny Molekularnej im. Maxa Delbrücka (MDC): dr Jing Hu oraz prof. Gary Lewin. Jak donoszą na łamach czasopisma EMBO Journal, aktywność badanego przez nich receptora jest ściśle zależna od krótkiego białkowego łącznika pomiędzy samym receptorem oraz otaczającą go macierzą pozakomórkową. Receptor analizowany przez dr. Hu i prof. Lewina należy do tzw. mechanoreceptorów związanych z kanałami jonowymi, co oznacza, że ich aktywacja przez bodźce mechaniczne prowadzi do uwolnienia jonów określonych pierwiastków w reakcji (w tym przypadku są nimi właśnie drobne wibracje wierzchnich warstw skóry). Żadne z prowadzonych dotychczas badań nie potrafiły jednak wyjaśnić, dlaczego receptor ten nie jest w stanie działać sam, co sugerowało, że jego aktywność jest zależna od innego, nieznanego wówczas czynnika. Tajemniczego towarzysza udało się odkryć dopiero teraz. Dr Hu oraz prof. Lewin zidentyfikowali niewielkie białko, którego cząsteczki są z jednej strony umocowane w ścianie kanału jonowego, z drugiej zaś - zakotwiczone w macierzy pozakomórkowej (kompleksie złożonym m.in. z pochodnych białek i wielkocząsteczkowych węglowodanów wypełniającym przestrzeń pomiędzy komórkami). Jak wykazały testy in vitro zarówno na fragmentach mysiej skóry, jak i na hodowlach neuronów, aktywność receptora wibracji ustaje całkowicie po zniszczeniu cząsteczek odkrytego białka za pomocą odpowiednio dobranego enzymu. Zdolność do wykrywania drgań powraca dopiero po 12 godzinach, które są potrzebne na wytworzenie nowych cząsteczek badanej proteiny. Wiele wskazuje na to, że obniżenie produkcji lub trwałości odkrytego białka może prowadzić m.in. do upośledzenia dotyku występującego u osób starszych. Przeprowadzone badania mogą także pomóc osobom cierpiącym na różnego rodzaju zaburzenia objawiające się nadmierną wrażliwością nawet na delikatny kontakt ciał obcych z ich skórą.
  5. Pacjenci z astmą stosują przeważnie inhalatory ciśnieniowe z dozownikiem, ale często wytwarzają one duże krople leku, które pozostają w górnych drogach oddechowych, nie docierając do miejsca przeznaczenia. Dlatego też Australijczycy z Monash University w Clayton skonstruowali urządzenie wyglądające jak zegarek, wykorzystujące mechanizm przypominający małe trzęsienie ziemi (Lab on a Chip). Leslie Yeo wyjaśnia, że starsi lub poważniej chorzy pacjenci mogą korzystać z tzw. nebulizerów. Dzięki nim do płuc dociera więcej leku. Bazują one na wprowadzaniu strumienia skompresowanego powietrza do próbki roztworu. Wytwarza się wtedy aerozol. Nowsze modele tego typu urządzeń wyposażono nawet w drgającą płytkę, która przepuszcza preparat przez rodzaj siatki, generując krople tej samej wielkości. Stosowane dotąd nebulizery są jednak duże i nieporęczne, a oczka siatki szybko się zapychają. Z tego powodu Yeo i zespół skonstruowali nowe urządzenie. Wytwarza ono tak drobne krople, że aż 70% dawki leku przechodzi przez układ oddechowy, sięgając płuc. To bardzo dużo, zważywszy, że nebulizery zapewniały zaledwie 30-proc. skuteczność. W wynalazku Australijczyków na płytce z niobanu litu (LiNbO3) umieszczono aluminiowo-chromowe paski (palce) o szerokości kilkudziesięciu mikrometrów. Wafel jest piezoelektrykiem, co oznacza, że przetwarza mechaniczny ruch na napięcie elektryczne i na odwrót. Gdy przez palce przepuszcza się oscylacyjny sygnał elektryczny, płytka drga i wytwarza się fala powierzchniowa. Przypomina to sposób, w jaki podczas trzęsienia ziemi drgania przemieszczają się przez skorupę naszej planety. Ekipa Yeo umieściła na powierzchni drgającej płytki niewielką ilość leku. Dostrojono natężenie sygnału elektrycznego (a więc trzęsienia), by powstawały krople określonych rozmiarów. Udało się uzyskać krople o przekroju mniejszym od 5 mikrometrów i stanowiły one aż 90% mgiełki. Testy urządzenia przeprowadzano na szklanym modelu ludzkich dróg oddechowych. Wkrótce rozpoczną się badania z udziałem owiec. W przyszłości tego typu aplikator mógłby być stosowany także do dostarczania szczepionek czy antybiotyków.
  6. Jak przekazać komuś na odległość, że chce się z nim spędzić resztę życia, gdy nie ma się do dyspozycji poczty ani dostępu do Internetu? Słonie afrykańskie wykorzystują w tym celu... "pozytywne wibracje". Mówiąc ściślej, wytwarzają drgania gruntu, które mogą przebyć kilka kilometrów i dotrzeć do odległego adresata. U ludzi sprawa wydaje się prosta: sygnałem o gotowości do zbliżenia są czułe słowa lub dotyk. Z pewnością jest to przyjemne, lecz u słoni nie znalazłoby zastosowania ze względu na stosunkowo niskie zagęszczenie osobników. Zamiast tego, wytwarzają one drgania gruntu, które mogą być odebrane nawet z odległości kilku kilometrów. Za ich odbiór odpowiadają dwa układy: jeden zlokalizowany w stopach i drugi, znajdujący się w uchu środkowym. Niezwykły system działa dzięki zestrojeniu kości zwierzęcia z drganiami gruntu wywołanymi przez "miłosne wibracje". W tym przypadku sygnał jest odbierany przez podeszwę stopy, a następnie przekazywany za pośrednictwem kości aż do ucha środkowego. Druga, niezależna metoda detekcji drgań jest oparta na wyjątkowo wysokiej czułości stóp słoni. Dzięki wyspecjalizowanym komórkom, ogromne ssaki są w stanie wykryć najdrobniejsze ruchy podłoża. Jeśli mają one odpowiednią częstotliwość, są traktowane jako sygnał gotowości do rozrodu. Sam fakt celowego wytwarzania i odbierania drgań ziemi został odkryty wiele lat temu, lecz dopiero teraz udało się zidentyfikować precyzyjnie struktury anatomiczne odpowiedzialne za to niezwykłe zachowanie. Nigdy dotąd nie udało się także wyjaśnić niektórych zachowań słoni. Ustawiają się w taki sposób, który najbardziej odpowiada przewodzeniu [dźwięku] przez kości, nie zaś mechanizmowi somatosensorycznemu [czyli bezpośredniemu odbiorowi wibracji przez stopy - przyp. red.] - tłumaczy dr Caitlin O'Connell-Rodwell z Uniwersytetu Stanforda, autorka odkrycia. Swoje wnioski badaczka opiera na badaniach prowadzonych w Namibii. Wykorzystywała w nich głośniki, które wytwarzały jednocześnie dźwięki i drgania sejsmiczne, które nagrano uprzednio podczas obserwacji samic słoni afrykańskich w okresie rui. Zwabione samce ustawiały się zawsze prostopadle do kierunku rozchodzenia się dźwięków. To nie przypadek - ustawienie obojga uszu równolegie do kierunku propagacji fali pozwala na dokładniejsze określenie miejsca jej emisji. W przypadku metody somatosensorycznej idealna byłaby pozycja równoległa do kierunku rozchodzenia się fali, gdyż odległość między przednimi i tylnymi łapami jest wówczas większa, niż pomiędzy prawą i lewą stroną ciała zwierzęcia. Im dalej zaś są położone od siebie dwa "odbiorniki", tym dokładniej można ustalić położenie źródła sygnału. Wydawać by się mogło, że to dość skomplikowany mechanizm, lecz... na tym nie koniec. Po wstępnym namierzeniu samicy, samiec przyciska do ziemi także swój tułów. W ten sposób może odebrać wibracje z jeszcze większą czułością, co zwiększa prawdopodobieństwo na wykonanie poprawnego "pomiaru". Dalsze badania dr O'Connell-Rodwell wykazały, że reakcja samca na charakterystyczne wibracje zależała od poziomu hormonów płciowych. Zwierzęta, które wyraźnie szykowały się do rozrodu, natychmiast ustawiały się w sposób optymalny dla odbioru sygnałów. Pozostałe zwyczajnie ignorowały je i odchodziły od wodopoju. A co z samicami? One także odbierają sygnały wysyłane przez osobniki męskie, a do tego wszystko wskazuje na to, że to one inicjują kontakt. Do odbioru sygnałów znacznie rzadziej wykorzystują jednak własny tułów - zamiast tego korzystają wyłącznie z mechanizmu somatosensorycznego oraz detekcji drgań przewodzonych przez kości. Trzeba przyznać, że szukanie partnera na odległość wymaga nie lada odwagi... przecież tyle razy ostrzegano nas, że nigdy nie wiadomo, kto jest po drugiej stronie ;-)
  7. Naukowcy z Izraelskiego Instytutu Technologii - Techion, opracowali nowatorską metodę pozyskiwania energii. Proponują oni umieszczenie pod ulicami sieci piezoelektrycznych kryształów, które zamieniałyby drgania drogi w energię elektryczną. Zdaniem Haima Abramovicha z 1 kilometra czteropasmowej autostrady można by w ten sposób uzyskać 400 kilowatów energii. Powołano już do życia firmę Innowattech, która w styczniu zainstaluje kryształy w 100-metrowym odcinku jednej z nowo budowanych izraelskich ulic. Z udostępnionej na stronach Innowattech prezentacji wynika, że ich system może znaleźć zastosowanie wszędzie tam, gdzie poruszają się pojazdy. A więc nie tylko na ulicach, ale również na pasach startowych lotnisk czy liniach kolejowych. Na potrzeby swojego wynalazku naukowcy z Innowattecha opracowali nowy typ generatorów piezoelektrycznych, które pozyskują energię ze zmiany nacisku, wibracji, ruchu i zmian temperatury.
  8. Wiatr, słońce, pływy morskie – to tylko niektóre z dostępnych człowiekowi tzw. odnawialnych źródeł energii. Do grupy tej może dołączyć między innymi... energia deszczu. Francuscy naukowcy opracowali bowiem sposób na wytwarzanie energii elektrycznej z drgań wywoływanych przez padające krople. Niestety, jak twierdzi kierujący pracami Romain Guigon, energia ta jest nieporównywalnie mniejsza od tej pozyskiwanej z wymienionych na początku źródeł. Wspomniany generator bazuje na tworzywie PVDF (polifluorku winylidenu), które odznacza się właściwościami piezoelektrycznymi. Membrana z tego tworzywa, mierząca 25 nanometrów grubości, wpada wibracje, jeśli padają na nią krople wody (w eksperymentach mierzyły one od 1 do 5 mm). Znajdujące się w membranie elektrody zbierają ładunki elektryczne wytwarzane przez wibracje. Podczas najsilniejszych opadów uzyskano w ten sposób moc rzędu 12 miliwatów, natomiast minimalny poziom energii dostarczanej w sposób ciągły wynosił 1 mikrowat. Obliczenia wykazały, że wytwarzanego w ten sposób prądu może starczyć co najwyżej dla niewielkich, energooszczędnych urządzeń, takich jak bezprzewodowe czujniki służące do monitorowania stanu środowiska. Choć to niewiele, "deszczowy" generator ma swoje zalety: można go stosować tam, gdzie zawodzą ogniwa słoneczne, a w połączeniu z innymi źródłami "czystej" energii gwarantuje dość prądu, by wspomniane czujniki mogły ciągle pracować. Wspomnianą technologię można stosować nie tylko w plenerze – równie odpowiednie dla niej warunki panują np. w dużych systemach klimatyzacyjnych, gdzie para wodna skrapla się, wywołując niewielki sztuczny deszcz.
  9. Potrząsanie myszą zapobiega przybieraniu na wadze. W ramach, delikatnie mówiąc, nietypowych eksperymentów naukowcy z Uniwersytetu Stanowego Nowego Jorku na krótki czas umieszczali zwierzęta na wibrującej platformie. Zabieg ten ograniczał ponoć rozwój komórek tłuszczowych aż o 20%. Studium trwało 4 miesiące. Wielu ekspertów odnosi się sceptycznie zarówno do planu badań, jak i wyciągniętych na tej podstawie wniosków. Dlatego chcieliby się dowiedzieć, czy udałoby się je powtórzyć. Wcześniejsze eksperymenty Clintona Rubina wykazały, że u zwierząt umieszczanych na drgającej płytce dochodzi do wzmocnienia kośćca. Wg Rubina, wibracje doprowadzają w jakiś sposób do tego, że komórki macierzyste szpiku przekształcają się w komórki kostne. W artykule opublikowanym pod koniec zeszłego roku w Journal of Clinical Investigation Amerykanin dywagował, że te same komórki mogą też mieć zdolność przeobrażania się w komórki tłuszczowe. Wyciągnął z tego prosty wniosek, że potrząsanie myszą zapobiegnie zwiększaniu się masy ciała, wpływając za to korzystnie na kondycję kości. Aby przetestować tę hipotezę, zespół Rubina napromieniował zwierzęta, eliminując w ten sposób ich własne komórki szpikowe. Następnie przeprowadzono zabieg przeszczepu od myszy wytwarzającej wewnątrz komórek (także szpiku) fluoryzujące na zielono białka. Potem przez 6 tygodni połowę zoperowanych gryzoni codziennie na 15 minut stawiano na drgającej 90 razy na sekundę płytce (przyspieszenie wynosiło 0,2 G). U osobników tych w tkance tłuszczowej występowało mniej jarzących się na zielono komórek. W drugiej części eksperymentu myszy wytrząsano nie przez 6, lecz przez 15 tygodni. Po upływie tego czasu skany wykazały, że na ich tułowiu występuje o 27% mniej tłuszczu niż w grupie kontrolnej. Amato Garcia z Uniwersytetu Stanforda podkreśla, że takie oddziaływanie na komórki jest możliwe, ponieważ są one wyposażone w różnego rodzaju receptory, które mogą także reagować na zmiany ciśnienia powstające podczas drgań. Inni zgłaszają wątpliwości. Przypominają, że nie kontrolowano m.in. ilości pożywienia konsumowanego przez obie grupy myszy. Bruce Spiegelman twierdzi ponadto, że fluoryzujące komórki w tkance tłuszczowej wcale nie musiały być zróżnicowanymi komórkami macierzystymi szpiku, ale komórkami układu odpornościowego. Powstają one w szpiku, a następnie dość często przebywają właśnie w tkance tłuszczowej. Rubin przyznaje, że nie ma pojęcia, czy eksperymentalna terapia sprawdziłaby się również w przypadku ludzi. Poza tym, wg niego, wibracje wpływają na tempo formowania się nowych komórek tłuszczowych, a nie na przemianę materii.
  10. Dysponując niewielką zaawansowaną technicznie wagą, badacze mogą teraz zważyć żywe bakterie i komórki układu odpornościowego. Tradycyjna metoda oceny wagi polega na umieszczeniu cząsteczki w warunkach próżniowych na silikonowej płytce. Płytka drga z naturalną dla siebie częstotliwością. Zmienia się ona nieznacznie pod wpływem ciężaru cząsteczki. Oceniając wielkość zmiany, oblicza się masę molekuły. Rzecz jasna żywe komórki nie mogą przetrwać w próżni i muszą być zanurzone w płynie. Może on wpływać na wyniki pomiaru, gdy płytka również się w nim zanurzy. Grupa naukowców z MIT rozwiązała ten problem, wprowadzając ciecz z komórkami za pośrednictwem mikrokanału wydrążonego w samej szalce. Waga podaje odczyty z dokładnością do femtograma (1 fg, czyli 10-18 kg), co odpowiada masie jednej bakterii E. coli! Naukowcy twierdzą, że tania miniwaga pomoże np. w zliczeniu komórek CD4 u pacjentów zakażonych wirusem HIV, a to z kolei pozwoli ocenić postępy choroby.
×
×
  • Dodaj nową pozycję...