Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'czarna dziura' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 40 wyników

  1. Wbrew obecnie panującym poglądom, mówiącym, że z czarnej dziury nic nie może uciec, profesor Samuel Braunstein i doktor Manas Patra z brytyjskiego University of York twierdzą, iż informacja może wydostać się z czarnej dziury. Jeśli uzyskane przez nich wyniki są prawidłowe, może to mieć bardzo daleko idące konsekwencje. Może to bowiem oznaczać, że grawitacja nie jest fundamentalną siłą natury. Do uzyskania naszych wyników nie potrzebowaliśmy szczegółowych danych dotyczących geometrii zakrzywienia przestrzeni przez czarną dziurę. To wspiera niedawno zaprezentowaną teorię, że czas, przestrzeń i sama grawitacja są właściwościami czegoś innego, głębszego, leżącego u ich źródeł. W naszej pracy lekko zmodyfikowaliśmy tę propozycję uznając, że teoria o kwantowej informacji jest prawdopodobnym źródłem teorii grawitacji - mówi Braunstein. Obaj naukowcy wykorzystali mechanikę kwantową, jednak wielu uczonych wątpi, czy bez odwoływania się do grawitacji można wyjaśnić parowanie czarnych dziur. Nie możemy jednoznacznie stwierdzić, że udowodniliśmy możliwość ucieczki z czarnej dziury. Jednak taka jest najbardziej prawdopodobna interpretacja uzyskanych przez nas wyników, a te wskazują, że teoria o kwantowej informacji będzie odgrywała kluczową rolę w przyszłej teorii czarnych dziur, łączącej mechanikę kwantową z grawitacją - dodaje Patra. Szczegółowy opis rozważań obu naukowców został opublikowany w artykule pt. „Black hole evaporation rates without spacetime" w najnowszym numerze Physical Review Letters.
  2. Dwie grupy astronomów, obie pracujące pod kierunkiem uczonych z California Institute of Technology (Caltech) zaobserwowały największy znany nam rezerwuar wody we wszechświecie. W okolicach kwazaru, znajdującego się 12 miliardów lat świetlnych od Ziemi, zauważono parę wodną, której jest co najmniej 140 bilionów razy więcej niż wody na Ziemi. Wagę wody ocenia się na 100 000 razy większą od wagi Słońca. Środowisko wokół kwazaru jest wyjątkowe ze względu na olbrzymią masę wody. To kolejny dowód, że woda jest wszędzie i występowała we wczesnych etapach istnienia wszechświata - mówi pracujący obecnie na Caltechu Matt Bradford z NASA, szef jednego ze wspomnianych międzynarodowych zespołów naukowych. Na czele drugiej grupy stał Dariusz Lis, zastępca dyrektora Caltech Submilimeter Observatory. Wspomniany kwazar to obiekt oznaczony jako APM 08279+5255. Kwazarowi towarzyszy gigantyczna czarna dziura o masie przekraczającej 20 miliardów mas Słońca. Bradford mówi, że samo odkrycie wody nie jest zaskoczeniem, jednak niezwykła jest jej ilość. Wspomniana para wodna znajduje się wokół czarnej dziury, tworząc gazową chmurę o średnicy setek lat świetlnych. Chmura jest niezwykle gęsta i gorąca. Oczywiście jak na warunki kosmiczne. Jest ona co prawda 300 bilionów razy rzadsza od atmosfery Ziemi, jednak wciąż jest 10-100 razy bardziej gęsta niż gaz w typowej galaktyce. Jest też 5-krotnie cieplejsza. Szczegółowa analiza pary ujawniła, że znajduje się w niej np. węgiel. Specjaliści szacują, że materiału w okolicach czarnej dziury jest tak dużo, że może ona powiększyć się nawet sześciokrotnie.
  3. Według współczesnych teorii wszechświat narodził się wskutek Wielkiego Wybuchu, który miał miejsce 13,7 miliarda lat temu. Najnowsze odkrycie pozwala nam zobaczyć, co działo się przed Wielkim Wybuchem. Jego autorami są fizyk z Oxford University Roger Penrose oraz Vahe Gurzadyan z Erewańskiego Instytutu Fizyki. W mikrofalowym promieniowaniu tła (CMB) znaleźli oni ślady zdarzeń, które miały miejsce przed Wielkim Wybuchem. Mikrofalowe promieniowanie tła występuje w całym kosmosie. W latach 90. ubiegłego wieku odkryto, iż temperatura CMB charakteryzuje się anizotropią. To potwierdzałoby teorię Wielkiego Wybuchu, a zmiany w temperaturze CMB miały być zupełnie losowe, gdyż - jak się uważa - Wybuch spowodował, że promieniowanie jest niemal jednorodne. Penrose i Gurzadyan odkryli jednak w CMB koncentryczne kręgi, w których różnice temperatur są znacznie mniejsze niż oczekiwane. To z kolei oznacza, że anizotropia mikrofalowego promieniowania tła nie jest całkowicie przypadkowa. Obaj naukowcy sądzą, że kręgi te to wynik zderzeń supermasywnych czarnych dziur. W wyniku takich kolizji miałyby być gwałtowanie uwalniane olbrzymie ilości energii. Te rozbłyski energii były izotropiczne. I tutaj dochodzimy do najciekawszej części odkrycia. Otóż z wyliczeń obu naukowców wynika, że część z izotropicznych kręgów pochodzi sprzed Wielkiego Wybuchu. Uczeni zaznaczają, iż nie oznacza to, że Wybuch nie miał miejsca. Ich zdaniem odkrycie takie sugeruje, że żyjemy w cyklicznie zmieniającym się wszechświecie, w którym co jakiś czas dochodzi do Wielkiego Wybuchu. Kolizje czarnych dziur, o których była mowa powyżej, miały zaś miejsce pod koniec życia poprzedniego wszechświata.
  4. NASA odkryła najmłodszą czarną dziurę w naszym sąsiedztwie. Widzimy ją w momencie, gdy miała zaledwie 30 lat i daje niepowtarzalną okazję do obserwowania rozwoju czarnej dziury od samych jej poczatków. Czarna dziura jest to pozostałość po SN 1979C, supernowej znajdującej się w galaktyce M100, położonej w odległości około 50 milionów lat od Ziemi. Obiekt obserwowano w latach 1995-2007, a obecnie naukowcy, po interpretacji danych, doszli do wniosku, że mamy do czynienia z czarną dziurą. Supernowa SN 1979C została odkryta w 1979 przez astronoma amatora. Jest ona pozostałością po gwieździe 20-krotnie cięższej od Słońca. W dalszej odległości od Ziemi odkryto wiele czarnych dziur, jednak ta, o której obecnie mowa, jest wyjątkowym obiektem. Znajduje się ona bowiem znacznie bliżej naszej planety niż inne czarne dziury i nie jest związana z rozbłyskiem gamma. Jak mówi Abraham Loeb z Harvard-Smithsonian Center for Astrophysics, tego typu czarne dziury trudno jest odkryć, gdyż można je zauważyć dopiero po wielu latach obserwacji za pomocą teleskopów działających na promienie X.
  5. Uczeni z Wielkiej Brytanii, Francji i USA, pracujący pod kierownictwem naukowców z University of Leicester, najprawdopodobniej odkryli nowy typ czarnej dziury. Obiekt nazwany roboczo HLX-1 to najbardziej oddalone od nas źródło niezwykle silnego promieniowania X. Jest on położony w galaktyce ESO 243-49, którą dzieli od Ziemi około 300 milionów lat świetlnych. Dotychczas uczonym udało się potwierdzić, że jasność obiektu - wynosząca około 100-krotnie więcej niż jasność podobnych struktur oraz 10-krotnie więcej niż dotychczas najjaśniejsze źródło promieniowania X - została dobrze zmierzona. Potwierdzenie tego faktu oznacza, że naukowcy musieli zweryfikować teorie dotyczące niezwykle jasnych źródeł promieniowania X oraz założyć, że HXL-1 zawiera średniej wielkości czarną dziurę. Dotychczas jedynie teoretycznie zakładano możliwość istnienia takich czarnych dziur. Zaobserwowano bowiem bardzo masywne czarne dziury oraz lżejsze obiekty tego typu. Spekulowano zatem, że istnieją też pośrednie czarne dziury o masie od stu do kilkuset tysięcy większej od masy Słońca. Istnienie takiej właśnie czarnej dziury jest obecnie jedynym możliwym wytłumaczeniem jasności HXL-1.
  6. W nietypowej, pełnej masywnych gwiazd, gromadzie Westerlund 1, odległej o około 16 tysięcy lat świetlnych od Ziemi, w gwiazdozbiorze Ołtarza (widocznym na półkuli południowej) odkryto magnetar, którego nie powinno tam być. Magnetar to odmiana gwiazdy neutronowej, posiadająca bardo silne pole magnetyczne i wysyłająca błyski promieniowania gamma i rentgenowskiego. Wszystkie gwiazdy neutronowe powstają, kiedy gwiazda wypali już swoje paliwo wodorowe i helowe. Bez tej energii nie potrafi już przeciwstawić się siłom grawitacji i traci stabilność. Kiedy jej płaszcz rozdyma się i eksploduje w postaci supernowej, jądro zapada się, atomy zostają zmiażdżone grawitacją, eletrony i protony zbijają się, tworząc neutrony - powstaje gwiazda neutronowa lub magnetar. Taki los czeka gwiazdy o średnicy od 8 do 20 mas naszego Słońca. Kiedy oszacowano wiek odkrytego magnetara, pojawiło się jednak zaskoczenie. Wiek można było ocenić łatwo - wszystkie gwiazdy w tej gromadzie są rówieśnikami. Długość życia gwiazdy zależy od jej masy, można więc łatwo wyliczyć masę gwiazdy przed jej śmiercią. Gwiazda, z której powstał odkryty magnetar, miała masę czterdzieści razy większą niż Słońce. Ależ to niemożliwe - okrzyknęli astronomowie. Kiedy gwiazda posiada masę równą dwudziestu - dwudziestu pięciu mas Słońca (lub oczywiście większą), jej zapadanie nie kończy się na fazie gwiazdy neutronowej. Pole grawitacyjne takiej ilości masy jest tak duże, że powstaje czarna dziura. Czemu nie powstała ona tutaj, skąd w miejsce czarnej dziury wziął się magnetar? Czy potrzeba znów zmieniać teorie na temat czarnych dziur? Dr Negueruela z University of Alicante oraz dr Ben Ritchie z Open University w swoim studium zaproponowali wyjaśnienie tej zagadki. Jak wyliczyli, supermasywna gwiazda tego rodzaju mogła uniknąć losu czarnej dziury, jeśli przed końcem życia pozbyłaby się 90% swojej masy. Jedynym znanym sposobem na to jest oddanie swojej materii towarzyszowi, jeśli gwiazda była elementem układu podwójnego, tzw. półrozdzielonego. Dostatecznie masywny towarzysz (mający mniejszy rozmiar niż sfera jego „dominacji" grawitacyjnej, czyli tzw, powierzchnia Roche'a) mógłby odebrać gwieździe wystarczającą część masy, żeby zmienić zakończenie jej żywota. Praca, zamieszczona w periodyku Astronomy and Astrophysics, zyskała uznanie za solidne poparcie wywodów obliczeniami, bez uciekania się do trudnych do weryfikacji teorii.
  7. Podobno naukowcy są naukowcami dlatego, że zachowują dziecięcą ciekawość świata. I jak dzieci często psują zabawkę, żeby zobaczyć, co jest w środku, tak i dorośli badacze mają chęć zepsuć to i owo, żeby zobaczyć jak działa. A co może chodzić po głowie astrofizykom? Na przykład zepsucie czarnej dziury! Idea czarnej dziury, czyli obiektu tak masywnego, że jego siła grawitacji pochłania nawet światło, powstała już w osiemnastym wieku. Od samego początku ta wizja, początkowo tylko teoretyczna, fascynuje największe umysły naukowe. Odkąd wiemy, że takie obiekty istnieją naprawdę, pobudzają ciekawość badawczą jeszcze bardziej. Nie możemy obserwować ich bezpośrednio, a jedynie efekty ich działania, na przykład materię, która znika w czarnej dziurze. Dokładniej znika za horyzontem zdarzeń. Horyzont zdarzeń to punkt, zza którego nic, nawet światło, już nie wraca, takie przejście tylko w jedną stronę. To właśnie on powoduje, że czarna dziura jest dla nas „czarna", niewidoczna. Ach, móc tak zajrzeć za horyzont zdarzeń - pewnie wzdycha niejeden astrofizyk. Niestety, to nie możliwe. A może jednak? A gdyby tak się go... pozbyć? Brzmi absurdalnie, ale dla teoretyków nie ma rzeczy niemożliwych. Ted Jacobson z Uniwersytetu Maryland i Thomas Sotiriou z Uniwersytetu Cambridge uważają, że jest to możliwe. Teoretycznie. Sekret tkwi w matematyce. Istnienie horyzontu zdarzeń wokół czarnej dziury opisane jest nierównością: M² > (L/M)² + Q², gdzie M to masa czarnej dziury, L to moment pędu (inaczej kręt), zaś Q to ładunek. Wystarczy zatem zwiększyć wartość prawej strony nierówności, żeby ją odwrócić. Zatem potrzeba tylko zwiększyć kręt obiektu lub jego ładunek: nierówność ulegnie odwróceniu zaś horyzont zdarzeń zniknie, ujawniając nam to, co się za nim kryje. Zobaczyć nieskończoność i umrzeć? Co takiego moglibyśmy tam zobaczyć? Tutaj niestety fizyka staje się filozofią. Matematycznie rzecz ujmując, nieskończenie zakrzywioną przestrzeń - o ile w ogóle coś takiego można zobaczyć. To coś ma swoją nazwę: osobliwość. To miejsce, gdzie tracą sens znane nam prawa fizyki. Dla zwyczajnego fizyka osobliwość jest tworem wyłącznie teoretycznym. Pojawienie się osobliwości oznacza, że obowiązująca teoria zawodzi i potrzeba innej, żeby zjawisko opisać. Inaczej mówiąc, osobliwość jest nie tyle dziurą w strukturze wszechświata, co raczej dziurą w naszym rozumowaniu. Astrofizycy zaś uważają osobliwości za obiekty całkowicie realne. Roger Penrose i Stephen Hawking nawet udowodnili konieczność ich istnienia w kolapsie grawitacyjnym. Astrofizyk zatem chętnie by się pozbył horyzontu zdarzeń, żeby popatrzeć sobie na nieskończoność. Niestety, nieprędko astrofizycy będą mogli nasycić swój wzrok widokiem osobliwości obnażonej - pomysł pozbycia się horyzontu zdarzeń napotyka poważne trudności, już nawet nie tylko praktyczne, ale i teoretyczne. Realne obiekty - a już czarne dziury w szczególności - poza momentem pędu i ładunkiem posiadają masę. Ale kłopot zaczyna się wcześniej: wykorzystany wzór opisuje stan stabilny. Każda próba „karmienia" czarnej dziury zmienia stan rzeczy na dynamiczny i nieprzewidywalny. Nawet teoretycznie. Konieczne obliczenia są takim koszmarem, że nawet nie wiadomo, jak się za nie zabrać. Na to nie ma żadnej teorii i nikt nie ma pojęcia, co mogłoby z tego wyjść - przyznają Jacobson i Sotiriou. Takie teoretyczne popsucie czarnej dziury odsłoniłoby przed nami całkiem nową fizykę. Ale tej nie zobaczymy - nawet teoretycznie - dopóki nie powstanie teoria potrafiąca lepiej opisywać takie ekstremalne stany. Nie pojmiemy, póki nie zobaczymy, nie zobaczymy, póki nie pojmiemy. Nie wyjdziemy z tego zaklętego kręgu, póki nie pojawi się kolejny Einstein. Albo może póki ktoś nie wpadnie na pomysł, żeby eksperymentalnie psuć miniaturowe czarne dziury, które ponoć ma wytwarzać Wielki Zderzacz Hadronów.
  8. Fizycy z Universytetu Harvarda odkryli, że nanorurki poddane działaniu prądu elektrycznego o wysokim napięciu powodują, że schłodzone atomy znaczynają poruszać się po spirali, bardzo gwałtownie przyspieszają, a w końcu dochodzi do ich dezintegracji. To pierwszy tego typu eksperyment, który pokazał zjawisko podobne do czarnych dziur w skali atomowej. W skali liczonej w nanometrach jesteśmy w stanie wytworzyć olbrzymie, niszczące przyciąganie, podobne do działania czarnej dziury. Bardzo ważny dla naukowców jest też fakt, iż było to pierwsze połączenie zimnych atomów i urządzeń w nanoskali, co otwiera drogę do nowego rodzaju eksperymentów - mówi profesor Lene Vestergaard Hau z Harvardu. Profesor Hau oraz jej współpracownicy, Anne Goodsell, Trygve Ristroph i Jene A. Golovchenko, schłodzili za pomocą lasera milion atomów rubidu do temperatury niewiele wyższej od zera absolutnego. Następnie chmura atomów została wysłana w kierunku znajdującej się 2 centymetry dalej nanorurki, która została potraktowana prądem o napięciu setek woltów. Zdecydowana większość atomów przeszła przez uzwojenie nanorurki, ale 10 z nich, które w nie nie trafiły, zostały przyciągnięte przez samą nanorurkę i, osiągając dużą prędkość, spadły na nią po spirali. Z prędkości około 5 metrów na sekundę, zimne atomy przyspieszyły do 1200 m/s. W związku z tak olbrzymim zwiększeniem się prędkości, temperatura, związana z energią kinetyczną atomów, wzrosła z 0,1 kelwina do tysięcy kelwinów w czasie krótszym niż mikrosekunda - mówi Goodsell. Wówczas atomy rozpadły się na elektrony i jony wirujące wokół uzwojenia. Elektrony zostały wessane przez nanorurkę za pomocą zjawiska tunelowania kwantowego, a towarzyszące im jony zostały z olbrzymią siłą odepchnięte przez naładowaną nanorurkę, osiągając prędkość 26 kilometrów na sekundę.
  9. Profesor Paul Frampton z University of North Carolina uważa, że ciągle nieodnaleziona ciemna materia tworzy średniej wielkości czarne dziury. Są one na tyle małe, że nie możemy ich dostrzec, a na tyle duże, iż nie wyparowują. Frampton zauważa, że żadna z cząsteczek Modelu Standardowego nie ma właściwości ciemnej materii. Dlatego też proponuje inne podejście do problemu. Najpierw stwierdził, jaka powinna być entropia wszechświata. Obliczył też entropię wszystkich znanych czarnych dziur. Przyjął też, że w centrum każdej galaktyki znajduje się olbrzymia czarna dziura. Z obliczeń wynika, że "we wszechświecie nie ma wystarczająco dużo widzialnej materii, a więc różnica w entropii musi brać się z entropii ciemnej materii". stwierdził Frampton. Jego zdaniem należy jej poszukiwać w średniej wielkości czarnych dziurach. Tutaj powstaje pytanie, w jaki sposób mogło uformować się tak dużo niewielkich czarnych dziur. Tego nie wyjaśniają współczesne teorie formowania się wszechświata. Frampton uważa, że mogły być dwa, a nie jeden, etapy rozszerzania się kosmosu. "Podczas pierwszego doszło do powstania olbrzymiej struktury wszechświata, jaką dzisiaj widzimy. Podczas drugiego - do łączenia się materii i powstawania dodatkowych czarnych dziur" - powiedział profesor. Z jego zdaniem nie zgadza się profesor Warwick Couch z Swinburne University. Zauważa jednak, że "jeśli obliczenia Framptona są prawidłowe, widać wyraźnie niezgodność pomiędzy liczbą znanych nam czarnych dziur, a liczbą, jaka powinna być, gdybyśmy bazowali na entropii". Dodaje przy tym, że zwykle kosmolodzy nie postrzegają wszechświata przez pryzmat entropii, jednak tego typu podejście może być bardzo dobrą metodą jego badania.
  10. Pytanie, co było pierwsze, jajko czy kura, dręczy wiele osób, w tym astrofizyków. Dla nich jajkiem i kurą są galaktyki i czarne dziury. Najnowsze obserwacje wskazują, że pierwsza mogła być czarna dziura, która "wybudowała" sobie galaktykę. Jeśli tak jest w rzeczywistości to zyskujemy również odpowiedź na pytanie, dlaczego czarne dziury są bardziej masywne gdy znajdują się wewnątrz bardziej masywnych galaktyk. Naukowcy z European Southern Observatory wysunęli teorię o pierwszeństwie czarnych dziur budujących swoje galaktyki na podstawie obserwacji kwazaru HE0450-2958. Jest on położony w odległości 5 miliardów lat od Ziemi. To jedyny kwazar, którego galaktyka nie została odnaleziona. Dotychczas uważano, że nie widzimy jej, gdyż jest ukryta za olbrzymimi chmurami pyłu. Uczeni z ESO, przychylając się do takiej opinii, użyli teleskopu pracującego w średnich zakresach podczerwieni. Przy tej długości fali pył powinien być natychmiast widoczny w postaci jasno świecących chmur. Okazało się jednak, że żadnego pyłu nie ma, a w pobliżu kwazaru znajduje się, prawdopodobnie niezwiązana z nim, galaktyka, w której tempo powstawania gwiazd jest niezwykle szybkie. Odpowiada ono tworzeniu w ciągu roku 350 gwiazd wielkości Słońca, czyli 100-krotnie więcej niż w okolicznych galaktykach. Szczegółowe obserwacje wykazały, że z kwazaru w stronę galaktyki przemieszcza się strumień wysoko energetycznych cząsteczek i gazu. Takie "wstrzykiwanie" materii może wskazywać, że kwazar zasila powstawanie gwiazd, a więc tworzy własną galaktykę. Oba obiekty połączą się w przyszłości. Kwazar porusza się względem galaktyki z prędkością kilkudziesięciu tysięcy kilometrów na godzinę. Dzielą je od siebie zaledwie 22 000 lat świetlnych. Chociaż teraz kwazar jest 'nagi', w przyszłości zyska 'ubranie', gdy połączy się ze swym bogatym w gwiazdy towarzyszem. Wówczas, podobnie do innych kwazarów, znajdzie się wewnątrz gorącej galaktyki - mówi David Elbaz, główny autor studium. Innymi słowy czarna dziura, która "napędza" kwazar może być przyczyną formowania się galaktyk. To z kolei pozwala zrozumieć, dlaczego masywnym galaktykom towarzyszą masywne czarne dziury.
  11. Grupa naukowców zaproponowała teorię, która opisuje nieznany dotychczas typ gwiazd. Uczeni nazwali je gwiazdami elektrosłabymi (electroweak star). Glenn Starkman z Case Western Reserve University, De-Chang Dai i Dejan Stojkovic ze State University of New York oraz Arthur Lue z należącego do MIT-u Lincoln Lab opisali swoją teorię w Physical Review Letters. Gwiazdy elektrosłabe miałyby powstawać z niektórych gwiazd kończących właśnie swój żywot. Obiekty te w ostatniej fazie przed zapadnięciem się w czarną dziurę lub też zamiast tego procesu miałyby przechodzić w gwiazdę elektrosłabą. Tak jak w przeciętnej gwieździe dochodzi przemiany lżejszych jąder (np. wodoru) w cięższe (np. hel), w gwieździe elektrosłabej ma dochodzić do konwersji cięższych kwarków w lżejsze leptony. Jak zauważa Starkman, taka możliwość jest przewidziana przez Model Standardowy. Zmiana kwarków w leptony jest zjawiskiem tak rzadkim, że raczej nie wydarzyła się we wszechświecie w ciągu ostatnich 10 miliardów lat. Jedynymi miejscami, gdzie zaszła, mogą być, zdaniem Starkmana, gwiazdy elektrosłabe i laboratoria zaawansowanych nieznanych nam cywilizacji. Zdaniem naukowców, niezwykle wysokie ciśnienie i temperatura, jakie panują we wnętrzu umierającej gwiazdy mogą prowadzić do zamiany kwarków w leptony. Mielibyśmy wówczas do czynienia z gwiazdą elektrosłabą. Energia tych oddziaływań może doprowadzić do zatrzymania procesu zapadania się gwiazdy. Przez jakiś czas umierająca gwiazda może istnieć właśnie jako gwiazda elektrosłaba, a następnie zapada się w czarną dziurę. W niektórych przypadkach gwiazda elektrosłaba może mieć na tyle dużo energii, że nigdy nie zapadnie się w czarną dziurę. Gwiazdy tego typu emitują przede wszystkim neutrino, dlatego też nie potrafimy ich wykryć. Jedynie niewielką część ich emisji stanowi światło. Dzięki niemu być może będziemy w stanie wykryć kiedyś gwiazdy elektrosłabe. Zanim jednak to się stanie, musimy lepiej je poznać tak, by wiedzieć, czego należy szukać. Teoretycy obliczają, że gwiazdy elektrosłabe mogą istnieć nawet przez 10 milionów lat.
  12. Naukowcy z amerykańskiego Dartmouth College opracowali nowy sposób tworzenia miniaturowych czarnych dziur na potrzeby badawcze. Ma ona pozwolić na sprawdzenie, czy Stephen Hawking ma rację twierdząc, że czarne dziury emitują fotony, a więc, chcą poszukać dowodów na istnienie promieniowania Hawkinga. Wielki fizyk początkowo był przeciwnikiem teorii istnienia czarnych dziur. Później jednak uznał jej słuszność, jednak zauważył, że gdyby czarne dziury były rzeczywiście takimi obiektami, jak początkowo sądzono - a więc gdyby nic się z nich nie wydostawało - to byłyby niezwykle stabilne, ciągle wchłaniałyby materię, aż w końcu wchłonęłyby cały wszechświat. Teoria Hawkinga o promieniowaniu z czarnych dziur jest uznawana za prawdziwą, jednak dotychczas nie została udowodniona. Znalezienie takiego dowodu byłoby bardzo ważnym krokiem na drodze do połączenia mechaniki kwantowej i ogólnej teorii względności. Paul Nation, jeden z badaczy z Dartmouth College, mówi, że obliczenia [Hawkinga - red.] bazują na założeniach z dziedziny fizyki wysokich energii i grawitacji kwantowej. Ponieważ nie możemy jeszcze robić pomiarów z prawdziwych czarnych dziur, musimy znaleźć sposób na ich stworzenie w laboratorium, by je badać i sprawdzić teorię. Naukowcy wykazali, że transmisja mikrofalowa w polu magnetycznym zawierającym siatkę magnetometrów SQUID (Superconducting Quantum Interference Device) pozwala uzyskać warunki takie, jakie muszą panować w promieniującej czarnej dziurze. Co więcej cały system jest dobrze rozumiany przez współczesną naukę i może być kontrolowany w warunkach laboratoryjnych. Innymi słowy, jak stwierdzili autorzy nowej metody, umożliwia ona badanie analogicznych kwantowych efektów grawitacyjnych. Miles Blencowe, profesor fizyki i astronomii zauważył również, że urządzenia można nastawić tak, by radiacja była większa niż przewidywana przez Hawkinga. To daje, oczywiście, jeszcze większe możliwości badawcze. Dotychczas proponowano odtwarzanie czarnych dziur za pomocą przepływu płynów z prędkością naddźwiękową, kondensatu Bosego-Einsteina czy nielinearnych światłowodów. Jednak metody takie się nie sprawdzały. Albo promieniowanie było niezwykle słabe, ale było zagłuszane promieniowaniem rozgrzewających się urządzeń.
  13. Tak powszechna na naszej planecie woda skrywa jeszcze wiele tajemnic. Naukowcy z University of Nottingham badają krople wody, gdyż, jak mówią, pozwalają one symulować dynamikę tak różnych obiektów jak czarne dziury i atomy. Niektórzy uczeni mówiąc o horyzoncie zdarzeń, czyli sferze otaczającej czarną dziurę, używają porównania do membrany utrzymywanej przez napięcie powierzchniowe. Podobne siły działają na atomy. Richard Hill i Laurence Eaves z University of Nottingham lewitowali krople wody za pomocą zjawiska znanego jako diamagnetyzm. Polega ono na indukowaniu w ciele, znajdującym się w zewnętrznym polu magnetycznym, własnego przeciwnego pola magnetycznego. Gdy krople uniosły się, uczeni przyłożyli dwie elektrody, które spowodowały obracanie się kropli. Okazało się, że gdy kropla o średnicy 1 centymetra osiągnęła prędkość około 3 obrotów na sekundę, zmieniła kształt na trójkątny. Dotychczas nikomu nie udało się zaobserwować tego zjawiska w praktyce. Vitor Cardoso z University of Missisippi mówi: przełomowe znaczenie tego eksperymentu polega na tym, że w prosty sposób można przedstawić wyniki 100 lat badań nad dynamiką płynów.
  14. W wieku 96 lat zmarł John Archibald Wheeler, amerykański fizyk, który stworzył termin "czarna dziura". Jak poinformowała jego córka, zmarł 13 kwietnia w swoim domu w New Jersey. Przyczyną zgonu było zapalenie płuc. W ramach projektu Manhattan Wheeler pracował nad pierwszą bombą atomową. Był jednym z ostatnich współpracowników Alberta Einsteina. Ponieważ przez wiele lat pracował jako profesor na Princeton University (1947-1976), los zetknął go z innym laureatem Nagrody Nobla - Nielsem Bohrem. Gdyby nie Wheeler, nigdy nie spotkalibyśmy się z pojęciem czarnej dziury. Naukowiec jako pierwszy posłużył się nim, by opisać ten ciekawy fenomen. Za dokonania w dziedzinie fizyki w 1997 roku przyznano mu Nagrodę Wolfa. Wheeler zajmował się nie tylko czarnymi dziurami, ale także kolapsami grawitacyjnymi, czyli grawitacyjnym zapadaniem, teorią równowagi gwiazd bardzo gęstych czy oddziaływaniami elektromagnetycznymi cząstek elementarnych.
  15. Astronomowie z fińskiego Tuorla Observatory odkryli najcięższą czarną dziurę znanego nam Wszechświata. Potwór ma masę osiemnastu miliardów Słońc, czyli małej galaktyki. To jeszcze nie koniec niezwykłych cech obiektu. Wokół nowego rekordzisty (poprzedni był aż sześciokrotnie lżejszy) krąży bowiem kolejna czarna dziura "zaledwie" 100 milionów razy cięższa od naszej gwiazdy dziennej. Czas obiegu satelity po orbicie wynosi 12 lat. W czasie swej wędrówki dwukrotnie przecina on dysk akrecyjny większej dziury, wywołując nagłe rozbłyski promieniowania. Opisywany gigant znajduje się w odległości 3,5 miliarda lat świetlnych od nas i stanowi centralny element kwazara noszącego oznaczenie OJ287. Zbadanie jego masy było możliwe właśnie dzięki odkryciu wspomnianego satelity. Ponadto układ pozwolił na sprawdzenie poprawności ogólnej teorii względności Einsteina. Jednym z jej przewidywań jest precesja peryhelium mniejszego obiektu. Okazało się, że w wypadku kwazara potężne pole grawitacyjne oraz kolizje z dyskiem akrecyjnym przesuwają punkt największego zbliżenia między osobliwościami aż o 39 stopni na każde okrążenie orbity. Innym zmierzonym efektem jest zacieśnianie orbity mniejszego obiektu, będące wynikiem wypromieniowania energii w postaci fal grawitacyjnych. Gdyby nie owo promieniowanie, ostatni zarejestrowany rozbłysk wydarzyłby się o 20 dni później, niż go zaobserwowano w rzeczywistości. Oczywiście, zjawisko to doprowadzi w końcu do "połknięcia" mniejszej dziury przez większą. Nastąpi to za około 10 tysięcy lat. W obecnej chwili rekordowa masa czarnej dziury jest jedynie hipotezą wysnutą na podstawie stosunkowo mało precyzyjnych pomiarów. Jednak jeśli kolejne rozbłyski OJ287 będą następowały w czasie przewidzianym przez model matematyczny, otrzymamy coraz mocniejsze dowody potwierdzające niezwykłość tego kwazara.
×
×
  • Dodaj nową pozycję...