Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'cytoszkielet' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. By dawać przerzuty, komórki nowotworowe potrzebują wszystkich 3 składowych cytoszkieletu: filamentów pośrednich, miktotubul oraz filamentów aktynowych. Danijela Vignjević i jej zespół z Instytutu Curie w Paryżu wyjaśniają, że w warstwie nabłonka komórka nowotworowa jest uwięziona, zanim nie uda jej się sforsować błony podstawnej - substancji międzykomórkowej oddzielającej komórki nabłonka od tkanki łącznej. By do tego doprowadzić, wydziela więc rozpuszczające membrana basalis enzymy, gromadzone w wypustkach inwazyjnych, które można by po polsku nazwać inwadopodiami (od ang. invadopodia). Przed badaniami Vignjević nie było wiadomo, jak podczas tego procesu współpracują ze sobą różne składowe cytoszkieletu. Okazało się, że komórka nowotworowa uwalnia się w 3 etapach. Na początku w błonę podstawną wwiercają się grube wypustki. Później ulegają one wydłużeniu i zaczynają wyglądać jak prawdziwe inwadopodia. Za nimi podąża reszta komórki. Wygląda to jak powolne pełznięcie w stylu ślimaka czy gąsienicy. W hodowlach Francuzi zaobserwowali, że w wypustkach znajdują się wiązki oraz siateczki z aktyny. Są one niezbędne do utworzenia i wzrostu inwadopodiów, z kolei wydłużanie nie zaszłoby bez filamentów pośrednich i mikrotubul. Wiązki aktyny wypychają wypustkę do przodu, a siateczka z tej samej substancji stabilizuje ją podczas wzrostu. Gdy inwadopodia osiągają długość 5 mikronów, do gry wkraczają pozostałe elementy cytoszkieletu: mikrotubule dostarczają do koniuszka enzymy, a filamenty pośrednie działają jak spinające wszystko w całość klamry.
  2. Choć badania nad HIV trwają od wielu lat, mnogość mechanizmów ułatwiających mu skuteczne infekowanie organizmu nie przestaje zadziwiać. Uczeni ze Szpitala Uniwersyteckiego w Heidelbergu odkryli właśnie kolejny z nich, polegający na blokowaniu zmian strukturalnych koniecznych dla prawidłowego funkcjonowania komórek odpornościowych. Badacze z Niemiec, kierowani przez prof. Olivera Facklera, chcieli poznać wpływ cząsteczki Nef - najsłabiej poznanej proteiny HIV - na zdolność zakażonych komórek odpornościowych do migracji oraz zmiany własnego kształtu. Dzięki eksperymentom na hodowlach komórkowych udało się ustalić, że badane białko skutecznie blokuje funkcjonowanie aktyny - podstawowego składnika cytoszkieletu, czyli wewnętrznego "rusztowania" odpowiedzialnego za utrzymanie właściwości strukturalnych komórki. Głównym obiektem ataku HIV na organizm człowieka są pomocnicze limfocyty T, zwane także komórkami CD4+. Główną rolą tej populacji komórek jest pośredniczenie w wymianie informacji potrzebnych do uruchomienia syntezy przeciwciał. Proces ten wymaga jednak komórek CD4+ zdolności do migracji oraz zmiany kształtu - procesów ściśle zależnych od aktyny. Jeżeli więc dojdzie do zaburzenia struktury cytoszkieletu, synteza przeciwciał może okazać się niemożliwa. Badania na hodowlach komórkowych wykazały, że aktywność Nef prowadzi do upośledzenia funkcji kofiliny - białka biorącego udział w reorganizacji cytoszkieletu po każdej zmianie kształtu komórki. Zjawisko to utrudnia limfocytom CD4+ migrację i wymianę informacji z innymi komórkami. Efektem jest zablokowanie syntezy przeciwciał, prowadzące do głębokiego upośledzenia odporności. Można się spodziewać, że substancja zdolna do blokowania aktywności Nef wewnątrz zakażonych komórek mogłaby znacząco ograniczyć osłabienie odporności związane z infekcją HIV. Niestety, nikomu nie udało się dotychczas zsyntetyzować takiego związku.
  3. Wewnętrzne "rusztowanie" komórek, cytoszkielet, nie jest tak sztywny, jak do niedawna sądzono. Wprost przeciwnie - adaptuje się on do zmian kształtu komórki, pozwalając jej na dostosowanie się do panujących warunków otoczenia. Jak przyznaje główny autor odkrycia, Tran Piel z Instytutu im. Marii Curie w Paryżu, na początku chodziło o... zabawę. Badacz chciał po prostu sprawdzić, jak będą się zachowywały komórki różnych szczepów drożdży po umieszczeniu w superwąskich rurkach o różnych kształtach. Testowano więc reakcje pręcikowatych komórek w łukowatych kanalikach i odwrotnie - komórek o przecinkowatym kształcie w prostych rurkach. Wstępne wyniki eksperymentu okazały się na tyle interesujące, że naukowcy postanowili podążyć tym tropem i przeprowadzić regularne badania. Podczas badań zaobserwowano, że zmiana kształtu komórek z wyprostowanego na wygięty powoduje wydłużenie mikrotubul - pustych w środku rurek "wyrastających" z centrum komórki i wydłużających się w kierunku jej granic. Po zaburzeniu naturalnej formy nie są one w stanie sięgnąć do błony komórkowej i dostarczyć białek potrzebnych dla jej działania. Podobny proces zachodzi, gdy próbuje się "wcisnąć" komórki naturalnie przecinkowate do prostych kanalików. Zakłócenie funkcjonowania mikrotubul wywołuje szereg zaburzeń, prowadzących do próby odbudowania cytoszkieletu w formie pozwalającej na przetrwanie w zmienionym środowisku. To prowadzi z kolei do utrwalenia zmiany kształtu komórki. Autorzy odkrycia oceniają, że w opisywanym przypadku mamy do czynienia ze sprzężeniem zwrotnym. Polega ono na tym, że zmiana kształtu wymusza adaptacyjne modyfikacje cytoszkieletu, które prowadzą z kolei do zmiany kształtu całej komórki. Dokonane odkrycie może mieć wiele istotnych zastosowań. Po pierwsze, może wyjaśniać, dlaczego komórki hodowane w laboratorium na dwuwymiarowej powierzchni zachowują się często zupełnie inaczej, niż wtedy, gdy są zlokalizowane w tkance. Po drugie, badania takie jak to mogą ułatwić zrozumienie fizjologii komórek nowotworowych. Zaburzenia w obrębie cytoszkieletu mogą bowiem prowadzić do szeregu komplikacji, wśród których najistotniejszą jest nabycie zdolności do tworzenia przerzutów. Kolejne badania naukowców z Paryża będą miały na celu m.in. ustalenie, jak długo komórki zmuszane do życia w nienaturalnym otoczeniu zachowują nietypowe właściwości. Eksperymenty te, choć będą prowadzone na prymitywnych drożdżach, mogą dostarczyć wiedzy nawet na temat organizmów tak złożonych, jak ludzie.
  4. Wirus HIV nie przestaje zaskakiwać. Najnowsze badania pokazują kolejny mechanizm umożliwiający temu zabójczemu mikroorganizmowi wnikanie do komórek i ich niszczenie. Informację o odkryciu publikuje czasopismo Cell. Od momentu jego odkrycia w roku 1983 HIV jednym z najintensywniej badanych patogenów. I choć znany jest już od ćwierćwiecza, wciąż stanowi dla badaczy wielką zagadkę. Tym razem naukowcy wykazali, że jest on w stanie zaatakować i zniszczyć nawet komórki zwykle niepodatne na zakażenie. Stosuje przy tym ciekawą taktykę: zanim wniknie do wnętrza komórki, aktywuje w jej wnętrzu szlak sygnalizacji powodujący rozpad białkowego szkieletu odpowiedzialnego za jej odporność na wnikanie wirusa. Kluczowym dla odkrytego zjawiska elementem jest receptor CXCR4 znajdujący się m.in. na powierzchni spoczynkowych limfocytów T - komórek uznawanych zwykle za mało istotne w przebiegu infekcji HIV i oporne na jego wnikanie. Sam CXCR4 był dotąd uznawany wyłącznie za tzw. koreceptor, czyli cząsteczkę pomocną podczas infekcji, lecz odgrywającą w tym procesie rolę drugorzędną. Okazuje się jednak, że intruz wiąże się z tą molekułą i aktywuje w ten sposób inne białko - kofilinę, odpowiedzialną za rozpad struktury zwanej cytoszkieletem. W prawidłowo funkcjonującej komórce proces reorganizacji cytoszkieletu, pełniącego funkcję wewnątrzkomórkowego "rusztowania" i "linii przesyłowej", zachodzi regularnie i jest potrzebny dla utrzymania jej wewnętrznej architektury w dobrym stanie, lecz to samo zjawisko wywołane przez wirusa zachodzi w sposób niekontrolowany i jest dla komórki wybitnie szkodliwe. Jak tłumaczy biorący udział w badaniu prof. Yuntao Wu, następujący po aktywacji kofiliny proces odbudowy cytoszkieletu najprawdopodobniej ułatwia wnikanie HIV do wnętrza komórki. Co więcej, bardzo możliwe jest, że powstające na nowo włókna tworzące wewnątrzkomórkowe "rusztowanie" aktywnie wspomagają infekcję. Prof. Wu zastrzega, że choć wirus toruje sobie drogę do wnętrza komórki dzięki użyciu szlaku sygnałowego związanego z CXCR4 i kofiliny, proces ten może nie być konieczny dla skutecznego ataku. Badacz zauważa, że proces rozpadu i odtwarzania cytoszkieletu zachodzi w sposób ciągły, więc w pewnych momentach może dochodzić do powstania takiej konfiguracji jego elementów, która ułatwia wnikanie patogenu. Na szczęście istnieje też dobra wiadomość. Dokładnie zrozumienie odkrytego procesu może umożliwić prace nad lekami, które powstrzymają (lub chociaż spowolnią) rozwój AIDS, choroby uznawanej dziś za nieuchronne następstwo infekcji wirusem HIV. Może to być jednak bardzo ciężkie z uwagi na znaczną liczbę czynników ułatwiających patogenowi atak na organizm człowieka.
  5. Podstawowym zadaniem czerwonych krwinek (erytrocytów) jest przenoszenie tlenu i dwutlenku węgla. Poruszając się po organizmie, muszą się przeciskać przez coraz mniejsze naczynia krwionośne. Ostatnio naukowcom udało zaobserwować, w jaki sposób sobie z tym radzą. Odkrycie pomoże w zrozumieniu różnych chorób, m.in. malarii czy anemii sierpowatej. Kiedy erytrocyt trafia do najmniejszych naczyń kapilarnych (włosowatych), często okazuje się, że jego rozmiary są większe niż średnica naczynia. Aby się przez nie przedostać, czerwona krwinka musi zmienić kształt. Może się to udać pod warunkiem, że poprzestawia białka budulcowe cytoszkieletu. Pod wpływem nacisku, rozpadają się wiązania łączące białka. Krwinka zaczyna się zachowywać jak ciecz i przyjmuje kształt pocisku. Możemy badać, jak struktura molekularna wpływa na kształt, który z kolei warunkuje właściwości mechaniczne. I kształt, i właściwości mechaniczne określają natomiast mobilność — tłumaczy szefowa projektu z MIT, Subra Suresh. Mobilność to czynnik kluczowy przy chorobach w rodzaju malarii, która zmniejsza podatność erytrocytów na zmianę kształtu, czy anemii sierpowatej, przy której półksiężycowata forma czerwonych krwinek ogranicza możliwość przemieszczania się w krwioobiegu (Proceedings of the National Academy of Sciences).
  6. Hormony stresu wydają się przyspieszać formowanie charakterystycznych dla choroby Alzheimera zmian w mózgu. Jak twierdzą badacze, uczenie ludzi radzenia sobie ze stresem pomaga spowolnić postępy choroby. Młodym myszom przez tydzień wstrzykiwano deksametazon, podobny do występujących naturalnie w organizmie hormonów stresu syntetyczny związek. Podawana dawka glikokortykosteroidu odpowiadała stężeniu tych hormonów, które pojawia się pod wpływem stresu. Po siedmiu dniach poziom beta-amyloidu wzrósł w mózgu aż o 60%! Ze złogów beta-amyloidu tworzą się uszkadzające tkankę mózgu charakterystyczne blaszki. Zwiększało się również stężenie białka tau. Beta-amyloid wywołuje zmiany w budowie występującego w ośrodkowym układzie nerwowym w warunkach fizjologicznych białka tau. Tau stanowi część cytoszkieletu neuronów. Nie wiadomo, jaki jest dokładnie mechanizm patologicznych zmian, ale na pewno istnieje związek między nagromadzeniem się beta-amyloidu, zmianami w cytoszkielecie komórek nerwowych a ich śmiercią. Jest godne uwagi, że hormony stresu mogą wywoływać tak znaczące zmiany w tak krótkim okresie. Chociaż od pewnego czasu wiedzieliśmy, że na wczesnym etapie rozwoju choroby Alzheimera występuje podwyższony poziom hormonów stresu, po raz pierwszy zobaczyliśmy, że odgrywają one ważną rolę w zapoczątkowaniu patologicznych procesów — wyjaśnia profesor Frank LaFerla z Uniwersytetu Kalifornijskiego w Irvine. Pomiędzy stężeniami beta-amyloidu i białka tau a poziomem hormonów stresu istnieje sprzężenie zwrotne. Zwiększenie stężenia tych pierwszych wpływa na podniesienie poziomu drugich, a hormony przyspieszają z kolei formowanie się blaszek amyloidowych i kłębków neurofibrylarnych. Doniesienia Amerykanów opisano w Journal of Neuroscience.
×
×
  • Dodaj nową pozycję...