Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'bakterie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 147 wyników

  1. Wynikiem zbyt wysokiego poziomu glukozy we krwi mogą być nie tylko retinopatia czy nefropatia cukrzycowa. Badacze z Warwick Medical School odkryli, że w organizmie chorego tworzy się coś w rodzaju powłoki cukrowej, która blokuje mechanizmy wykorzystywane przez układ odpornościowy do wykrywania oraz zwalczania zarówno infekcji bakteryjnych, jak i grzybiczych. W przebiegu cukrzycy pacjenci są bardziej narażeni na przewlekłe zakażenia grzybami i bakteriami, lecz dotąd nie bardzo wiedziano, czemu się tak dzieje. Teraz zespół Daniela Mitchella ustalił, że wyspecjalizowane receptory, które rozpoznają cząsteczki związane z bakteriami i grzybami, stają się przy wysokich stężeniach glukozy "ślepe". Akademicy sądzą, że dzięki ich odkryciom uda się również wyjaśnić, czemu diabetycy są w większym stopniu niż reszta społeczeństwa zagrożeni infekcjami wirusowymi, w tym grypą, i chorobami o podłożu zapalnym, np. chorobami sercowo-naczyniowymi. Brytyjczycy analizowali podobieństwa w budowie chemicznej glukozy z krwi i innych płynów ustrojowych oraz dwóch innych cukrów – mannozy i fruktozy – występujących na powierzchni bakterii oraz grzybów. W ludzkim organizmie wyewoluowały receptory, które wykrywają i wiążą te monosacharydy, by zwalczyć zakażenie (zjawisko to stanowi część tzw. lektynowej drogi aktywacji układu dopełniacza, czyli zespołu białek osocza spełniającego ważną rolę w nieswoistej odpowiedzi immunologicznej). Przy wysokich stężeniach glukoza wygrywa rywalizację z mannozą i fruktozą, dlatego receptory nie wykrywają patogenów. Poza tym glukoza ulega takiemu związaniu, że blokuje procesy chemiczne, które w zwykłych okolicznościach pozwalają organizmowi bronić się przed obcymi. Oto kilka przykładów. Zasygnalizowane zjawisko hamuje m.in. działanie systemu receptorów zwanych lektynami typu C, np. lektyny wiążącej mannozę (ang. mannose binding lectin, MBL). Lektyny typu C są receptorami rozpoznającymi wzorce (PRR, pattern recognition receptors), wiążącymi sekwencje wodorowęglanowe pochodzenia drobnoustrojowego. W odróżnieniu od glukozy, mannoza nie występuje we krwi ssaków w stanie wolnym. Gdy MBL nie działa prawidłowo, organizm staje się bardziej narażony na przewlekłe choroby zapalne. Dzieje się tak, ponieważ MBL bierze udział usuwaniu komórek apoptycznych, czyli popełniających planowe samobójstwo. Poza MBL, wysokie stężenie glukozy oddziałuje na będące lektynami typu C receptory specyficzne dla komórek dendrytycznych DC-SIGN, które rozpoznają mannozę, ale i obecne na neutrofilach glikany. Receptory tego typu występują w kluczowych elementach układu krwionośnego, np. w osoczu, monocytach, płytkach czy komórkach śródbłonka, dlatego zablokowanie działania tych cząsteczek może się przyczyniać do cukrzycowych powikłań obejmujących siatkówkę i naczynia.
  2. Bakterie kojarzą się głównie ze śmierdzącymi substancjami, które produkują – warto wspomnieć choćby o siarkowodorze czy merkaptanach – lecz okazuje się, że organizmy te dysponują też molekularnym nosem. Zespół mikrobiologów z Uniwersytetu w Newcastle wykazał, że bakterie potrafią w ten sposób wykryć lotne związki, np. amoniak, wytwarzane przez inne rywalizujące z nimi mikroby. Zespół doktora Reinderta Nijlanda ustalił, że po "wyniuchaniu" konkurencji bakterie zaczynają tworzyć biofilm – czyli trójwymiarową kolonię zawieszoną w macierzy zewnątrzkomórkowych polimerów, która może przylegać do wilgotnych powierzchni. Z biofilmami związana jest lekooporność, stanowią one również główną przyczynę zakażeń implantów medycznych, takich jak zastawki serca, endoprotezy bioder czy nawet implanty piersi. Poza tym Brytyjczycy wspominają o tzw. biofoulingu, o którym po raz pierwszy napisano na początku XX wieku. W literaturze limnologicznej organizmy poroślowe nazwano wtedy mianem Aufwuchsmarine biofouling. Obrastanie kadłubów statków przynosi ogromne straty. Stają się one bowiem nadmiernie obciążone, co wiąże się ze zwiększonym tarciem i zużyciem paliwa. Odkrycie Nijlanda pozwoli lepiej zrozumieć mechanizm tworzenia biofilmów oraz ustalić, jak nimi manipulować dla naszych korzyści. To pierwszy dowód na istnienie bakteryjnego nosa, zdolnego do wykrywania potencjalnych konkurentów. Biofilm odgrywa ważną rolę zarówno w warunkach medycznych, jak i przemysłowych, dlatego fakt, że komórki tworzyły go pod wpływem ekspozycji na amoniak, ma kapitalne znaczenie [...]. Następnym krokiem będzie zidentyfikowanie nosa lub czujnika, który realizuje funkcję powonienia. Najnowsze odkrycie pokazuje, że bakterie dysponują co najmniej czterema z pięciu zmysłów: 1) reagują na światło, co odpowiada wzrokowi, 2) przejawiają zależną od kontaktu ekspresję genów (dotyk), 3) reagują na obecne w środowisku związki chemiczne i toksyny albo pod wpływem bezpośredniego kontaktu (smak), albo 4) stykając się z nimi przez powietrze (powonienie). Amoniak to jedno z najprostszych źródeł azotu – składnika kluczowego dla bakteryjnego wzrostu. Używając dwóch konkurencyjnych gatunków bakterii Bacillus subtilis i B. licheniformus, akademicy wykazali, że lotny amoniak stymulował tworzenie biofilmu, a siła reakcji spadała w miarę zwiększania odległości między koloniami. Zmysł węchu zaobserwowano u wielu istot, nawet u drożdży i śluzowców, ale nasze studium pokazuje po raz pierwszy, że powonienie występuje także u bakterii. Z ewolucyjnego punktu widzenia wierzymy, że to może być pierwszy przykład na to, jak żyjący organizm nauczył się wyczuwać inne organizmy – podsumowuje nadzorujący projekt prof. Grant Burgess.
  3. Naukowcy z Uniwersytetu Florydzkiego (UF) odkryli, że istnieje związek między bakteriami z przewodu pokarmowego a ryzykiem wystąpienia cukrzycy typu 1. Przyczyny cukrzycy insulinozależnej pozostają owiane tajemnicą. Wydaje się ona w niewielkim bądź żadnym stopniu uwarunkowana genetycznie – tylko 15% chorych ma najbliższych krewnych z tą samą chorobą. Sugeruje to, że w środowisku pacjenta musi istnieć jakiś wyzwalacz. Wg akademików z UF, takim zapłonem mogą być bakterie z przewodu pokarmowego. W momencie porodu nasze jelita są stosunkowo sterylne. Później jednak zaczynamy trawić mikroby występujące w otoczeniu. Większość z nas tworzy i podtrzymuje zdrową mikroflorę jelit. Pomaga nam ona w rozkładaniu pokarmu, poza tym zapewnia dodatkową warstwę ochronną dla delikatnego przewodu pokarmowego. Najnowsze badania pokazały, że u dzieci z cukrzycą typu 1. dochodzi do zaburzenia równowagi bakteryjnej. Podczas gdy u wszystkich zdrowych maluchów flora bakteryjna ma podobny skład, u małych diabetyków pojawiają się dziwne zestawienia z obniżoną ogólną różnorodnością. Eric Triplett, szef uniwersyteckiego Wydziału Mikrobiologii i Cytologii, porównuje tę sytuację do cytatu z Anny Kareniny Tołstoja: Wszystkie szczęśliwe rodziny są do siebie podobne, każda nieszczęśliwa rodzina jest nieszczęśliwa na swój sposób. Amerykanie przyglądali się mikroflorze jelit ośmiorga fińskich dzieci: 4, u których zdiagnozowano cukrzycę i 4 zdrowych. Bakterie zidentyfikowali i zliczyli dzięki badaniom genetycznym kału; udało im się zatem sporządzić tzw. mikrobiom. Uniformizacja puli genetycznej i zwiększona częstość występowania wśród Finów cukrzycy typu 1. sprawia, że jest to idealna populacja do genetycznego badania tej choroby - podkreśla inny członek florydzkiego zespołu Mark Atkinson. Co ważne, w miarę postępów choroby nasilają się też zaburzenia składu mikroflory przewodu pokarmowego. Nie wiadomo, czemu u niektórych ludzi pojawiają się takie odchylenia, nie ma też całkowitej pewności, w jaki sposób zakłócenie równowagi bakteryjnej przyczynia się do wystąpienia cukrzycy. Jedna z teorii jest taka, że brak stabilnej flory odsłania delikatną ścianę jelita. Przez to do krwioobiegu dostają się nietypowo duże i złożone białka. Zostają one wykryte przez układ odpornościowy, który zaczyna zbyt silnie reagować. Za pośrednictwem dokładnie tego samego mechanizmu niestabilny "koktajl" bakterii może się przyczyniać do innych chorób autoimmunologicznych, np. choroby Leśniowskiego-Crohna, celiakii czy stwardnienia rozsianego. Do zachwiania składu mikroflory jelit wydaje się dochodzić przed wystąpieniem pierwszych objawów cukrzycy. Odpowiedni test mógłby więc pozwolić na dużo wcześniejsze jej wykrycie czy ocenę potencjalnego ryzyka. Uprzednie badania pokazały, że wprowadzenie pewnych bakterii, takich jak te występujące powszechnie w jogurtach, pomaga przywrócić utracony porządek. Oczywiście, sprawa nie jest prosta i nie wystarczy nakarmić pacjenta jogurtem, lecz gdyby udało się stworzyć system profilowania czyjegoś mikrobiomu, kiedyś powiodłyby się też pewnie próby jego korygowania, a nawet modyfikowania [przed pojawieniem się jakiegokolwiek problemu].
  4. Mocz dzieci z autyzmem ma inny skład chemiczny niż uryna zdrowych maluchów. Badacze z Imperial College London i Uniwersytetu Południowej Australii mają nadzieję, że dzięki ich odkryciu uda się opracować prosty test do wczesnego wykrywania zaburzenia. Uprzednio ustalono, że u wielu osób z autyzmem występują dolegliwości żołądkowo-jelitowe, takie jak biegunka czy bóle brzucha, oraz inny skład gatunkowy flory jelit. Najnowsze brytyjsko-australijskie studium pozwoliło wykazać, że da się odróżnić dzieci autystyczne od nieautystycznych, przyglądając się produktom działalności bakterii jelitowych oraz zmianom metabolicznym w składzie moczu. Na razie nie wiadomo, czy i ewentualnie jaką rolę w rozwoju autyzmu spełniają zaburzenia gastryczne, przeważnie jednak pojawiają się one w tym samym czasie co zaburzenia zachowania. Jedna z hipotez jest taka, że bakterie wytwarzają toksyny oddziałujące na rozwój mózgu. Co ważne, w moczu maluchów z autyzmem zidentyfikowano N-metylo-nikotynamid (NMND), który wykrywa się także u pacjentów z parkinsonizmem. Obecnie trudno jest postawić pewną diagnozę autyzmu, zanim dziecko nie skończy 18 miesięcy, niewykluczone jednak, że ważne zmiany w funkcjonowaniu organizmu zachodzą już wcześniej. Ważne tylko, by umieć je nazwać i wykryć... Autyzm jest zaburzeniem, które wpływa na umiejętności społeczne jednostki, dlatego początkowo może wydawać się dziwne, że istnieje związek między nim a tym, co dzieje się w czyimś przewodzie pokarmowym. Nie da się jednak zaprzeczyć, że metabolizm i skład flory bakteryjnej jelit odzwierciedlają wiele różnych czynników, w tym tryb życia oraz geny – opowiada prof. Jeremy Nicholson, szef Wydziału Chirurgii i Nowotworów na Imperial College London. Jednocześnie badacz przyznaje, że jego zespół zdaje sobie sprawę z tego, że opracowywanie testu na wykrywanie autyzmu z moczu naprawdę małych dzieci może potrwać całe lata. Obecnie akademicy zabierają się do sprawdzenia, czy różnice metaboliczne w autyzmie są związane z przyczynami zaburzenia, czy też stanowią raczej jego skutek. Za pomocą spektroskopii magnetycznego rezonansu jądrowego 1H NMR naukowcy badali próbki moczu 3 grup dzieci w wieku od 3 do 9 lat: 1) 39 maluchów, u których zdiagnozowano wcześniej autyzm, 2) rodzeństwa osób z autyzmem (28) oraz 3) 34 kontrolnych dzieci, które same nie zapadły na autyzm ani nie miały autystycznego rodzeństwa. Okazało się, że skład chemiczny moczu każdej z tych grup był jedyny w swoim rodzaju. Różnice pozostawały istotne statystycznie i widoczne na pierwszy rzut oka. Glenn Gibson z Uniwersytetu w Reading stwierdził w przeszłości, że w przewodzie pokarmowym dzieci z autyzmem występuje anormalnie dużo Gram-dodatnich bakterii z rodzaju Clostridium. Zespół Derricka MacFabe'a z Uniwersytetu Zachodniego Ontario ustalił natomiast, że produkowane przez te mikroorganizmy kwasy tłuszczowe o krótkich łańcuchach prowadzą u szczurów do autyzmopodobnych zmian, na szczęście odwracalnych, w zachowaniu i biochemii. Studium Nicholsona wskazało na pewne biomarkery populacji Clostridium, które wg nas, przyczyniają się wystąpienia objawów autystycznych – podkreśla MacFabe, który zaprezentował wyniki na konferencji Międzynarodowego Stowarzyszenia Badań nad Autyzmem.
  5. Chyba nikt nie wątpi, że oczyszczalnie ścieków to zakłady kluczowe dla ochrony ludzkości przed zakażeniami. Okazuje się jednak, że mogą one odgrywać także rolę w procesie... generowania nowych szczepów mikroorganizmów potencjalnie groźnych dla ludzi. Odkrycia dokonał dr Chuanwu Xi, pracownik Uniwersytetu Michigan. Naukowiec analizował wodę pobraną z pięciu różnych miejsc w oczyszczalni ścieków na terenie miasta Ann Arbor oraz w jej okolicach. Celem studium była ocena charakterystyki bakterii z rodzaju Acinetobacter żyjących w badanych próbkach. Wyniki eksperymentu są dość niepokojące. Okazuje się bowiem, że woda opuszczająca zakład zawiera co prawda znacznie mniej bakterii, niż woda do niego wpadająca, lecz znajdowała się w niej znaczna liczba bakterii opornych na działanie antybiotyków. Oznacza to, że gdyby zakaziły one organizm człowieka, leczenie takiej infekcji byłoby wyjątkowo trudne. "Rekordowe" okazy bakterii zidentyfikowanych przez dr. Xi wykazywały oporność na 7-8 antybiotyków jednocześnie. Tak silnie zmodyfikowane mikroorganizmy to rzadkość nawet na oddziałach szpitalnych. Co gorsze, nie istnieją jakiekolwiek dane na temat ewentualnego wpływu wieloopornych szczepów Acinetobacter na zdrowie człowieka, przez co oszacowanie ewentualnego ryzyka infekcji jest bardzo ciężkie. Główną przyczyną wytworzenia oporności jest ilość antybiotyków odprowadzanych do ścieków. Jak szacuje dr Xi, 20-30 lat temu dowolny lek z tej grupy błyskawicznie zniszczyłby praktycznie wszystkie bakterie obecne w wodzie przepływającej przez oczyszczalnię. Niestety, wiele lat nadużywania i niepoprawnego stosowania antybiotyków sprawiło, że mikroorganizmy dojrzewające w roztworze tych substancji stopniowo stawały się coraz mniej podatne na ich działanie. Czy w świetle uzyskanych wyników można uznać, że oczyszczanie ścieków jest procesem szkodliwym? Absolutnie nie. Problemem jest jedynie niedostateczne oczyszczanie wody z leków (pisaliśmy o tym problemie już rok temu). Można więc przypuszczać, że opracowanie technologii usuwających farmaceutyki ze ścieków mogłoby niemal całkowicie rozwiązać problem odkryty przez dr. Xi.
  6. Wyciąg z opuncji figowej (Opuntia ficus indica) może w krajach rozwijających się zastąpić kosztowniejsze metody uzdatniania wody. Okazuje się bowiem, że ekstrakt z tego sukulenta usuwa zarówno osady, jak i szkodliwe bakterie. Norma Alcantar z Uniwersytetu Południowej Florydy podkreśla, że w biedniejszych krajach odrzuca się wiele metod uzdatniania wody, ponieważ ludzie nie mają pojęcia, jak choćby konserwować urządzenia. Stąd pomysł, by zespół z Tampa zbadał opuncję figową, która była wykorzystywana przez Meksykanów w XIX w. do uzdatniania wody. Co ważne, gatunek ten pochodzi z Meksyku, ale uprawia się go także w innych krajach o ciepłym klimacie, m.in. w południowej Europie. Ekipa sporządziła wyciąg ze śluzowatych soków kaktusa. Następnie dodawano go do wody zanieczyszczonej osadami bądź wywołującymi zatrucia pokarmowe laseczkami Bacillus cereus (różne szczepy tej bakterii wytwarzają toksynę wymiotną cereulidynę oraz enterotoksynę hemolityczną HBL i niehemolityczną NHE, czyli trójskładnikowe toksyny powodujące biegunki). Okazało się, że ekstrakt z opuncji figowej prowadził do flokulacji. Jest to końcowy etap pewnych rodzajów koagulacji, w którym zachodzi wypadanie osadu z koloidów. Między micelami utworzyły się wiązania chemiczne, dzięki czemu duża część zanieczyszczeń opadła na dno. Związaniu przez substancje śluzowe uległo również 98% B. cereus. W kolejnym etapie akademicy z Tampa zamierzają przeprowadzić eksperymenty z naturalną wodą. Alcantar uważa, że ludzie zamieszkujący kraje rozwijające się mogliby kroić opuncję i gotować ją, by uwolnić śluz. Potem, chcąc uzyskać wodę zdatną do picia, wystarczyłoby wrzucić tak uzyskaną pulpę do cieczy.
  7. Jednym z głównych celów bezzałogowych misji marsjańskich jest poszukiwanie śladów dawnego, a może i obecnego życia. Możliwości marsjańskich łazików są w tym względzie niewielkie i ograniczają się do prób wykrycia w marsjańskim gruncie obecności substancji organicznych, które mogłyby być wytworzone na przykład przez bakterie. Przyszłe misje na pewno jednak będą miały coraz lepsze narzędzia w tym celu, nie mówiąc już o - odległej co prawda - misji załogowej, czy przywiezieniu próbek marsjańskiej gleby na Ziemię. Co jednak możemy tam odkryć? W tym cały problem: naukowcy z Uniwersytetu Centralnej Florydy uważają, że istnieje duże ryzyko, iż odkryjemy na Marsie to, co sami tam zawieziemy. Czyli ziemskie mikroorganizmy, które dostaną się tam, lub co gorsza już dostały, wraz z ziemskimi pojazdami. Zespoły planujące misje od dawna zdają sobie sprawę z takiego ryzyka, dlatego wszystkie wysyłane pojazdy są przed startem dokładnie odkażane i sterylizowane. Ponadto dochodzi długi lot w warunkach kosmicznych, które życiu nie sprzyjają. Czy to jednak daje nam gwarancję, że nie zanieczyścimy Marsa ziemskim życiem organicznym? Otóż właśnie niekoniecznie. Niedawno wykonane testy dowiodły, że różne typy bakterii przeżywają wszystkie zabiegi i są obecne przynajmniej w chwili startu. Sterylna natura statku kosmicznego sprawia, że przeżywają tylko najbardziej odporne - to swoista selekcja naturalna. Badacze z Uniwersytetu Centralnej Florydy (University of Central Florida) odtworzyli na ziemi warunki panujące na Marsie: brak wilgoci, niskie ciśnienie, niską temperaturę i promieniowanie ultrafioletowe. Do badań wytypowano najbardziej odporne z powszechnie występujących gatunków bakterii: acinetobacter, bacillus, escherichia, staphylococcus oraz streptococcus. Po tygodniowym badaniu okazało się, że w takich warunkach, czyli na powierzchni Marsa, potrafią przeżyć - choć nie odnotowano namnażania się - przynajmniej bakterie e-coli, jeśli będą przykryte choćby cieniutką warstewką pyłu chroniącego je przed ultrafioletem, albo jeśli będą znajdować się w zakamarkach pojazdu. Czy ziemskie mikroorganizmy będą w stanie namnożyć się na powierzchni Marsa? Jeśli tak, to przyszłe misje bez wątpienia mogłyby zasiedlić Czerwoną Planetę ziemskim życiem. Z doświadczeń ziemskich wiemy, że niektóre organizmy potrafią żyć w bardziej ekstremalnych warunkach. Konieczne są zatem dalsze, rozległe badania nad zdolnością bakterii do przetrwania, mogące potwierdzić, lub wykluczyć ryzyko. A także zachowanie maksymalnej ostrożności.
  8. Picie przynajmniej jednego kubka zielonej herbaty dziennie może zapobiec chorobom zębów i dziąseł. Trzeba pamiętać jednak o tym, że antybakteryjny wpływ napoju zanika po dodaniu do niego cukru. Artykuł Yasushi Koyamy z Tohoku University ukazał się w piśmie Preventive Medicine. Naukowiec uważa, że za zaobserwowane zjawisko odpowiadają występujące w zielonej herbacie katechiny, które zawiera, choć w mniejszych ilościach, również herbata ulong (znana też jako herbata niebieska bądź oolong). Jak ujawnił w artykule wstępnym do studium Japończyków Alfredo Morabia z Columbia University, dodatkowo badania ujawniły, że o ile sama kawa nie stanowi problemu, [...] słodka mała czarna może już być szkodliwa dla zębów. Akademicy z Kraju Kwitnącej Wiśni przyglądali się ponad 25. tys. kobiet i mężczyzn w wieku od 40 do 64 lat. Stwierdzili, że panowie, którzy dziennie wypijali przynajmniej jeden kubek zielonej herbaty, w porównaniu do rówieśników niegustujących w naparze, o 19% rzadziej mieli mniej niż 20 zębów. W takiej samej sytuacji w grupie kobiet ryzyko utraty zębów spadało o 13%. Skąd zaobserwowany efekt? Naukowcy zastanawiali się, czy nie chodzi przypadkiem o przepłukanie jamy ustnej ciepłym napojem. Problem jednak w tym, że kawa również powinna tak działać, a nie zaobserwowano korzystnych oddziaływań tego rodzaju. Dobrym wskazaniem są natomiast herbaciane przeciwutleniacze – katechiny – które zabijają bakterie powodujące próchnicę i choroby przyzębia.
  9. Doktorantka Uniwersytetu Kalifornijskiego w San Diego opracowała nowy sposób dostarczania w leczeniu trądziku kwasu laurynowego, występującego m.in. w oleju orzechów kokosowych czy ludzkim mleku. Wypełnione nim nanobomby zbliżają do wywołujących zmiany skórne Gram-dodatnich bakterii Propionibacterium acnes. Dissaya "Nu" Pornpattananangkul ma zaprezentować wyniki swoich badań na dorocznej konferencji Research Expo, która odbywa się na jej macierzystej uczelni. Wybór kwasu laurynowego nie był przypadkowy, gdyż wg Kalifornijczyków, pozwoli on uniknąć efektów ubocznych stosowania innych leków przeciwtrądzikowych, w tym zaczerwienienia i pieczenia skóry. Nowatorski system dostarczania leku składa się ze złotych nanocząstek, przyczepionych do wypełnionych kwasem laurynowym liposomów (nanobomb). Złoto nie dopuszcza do zlewania się pęcherzyków. Poza tym nanocząstki pomagają liposomom zlokalizować bakterie na podstawie specyficznego mikrośrodowiska skórnego, w tym pH. Kiedy nanobomby dotrą do błon komórkowych P. acnes, przy kwasowym odczynie nanocząstki złota odłączają się od kapsułek. Dzięki temu liposomy mogą się zlać z bakteryjnymi błonami i uwolnić swoją zawartość. Profesor Liangfang Zhang, w której laboratorium pracuje Pornpattananangkul, cieszy się z możliwości poprawy jakości leczenia zakażeń skórnych. Preparat stosowany jest powierzchniowo, w dodatku obiera sobie za cel wyłącznie P. acnes. Wszystkie składniki nanobomb są naturalne lub zostały dopuszczone do użytku klinicznego, co oznacza, że liposomy będą już w najbliższej przyszłości testowane na ludziach.
  10. Hiszpańscy naukowcy wskazują cebulę jako kandydatkę mającą zastąpić sztuczne konserwanty. Niektóre występujące w niej substancje wykazują bowiem właściwości przeciwutleniające oraz antybakteryjne (International Journal of Food Science and Technology). Akademicy z Politechniki Katalońskiej i Uniwersytetu Barcelońskiego wspominają, że flawonoidy cebuli są nie tylko zdrowe, ale i przedłużają przydatność pokarmów do spożycia. Wyniki potwierdzają, że zwłaszcza żółta odmiana jest dobrym źródłem tego rodzaju związków. Cebula może być skuteczna w opóźnianiu utleniania tłuszczów w emulsjach oleju i wody – systemach modelowych dla margaryn czy majonezów – poza tym hamuje wzrost zmieniających właściwości produktów mikroorganizmów – wyjaśnia Jonathan Santas. Hiszpanie przyglądali się efektom działania dwóch odmian białych (Fuentes de Ebro, Calçot de Valls) i jednej żółtej (Grano de Oro). Okazało się, że zapobiegały one rozwojowi, m.in.: Bacillus cereus, gronkowca złocistego (Staphylococcus aureus), Micrococcus luteus i Listeria monocytogenes. Flawonoidy cebuli są bardziej stabilne niż np. związki siarki. Tradycyjnie zaś to właśnie te ostatnie uznawano za substancje korzystne dla zdrowia, ponieważ odpowiadają za charakterystyczny smak i zapach Allium cepa oraz łzawienie oczu. Są one lotne i uwalniają się, gdy cebula ulegnie uszkodzeniu bądź zostanie przekrojona.
  11. Naukowcy uważają, że porównanie bakterii znalezionych na miejscu zbrodni z mikroorganizmami występującymi na czyichś dłoniach może być równie skuteczną metodą identyfikowania przestępcy jak daktyloskopia. Dlaczego? Ponieważ "zestaw" mikrobów jest unikatowy dla danej osoby i z biegiem czasu właściwie się nie zmienia (PNAS). Istnieją sytuacje, kiedy analiza ludzkiego DNA lub tradycyjne odciski palców się nie sprawdzają [lub nie da się nimi posłużyć]. Może w takim razie to jest właśnie to inne narzędzie? – dywaguje Noah Fierer, mikrobiolog z University of Colorado w Boulder. Jego zespół postanowił przetestować potencjalną metodę, pobierając wymazy z kilku klawiatur komputerowych i myszy oraz opuszków palców ich właścicieli. Posługując się pirosekwencjonowaniem DNA, Amerykanie zidentyfikowali na każdym obiekcie ok. 1400 różnych gatunków bakterii. Okazało się, że na podstawie struktury populacji można było określić, kto posługiwał się komputerowymi akcesoriami, nawet jeśli przed badaniem leżały niedotykane przez 2 tygodnie w temperaturze pokojowej. Fierer zaznacza, że na razie metoda nie będzie wykorzystywana w sądzie. Specjaliści pracują nad jej trafnością, choć już teraz wynosi ona od 70 do 90%. Akademicy z Boulder odtworzyli genetyczną sygnaturę bakteryjną 9 osób. Twierdzą oni, że materiał genetyczny mikrobów nie ulega zniszczeniu mimo zmieniających się temperatur, wilgotności i działania promieni słonecznych. Nawet na dłoniach najczystszego człowieka bytuje ok. 150 gatunków bakterii (wbrew pozorom nie zmienia tego regularne mycie, gdyż flora odtwarza się w ciągu kilku godzin od namydlenia), a dwie osoby dzielą ze sobą zaledwie 13% tej "menażerii". Na podstawie próbek bakterii z 3 klawiatur udało się ustalić właścicieli, w dodatku były one zupełnie inne od wymazów pobranych od losowych ochotników. Koniec końców ekipa Fierera ustaliła, że nawet identyczne bliźnięta jednojajowe różnią się znacznie pod względem mikroflory dłoni.
  12. Nasz przewód pokarmowy zamieszkuje tyle mikroorganizmów, że z powodzeniem możemy się uznać za chodzące kolonie bakterii. Są bardzo zróżnicowane i jak szacują autorzy badania nad wpływem chorób na florę jelit, łączna liczba ich genów 100-krotnie przekracza liczbę ludzkich genów. Mówienie o drugim genomie wcale nie jest więc pozbawione sensu. Jeden z autorów studium, profesor Jeroen Raes z Vrije Universiteit Brussel, dodaje też, że nosimy w sobie 10-krotnie więcej komórek bakteryjnych niż swoich własnych. Większość tych mikroorganizmów bytuje właśnie w przewodzie pokarmowym. Szefem projektu był profesor Jun Wang z Pekińskiego Instytutu Genomiki. Współpracowali z nim naukowcy z Chin, Niemiec, Belgii, Danii, Hiszpanii, Francji i Wielkiej Brytanii, którzy utworzyli konsorcjum European MetaHIT, koordynowane przez doktora Stanislava Dusko Ehrlicha. Badacze pracowali naprawdę szybko, mając na uwadze znaczenie bakteryjnej flory jelit dla naszego zdrowia. Pomaga nam ona w trawieniu, przyswajaniu witamin i zabezpiecza przed patogenami. Gdy coś szwankuje, pojawiają się choroba Leśniowskiego-Crohna czy wrzodziejące zapalenie jelita grubego. Odkryto również związki z otyłością – tłumaczy Raes. Akademicy sporządzili tzw. metagenom, czyli połączony genom wszystkich bakterii. To daje duży zestaw danych, które należy "rozsupłać". Na tym polega moja rola – wyjaśnia Belg. Zespół analizował odchody 124 Europejczyków. Okazało się, że u każdej osoby występowało ok. 160 gatunków bakterii. U większości ludzi były to w dużej mierze te same mikroorganizmy. Naukowcom udało się też obejść pewien problem. Skoro w przypadku hodowli wielu bakterii napotyka się na trudności, lepiej badać ich geny. W ten właśnie sposób dałoby się opisać wpływ określonej choroby na mikroflorę jelit. Zmiany można by uznać za markery diagnostyczne i prognostyczne oraz za wskaźnik powagi stanu lub podatności na chorobę.
  13. W kokonach os grzebaczowatych z rodzaju Philanthus występują Gram-dodatnie bakterie Streptomyces. Wytwarzają one 9 antybiotyków, które zabezpieczają owady przed atakiem patogenów. Naukowcy z Instytutu Ekologii Chemicznej Maxa Plancka w Jenie, Uniwersytetu w Ratyzbonie oraz Jena Leibniz Institute for Natural Product Research posłużyli się metodami obrazowania bazującymi na spektrometrii mas (obrazowaniem LDI). Dzięki temu mogli zademonstrować, w których rejonach zewnętrznej części kokonu żywych owadów znajdują się antybiotyki. Zastosowanie przez osy koktajlu złożonego z tylu substancji zapewnia ochronę przed całym wachlarzem szkodliwych mikroorganizmów. Wiele owadów spędza część swojego życia pod ziemią. Osy grzebaczowate ryją norki, w których rozwijające się larwy żywią się zakopanymi wraz z nimi sparaliżowanymi owadami. W wypełnionym materią organiczną podziemnym schronie panują jednak specyficzne warunki: jest gorąco i wilgotno, a to doskonałe warunki do rozwoju grzybów i bakterii, zagrażających zarówno nowemu pokoleniu os, jak i ich pożywieniu. Infekcje pleśniami dość często doprowadzają do śmierci larwy. Z tego powodu symbioza z promieniowcami zwiększyła szanse na przeżycie. Samice hodują bakterie z rodzaju Streptomyces w woreczkach gruczołów czułkowych i pokrywają nimi sufit komory wylęgowej. Larwy przenoszą potem bakterie do swoich kokonów. Dotąd nie było wiadomo, na czym dokładnie polega ich rola zabezpieczająca. Aleš Svatoš i Martin Kaltenpoth z Instytutu Maxa Plancka oraz ich zespół odkryli ostatnio, że symbionty wytwarzają aż 9 różnych antybiotyków. Po raz pierwszy biolodzy byli w stanie wyizolować te substancje w naturalnym środowisku, tj. w kokonie larwy. W ramach innych studiów udawało się jedynie wykryć antybiotyki po wyizolowaniu i sztucznej hodowli symbiontów. Niemcy zademonstrowali, że antybiotyki występują głównie w zewnętrznej warstwie kokonu, co zmniejsza ryzyko, że sama larwa ucierpi z powodu efektów ubocznych ich działania. Akademicy prowadzili testy z różnymi patogennymi grzybami i bakteriami. Stwierdzili, że streptochloryna i 8 piericydyn to naprawdę skuteczna broń przeciwko nim. Wspólnie mają szerokie spektrum działania, o którym można by tylko pomarzyć w przypadku pojedynczej substancji. Zakładamy, że symbioza ochronna, taka jak pomiędzy osami grzebaczowatymi a Streptomyces, jest w królestwie zwierząt bardziej rozpowszechniona niż wcześniej zakładano – podsumowuje Martin Kaltenpoth.
  14. Dermatolog dr Greg Pearson jest twórcą aplikacji na iPhone'a, która podczas rozmowy telefonicznej rozprawia się ponoć ze zmarszczkami i zmianami trądzikowymi na skórze właściciela. Emitowane światło niebieskie o długości fali wynoszącej 420 nanometrów oraz czerwone (550 nm) pomagają eliminować bakterie, działają przeciwzapalnie i stymulują wzrost kolagenu. Za dostępną od września ubiegłego roku aplikację trzeba zapłacić 1,99 dol. Można ją zainstalować również na iPodzie. Zanim będę mógł ocenić skuteczność AcneApp, musi jeszcze przejść wiele testów klinicznych – powiedział Pearson w komentarzu dla gazety The New York Times. Inni dermatolodzy są sceptycznie nastawieni do pomysłu kolegi po fachu. W badaniach, które przeprowadziliśmy, dane wskazywały na niską skuteczność światła niebieskiego i czerwonego w leczeniu trądziku. Potrzeba było aż [...] 88 sesji, zanim zobaczyliśmy jakiekolwiek efekty – opowiada dr Macrene Alexiades-Armenakas.
  15. Gady są rozmnażane w niewoli głównie dla skór, ale niektórym restauratorom i grupom etnicznym zależy również na ich mięsie. Po przeprowadzeniu odpowiednich analiz badacze wskazują jednak na liczne zagrożenia zdrowotne: infekcje wirusowe i bakteryjne, parazytozy oraz skażenie metalami ciężkimi oraz resztkami leków weterynaryjnych. Przed zjedzeniem potrawy z krokodyla, żółwia, jaszczurki czy węża warto się więc dobrze zastanowić (International Journal of Food Microbiology). Autorzy studium stwierdzili, że konsumując taki delikates, ludzie mogą zachorować na włośnicę, gnatostomozę, sparganozę czy zarazić się wrzęchami. Gnatostomoza to choroba pasożytnicza wywołana przez nicienie Gnathostoma spinigerum i Gnathostoma hispidum. Powoduje m.in. eozynofilowe zapalenia mózgu i opon mózgowo-rdzeniowych. Dorosłe postaci wrzęch pasożytują w płucach i drogach oddechowych węży i krokodyli. Larwy niektórych otorbiają się w płucach, a niekiedy również w wątrobie człowieka. Sparganozę wywołują larwy tasiemców z rodzaju Spirometra. Pasożyty wędrują wolno w tkankach, przyczyniając się do powstawania podskórnych obrzęków. Najbardziej oczywiste zagrożenie mikrobiologiczne wiąże się z ewentualną obecnością patogennych bakterii, zwłaszcza z rodzajów Salmonella, Campylobacter, Clostridium i Shigella, E. coli, pałeczek Yersinia enterocolitica czy gronkowca złocistego, które mogą powodować choroby o różnym nasileniu – podkreśla dr Simone Magnino, absolwent weterynarii na Uniwersytecie w Mediolanie, który obecnie pracuje dla Światowej Organizacji Zdrowia. Na razie wnioski są nierozstrzygające, ponieważ brakuje badań porównawczych, które łączyłyby spożycie mięsa z rozpowszechnieniem patogenów. Chociaż większość opublikowanych informacji dotyczy ryzyka związanego z gadami będącymi zwierzętami domowymi, niektóre studia dotyczą gatunków dzikich i hodowlanych. Eksperci zalecają, by mrozić mięso gadów. Pomaga też przemysłowa obróbka oraz właściwe gotowanie w domu. W sklepach Unii Europejskiej można kupić importowane mrożonki z gadów: krokodyli, kajmanów, iguan i pytonów. Z RPA, USA i Zimbabwe importuje się coraz większe ilości takiego towaru, który trafia głównie na stoły Belgów, Niemców, Francuzów, Holendrów i Brytyjczyków.
  16. Odchody niedźwiedzi polarnych pomagają zrozumieć naukowcom, jak rozprzestrzeniają się antybiotykooporne superbakterie. Zespół Trine Glad z Uniwersytetu w Tromso nie natrafił bowiem na zbyt wiele ich śladów w kale Ursus maritimus z Arktyki, a konkretnie z archipelagu Svalbard (BMC Microbiology). Norwegowie uważają, że sugeruje to, że przekazywanie genów oporności, które pojawiają się w odchodach innych zwierząt, może być skutkiem oddziaływań człowieka. Lekooporność zidentyfikowano u różnych gatunków bytujących w pobliżu ludzi, m.in. jeleni, kotów, lisów, psów i świń. Pani Glad jest przekonana, że badania jej zespołu wiele wyjaśniają w kwestii, czy antybiotykooporność występuje w naturze, czy też stanowi skutek kontaktu z lekami stosowanymi przez nas.
  17. Adrian Ponce, chemik z NASA, opracował urządzenie, które pozwala wykryć patogeny w ciągu 15 minut. Dzięki niemu będzie można zminimalizować skażenie pozaziemskich środowisk naszymi bakteriami, które zawędrowałyby tam choćby na statku kosmicznym. W ciągu kwadransa dzieje się wszystko - od pobrania próbek po uzyskanie wyniku. Odpowiada to 2-3 dniom z wykorzystaniem standardowej, czyli obejmującej hodowlę, metody NASA – wyjaśnia Ponce. Departament Bezpieczeństwa Narodowego USA widzi też ziemskie zastosowanie wynalazku w postaci przenośnego wykrywacza bioskażenia. Ma on być gotowy do 2011 roku. Niewykluczone, że skorzystają z niego przedstawiciele różnych branż, m.in. służby zdrowia czy firm produkujących elektronikę. Nowa amerykańska technologia wskazuje bakteryjne endospory (przetrwalniki), wykorzystując swoisty wyłącznie dla nich kwas dipikolinowy, który występuje w protoplastach. Nanochemicy z NASA posłużyli się terbem (Tb). Po naświetleniu promieniami ultrafioletowymi pierwiastek ten powoduje, że endospory zaczynają się jarzyć na zielono. Detektor został częściowo sfinansowany przez NASA, ale zanim stanie się częścią oficjalnej procedury ochronnej, musi zostać zaaprobowany przez odpowiednią komisję.
  18. Badacze z Argonne National Laboratory amerykańskiego Departamentu Energii i Northwestern University odkryli, że po zawieszeniu w roztworze pospolite bakterie mogą napędzać mikroskopijne koła zębate. Pozwala to mieć nadzieję na opracowanie zainspirowanych biologią rozwiązań energetycznych, które będą się dynamicznie dostosowywać do zmieniających się warunków. Zdolność okiełznania i kontrolowania mocy bakteryjnego ruchu jest istotnym wymogiem dla dalszego rozwoju napędzanych przez mikroorganizmy biomechanicznych systemów hybrydowych. W tym układzie koła zębate są miliony razy bardziej masywne od samych bakterii – wyjaśnia Igor Aronson. Mikroprzekładnie mają przekątną zaledwie 380 mikronów, wliczając w to także pochyłe "szprychy". Umieszcza się je w roztworze z tlenowymi laseczkami siennymi Bacillus subtilis. Andrey Sokolov z Princeton University, Igor Aronson z Argonne National Laboratory oraz Bartosz Grzybowski i Mario M. Apodaca z Northwestern University zaobserwowali, że bakterie wydawały się pływać w losowych kierunkach, ale od czasu do czasu zderzały się z zębami koła i zaczynały je obracać w oznaczonym kierunku. Przekręcenie przekładni wymagało współpracy kilkuset bakterii. Kiedy obok siebie umieszczano kilka kół, a ich wypustki zazębiały się jak w mechanizmie zegara, mikroorganizmy były w stanie wprawiać je w ruch w przeciwnych kierunkach; w parze jedno kręciło się w prawo, a drugie w lewo. Przekładnie obracały się synchronicznie nawet przez dłuższy czas. Nasze odkrycie demonstruje, jak mikroskopijne czynniki pływające, takie jak bakterie czy wykonane przez człowieka nanoroboty, mogą w połączeniu np. ze stalą czy plastikiem utworzyć inteligentne materiały, które dynamicznie zmienią swoją mikrostrukturę, zreperują uszkodzenia lub zasilą mikrourządzenia – podsumowuje Aronson. Prędkością obrotów kół da się zarządzać, manipulując zawartością tlenu w roztworze. Zmniejszając stężenie gazu, badacze spowalniali ruch bakterii i przekładni. Usunięcie go w całości zatrzymywało działanie mechanizmu. Po wprowadzeniu tlenu do układu bakterie ożywały i na nowo zaczynały pływać.
  19. Dotąd sądzono, że spotykane w jaskiniach kolorowe osady to minerały, teraz jednak okazuje się, że w niektórych przypadkach dokładnie tak samo wyglądają odchody nieznanych wcześniej mikroorganizmów. Badacze z Geological Society of America uważają, że opisywane odkrycie może pomóc podczas poszukiwania życia pozaziemskiego. Stwierdziliśmy, że na rzeczy wyglądające na pierwszy rzut oka na nieożywione trzeba patrzeć, jakby mogły mieć pochodzenie biologiczne – zaznacza Penelope Boston, badaczka jaskiń z Nowomeksykańskiego Instytutu Górnictwa i Technologii w Socorro. Mikroby znaleziono w jaskiniach lawowych – naturalnych tunelach, którymi lawa płynie pod powierzchnią ziemi – na Hawajach, w Nowym Meksyku oraz na Azorach. Jak opowiada prof. Diana Northup, geomikrobiolog z Uniwersytetu Nowego Meksyku, na Hawajach odkryto skapujący ze stropu niebieskozielony szlam, w Nowym Meksyku kruchy minerał, a na portugalskim archipelagu różowe sześciokąty. Od 1994 r. Northup i zespół poszukiwali w jaskiniach niezwykłych kryształopodobnych depozytów. Oglądali je potem pod mikroskopem lub badali DNA. Odkrycia tej ekipy potwierdzają to, co postulowano już wcześniej: że na innych planetach jaskinie lawowe mogą być najlepszymi miejscami do poszukiwania życia. W 2007 roku krążąca wokół Marsa sonda przysłała zdjęcia, na których widniały czarne dziury, będące najprawdopodobniej miejscami, gdzie zapadły się sklepienia wydrążonych przez lawę tuneli. Wg naukowców, jaskinie stanowią jedyne w swoim rodzaju środowisko, gdzie nie brakuje wytrącających się z wody minerałów i mikroorganizmów. Na Marsie woda mogła się przesączyć do podziemnych jaskiń już bardzo dawno temu, zapewniając pokarm mieszkającym tam stworzeniom. Dodatkowym plusem jest to, że pieczara jest zacisznym zakątkiem, z o wiele łagodniejszym klimatem niż ten panujący na powierzchni planety. W 2003 r. Northup, Penny Boston i Mike Spilde zjawili się w stale powiększającej się jaskini w południowym Meksyku, znanej jako Cueva de Villa Luz. Zauważyli, że stężenie siarkowodoru wynosi tam 210 części na milion (ppm), a to naprawdę bardzo dużo, ponieważ już przy poziomie H2S przekraczającym 10 ppm ludzie muszą wkładać ochronne respiratory, czyli maski z filtrem. Dla niektórych bakterii takie warunki to jednak raj. Utleniając siarczek wodoru, wydzielają one jako produkt uboczny kwas siarkowy. W jaskini Amerykanie natrafili na ociekające H2SO4 przypominające stalaktyty struktury. Nazwali je snotytami. Ich analiza molekularna wykazała, że były one wypełnione bakteriami blisko spokrewnionymi z siarkolubnymi Aciditheobacillus theooxidans.
  20. Związek wytwarzany przez bakterie glebowe Streptomyces może uszkadzać neurony produkujące dopaminę. Badacze z University of Alabama uważają, że ich działaniem można by wytłumaczyć przypadki choroby Parkinsona, w których nie da się wyróżnić czynnika genetycznego (PLoS ONE). Amerykanie sądzą, że w grę wchodzi związek nieznany jeszcze nauce, będący wtórnym metabolitem bakteryjnym. Eksperymenty laboratoryjne prowadzono na modelu zwierzęcym, a konkretnie z udziałem nicieni z gatunku Caenorhabditis elegans. Gdy wystawiano je na oddziaływanie wybranych szczepów bakteryjnych, zaczynały umierać ich neurony dopaminoergiczne. Generalnie nicienie miały się dobrze, lecz dochodziło do gwałtownego wymierania neuronów wydzielających jako neuroprzekaźnik dopaminę – tłumaczy dr Guy Caldwell z University of Alabama. Dalsze testy tajemniczego związku, prowadzone przy pomocy naukowców z Birmingham, wykazały, że na ludzkie komórki nerwowe działa on tak samo, jak na neurony C. elegans. Nicienie stanowią doskonały model wielu chorób, ponieważ są prostymi organizmami i łatwo je hodować, a jednocześnie występują u nich podstawowe neuroprzekaźniki, np. dopamina. Wyniki badań są na razie wstępne. Nie dysponując oczyszczonym związkiem, nie wiemy, czy jego ilość, z jaką ludzie stykają się ciągu całego życia, wystarczy do wywołania problemów [zdrowotnych] – zaznacza dr Julie Olson, współautorka studium. Biolodzy sądzą, że badana substancja bakteryjna zaburza działanie układu ATP-ubikwityna-proteasomy (ang. ubiquitin proteasome system, UPS). Mamy dowody komórkowe, że ten mechanizm może być zaburzony. W zwykłych okolicznościach pozbywa się on białek o nieprawidłowej budowie lub działaniu; w ramach wcześniejszych badań połączono go z rzadkimi postaciami genetycznymi parkinsonizmu. Pozostawione same sobie nieprawidłowe cząsteczki białek łączą się z innymi, tworząc ostatecznie rozbudowane kompleksy. Wiąże się to z uszkodzeniem neuronów i ich obumieraniem. Podczas eksperymentów biolodzy posłużyli się bakteriami glebowymi S. venezuelae. Wytwarzany przez nie metabolit zaburzał działanie UPS i powodował postępującą degenerację wszystkich uzwględnionych rodzajów neuronów, lecz najbardziej podatne na uszkodzenia wydawały się komórki nerwowe istoty czarnej (łac. substantia nigra). Analizy wykazały, że cząsteczki badanego związku są stabilne, lipofilne (wykazują powinowactwo do tłuszczów) i niewielkie.
  21. Jednym z lekceważonych, choć istotnych efektów konsumpcji alkoholu jest krótkotrwałe upośledzenie odporności. O zjawisku tym wiadomo od dawna, lecz winą za nie obarczano głównie ogólne obciążenie organizmu toksyną. Okazuje się jednak, że mechanizm ten jest znacznie bardziej ukierunkowany i wiąże się z zablokowaniem aktywności jednego z białek kluczowych dla szybkiej reakcji na infekcje. Już wcześniejsze eksperymenty, prowadzone głównie na myszach, potwierdziły negatywny wpływ konsumpcji uderzeniowych dawek alkoholu na produkcję substancji prozapalnych. Dopiero teraz, dzięki zespołowi Stephena Pruetta z Mississippi State University, udało się zidentyfikować dokładną przyczynę tego zjawiska - upośledzenie funkcji białka zwanego TLR4. Badana proteina jest jednym z podstawowych receptorów dla lipopolisacharydu (LPS) - składnika ścian bakterii Gram-ujemnych. W prawidłowo funkcjonującym systemie odpornościowym przekazuje ona informację o obecności LPS w organizmie do innych komórek odpornościowych, czego efektem jest uruchomienie stanu zapalnego i reakcji przeciwko obcemu obiektowi. Jak ustalono, podanie etanolu blokuje szlak sygnałowy związany z TLR4 i uniemożliwia aktywację mechanizmów obrony przed zakażeniem. Co ważne, zaobserwowane zjawisko utrzymuje się nawet po usunięciu alkoholu z organizmu. Okres obniżenia odporności trwa bowiem aż do 24 godzin, a więc dłużej, niż sama obecność etanolu w ustroju. Dlaczego tak się dzieje, nie ustalono.
  22. Na szkieletach padłych waleni odkryto nowe gatunki zwierząt, które żywią się tylko i wyłącznie w ten sposób. To dość ryzykowne, bo choć wieloryby są duże, nigdy nie wiadomo, gdzie i kiedy umrą. Dzięki technikom badania DNA naukowcy z Uniwersytetu w Göteborgu stwierdzili, że zróżnicowanie gatunków "waleniożerców" jest o wiele większe niż dotąd sądzono. Szwedzi monitorowali ekosystem wokół ścierw wielorybów za pomocą podwodnych kamer. Jak zauważają biolodzy, jeden olbrzymi ssak to bogate źródło składników odżywczych i odpowiada takiej ich ilości, jaka spadałaby z powierzchni morza na dno przez 2000 lat. Nic dziwnego, że do takiej padliny tłumnie przybywają zainteresowane mięsem rekiny czy śluzice, a na końcu organizmy wykorzystujące szkielet. Na martwych wielorybach bardzo często znajduje się wieloszczety. Niektóre gatunki są tak wyspecjalizowane, że nie umiałyby przeżyć gdzie indziej. Osedax ukorzenia się np. w ścierwie wieloryba i drąży jego kości, a inne pożywiają się grubą warstwą bakterii zalegających na szkielecie. Akademicy z Göteborga opisali aż 9 nowych gatunków gustujących w bakteriach wieloszczetów. Cztery z nich znaleziono na ścierwach zlokalizowanych na głębokości 125 metrów na terenie Parku Narodowego Kosterhavet u wybrzeży Szwecji. Pozostałe występowały w wodach koło Kalifornii. Dzięki analizie molekularnej udało się wyróżnić ukryte gatunki. Ich przedstawiciele wyglądają identycznie jak inny gatunek (podobieństwo morfologiczne), ale różnią się genetycznie. Przystosowanie do żerowania na ścierwach wielorybów rozwinęło się u gatunków o różnym pochodzeniu ewolucyjnym. Miało to miejsce w różnym czasie. Okazało się też, że pewne gatunki, które dotąd uznawano za kosmopolityczne, tj. występujące w wielu miejscach na Ziemi, są w rzeczywistości gatunkami ukrytymi.
  23. Choć wszędobylskość drobnych form życia nie powinna nikogo zaskakiwać, naukowcy z Instytutu Maxa Plancka musieli być solidnie zdziwieni, gdy na dnie Oceanu Arktycznego odkryli... przetrwalniki bakterii żyjących zwykle w podwodnych rezerwuarach gorącej wody. Pochodzenie mikroorganizmów nie zostało jeszcze ustalone, lecz już teraz oczekuje się, że wiedza na ten temat może się okazać niezwykle istotna. Odkrycia, o którym poinformowało czasopismo Science, dokonano u wybrzeży Spitsbergenu. Co prawda odnalezione przetrwalniki nie wykazywały aktywności metabolicznej w temperaturze typowej dla wód otaczających tę norweską wyspę, lecz krótka inkubacja w temperaturze 50°C wystarczyła, by przekształciły się one w formy dojrzałe i uruchomiły procesy rozkładu materii organicznej. Przeprowadzone testy genetyczne wykazały, że przetrwalniki odnalezione na dnie oceanu należą do różnych klas w obrębie typu Firmicutes. Naturalnym miejscem występowania odnalezionych okazów jest silnie rozgrzana woda otaczająca podwodne złoża ropy naftowej. Może to więc oznaczać, że albo przebyły one bardzo daleką drogę od swojego naturalnego siedliska, albo też w badanej okolicy występują bogate, lecz nieodnalezione jeszcze złoża czarnego złota. Odkryte bakterie mogą okazać się ważnymi organizmami modelowymi, przydatnymi podczas badań z zakresu biogeografii. Ustalenie tras migracji zarodników może bowiem dostarczyć wielu interesujących informacji na temat kierunków przemieszczania się mas wody oceanicznej oraz warunków życia panujących w głębinach.
  24. Umiejętne zastosowanie bakterii żywiących się kompostem mogłoby zaspokoić 10% zapotrzebowania Wielkiej Brytanii na paliwa zużywane przez środki transportu - twierdzą tamtejsi badacze. Eksperci zaprezentowali też informacje na temat bardzo obiecujących mikroorganizmów mogących znaleźć zastosowanie w energetyce. Pryzmy kompostu są rezerwuarem gigantycznej ilości energii. Dotychczas, ze względu na brak wydajnych technologii, brakowało jednak kompleksowych rozwiązań z zakresu zagospodarowania tych zasobów. Naukowcy z przedsiębiorstwa TMO Renewables przekonują jednak, że sytuację tę można zmienić dzięki wykorzystaniu opracowanego przez nich szczepu bakterii przetwarzających odpady organiczne na etanol. Mógłby on być mieszany ze standardową benzyną i stosowany jako paliwo do samochodów. Mikroorganizmy opracowane przez Anglików umożliwiają produkcję alkoholu w sposób znacznie tańszy i wydajniejszy w porównaniu do stosowanej obecnie fermentacji opartej o zastosowanie drożdży. Jak tłumaczy Paul Milner, pracownik TMO Renewables, konwencjonalna produkcja etanolu jest droga oraz energo- i czasochłonna, ponieważ słód jęczmienny lub inny materiał poddawany fermentacji musi być podgrzany do postaci papki (...) Następnie zostaje znacznie schłodzony do niższej temperatury, by zaszła fermentacja z udziałem drożdży, a później jest ponownie ogrzewany podczas destylowania etanolu. Nasz proces jest znacznie bardziej wydajny energetycznie. Stworzenie technologii było niezwykle żmudnym zajęciem. Wszystko zaczęło się od zidentyfikowania interesujących bakterii w ich naturalnym środowisku oraz ich długotrwałej selekcji. Szczególnie interesujące były te zdolne do przeżycia w wysokiej temperaturze i odżywiania się możliwie wieloma rodzajami pokarmu roślinnego. Ostatecznie wybór padł na mikroorganizmy z rodziny Geobacillus, które w naturalnych warunkach przetwarzają materię organiczna zawartą w kompoście na kwas mlekowy. Dzięki "podrasowaniu" metabolizmu bakterii badaczom udało się opracować szczep zdolny do wytwarzania alkoholu etylowego. Nasz nowy mikroorganizm, nazwany TM242, może wydajnie przetwarzać długołańcuchowe cukry zawarte w biomasie drzewnej na etanol. Ta ciepłolubna bakteria pracuje w wysokich temperaturach rzędu 60-70 stopni Celsjusza i bardzo szybko trawi szeroki zakres produktów, tłumaczy Milner. Badacze szacują, że każdego roku w Wielkiej Brytanii powstaje około siedmiu milionów ton odpadów pochodzenia roślinnego. Obecnie materiał ten jest w znacznej większości marnowany, lecz jego przetworzenie na alkohol mogłoby zaspokoić aż 10% krajowego zapotrzebowania na paliwa płynne. Do wykorzystania przemysłowego nadaje się m.in. słoma, papier, drewno czy wiele rodzajów odpadów. Firma TMO Renewables otrzymała ostatnio odbiór techniczny swojego zakładu produkcji bioetanolu. Będzie to pierwsza tego typu placówka w Zjednoczonym Królestwie działająca na tak szeroką skalę i jedna z pierwszych na świecie. Firma nie poprzestaje jednak na tym - jej przedstawiciele oceniają, że odpowiednio poprowadzone prace rozwojowe umożliwią wytwarzanie wielu innych substancji cennych z punktu widzenia przemysłu chemicznego lub nawet farmaceutycznego.
  25. W dzisiejszych czasach trudno wyobrazić sobie dziedzinę, w której nie znalazłoby się zastosowania dla nanotechnologii. Na rozwoju tej nauki mogą skorzystać także mikrobiolodzy, o czym świadczy aparat zaprezentowany przez naukowców z Universitat Rovira i Virgili w hiszpańskiej Tarragonie. Stworzony przez Hiszpanów prototyp, opisany na łamach międzynadorowego wydania czasopisma Angewandte Chemie jest zdolny do wykrywania bakterii Salmonella typhi, odpowiedzialnych za ciężkie i trudne do wyleczenia infekcje u ludzi. Zaprezentowany aparat jest tak czuły, że nie stanowi dla niego większego problemu detekcja nawet pojedynczej komórki bakteryjnej znajduącej się w badanym materiale. Sercem opracowanego urządzenia są nanorurki o ścianach zbudowanych z pojedynczej warstwy atomów węgla. Ich wnętrze zostało zmodyfikowane na drodze chemicznej, a następnie przyłączono do niego aptamery - syntetyczne fragmenty RNA zaprojektowane w celu wybiórczego wiązania jednego z antygenów znajdujących się na powierzchni komórek S. typhi. Wykrywanie bakterii odbywa się dzięki pomiarowi zmian siły elektromotorycznej podczas przyłączenia się bakterii do aptamerów. Odczyt niezbędnych parametrów odbywa się w czasie rzeczywistym i jest na tyle precyzyjny, że możliwe jest dokładne określenie liczby komórek znajdujących się w badanej próbce. Istotny jest także fakt, iż opracowany sensor jest wysoce swoisty, tzn. nie wykrywa bakterii należących do gatunków innych niż S. typhi. Hiszpańscy badacze nie sprecyzowali, czy - i jeśli tak, to kiedy - ich wynalazek mógłby trafić na rynek. Jeżeli jednak będzie on tak skuteczny, jak wynika z dotychczasowych eksperymentów, możemy być niemal pewni, że jego jego komercjalizacja stanie się faktem.
×
×
  • Dodaj nową pozycję...