Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'University of Sydney' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Aluminium, lekki powszechnie występujący na Ziemi metal, ma olbrzymią wadę, jest mało wytrzymałe. Pęka pod obciążeniami, którym nie poddają się inne metale. Lekkim i wytrzymały metalem jest za to tytan. Jest on jednak drogi. Dlatego też naukowcy od dawna szukali sposobu na zwiększenie wytrzymałości aluminium. Udało się to osiągną międzynarodowemu zespołowi pracującemu pod kierunkiem uczonych z University of Sydney. Okazało się, że ściskając aluminium pomiędzy dwoma kowadłami, można uzyskać lekki materiał wytrzymały jak stal. Podczas prac wykorzystano skręcanie wysokociśnieniowe (HPT - high-pressure torsion). Metoda ta polega na umieszczeniu cienkiego dysku metalu na cylindrycznym kowadle i przyciśnięcie go do drugiego kowadła. W czasie tego procesu jedno z kowadeł powoli się obraca. Nacisk wywierany na metal wynosi około 60 000 kilogramów na centymetr kwadratowy. Po zakończeniu skręcania wysokociśnieniowego aluminium 7075 (to aluminium z niewielką domieszką cynku i magnezu) było przez ponad miesiąc trzymane w temperaturze pokojowej, przeszło zatem proces zwany starzeniem. Zarówno HPT jak i starzenie zmieniły nanostrukturę metalu. Przeprowadzone później badania wykazały, że tak zmieniony materiał wytrzymuje nacisk 1 gigapaskala. Odpowiada to wytrzymałości najlepszych rodzajów stali i jest wynikiem trzykrotnie lepszym od osiąganego przez standardowe aluminium. Bliższe badania wykazały, że sieć krystaliczna atomów aluminium została silnie zdeformowana, tworząc hierarchiczną nanostrukturę - wielkość ziaren aluminium zmniejszyła się, a atomy cynku i magnezu połączyły się w grupy o różnej wielkości, która zależała od położenia wewnątrz lub na krawędziach ziaren aluminium. Nie wiadomo, jak to się dzieje, że takie ułożenie znacząco wzmacnia aluminium, przyznaje Simon Ringer z University of Sydney. Uczeni mają nadzieję, że uda się stworzyć proces produkcyjny, który umożliwi tworzenie "superaluminium" w skali przemysłowej. Taki materiał znajdzie zastosowanie w przemyśle samochodowym, lotniczym i posłuży do budowy kamizelek kuloodpornych.
  2. Chlorofil - związek chemiczny pozwalający roślinom (a także glonom i niektórym bakteriom) na czerpanie energii w procesie fotosyntezy można uznać za podstawę istnienia życia na Ziemi w ogóle. Dlatego odkrycie nowego, nieznanego typu chlorofilu jest wydarzeniem w biologii. Dotychczas znano cztery rodzaje chlorofilu. Najbardziej rozpowszechnione są chlorofil A i B, znajdowane u roślin zielonych. Oba te typy chlorofilu pochłaniają głównie światło widzialne w zakresie niebieskim (około 465 nanometrów) oraz żółtopomarańczowym/czerwonym (665 nm), odbijając światło zielone (stąd bierze się zielony dla nas kolor roślinności). Chlorofil C i D znajdowany jest u mniej licznych organizmów, głównie u glonów. Rodzaj C pochłania światło podobnie do A i B, z trochę przesuniętym spektrum, zaś D głównie czerwone (697 nm). Nową odmianę chlorofilu, nazwaną „F", odkryto w stromatolitowych skałach basenu Hamelin, w Zatoce Rekina w zachodniej Australii. Ponieważ znaleziono go w ekstraktach z osadów dennych, nie jest jeszcze pewne, jakie organizmy go wytwarzają, wg Mina Chena, biologa molekularnego na University of Sydney, który dokonał odkrycia, najbardziej prawdopodobnym ich twórcą są nitkowate cyjanobakterie, czyli sinice. Największą jednak sensacją jest to, że chlorofil F absorbuje światło o długości nieużytkowanej przez inne organizmy. Wykorzystuje on promieniowanie tuż spoza czerwonego końca widma widzialnego, czyli bliską podczerwień. To zmienia całkowicie pojęcie o możliwościach chlorofilu. Co ciekawe, budową niewiele różni się od znanych odmian chlorofilu i prawdopodobnie jest wykorzystywany przez organizmy żyjące nisko, w miejscach, gdzie pozostałe spektrum światła jest już pochłonięte przez konkurencję. Naukowcy snują już plany praktycznego wykorzystania odkrycia. Chcą przy pomocy inżynierii genetycznej wprowadzić chlorofil F do wybranych gatunków glonów, tak udoskonalone, absorbowałyby większą część spektrum światła i były znacznie wydajniejszymi producentami na przykład biopaliw.
  3. Australijscy astronomowie skonstruowali niewielkie urządzenie, które może zrewolucjonizować obserwacje przestrzeni kosmicznej. Naukowcy, korzystający z teleskopów pracujących w podczerwieni mają olbrzymi problem, gdyż cała atmosfera ziemska bardzo jasno świeci. Za świecenie odpowiedzialne są molekuły hydroksylu, które w ciągu dnia zbierają i przechowują energię słoneczną, a w nocy ją uwalniają. Uczeni pracujący pod kierunkiem profesora Jossa Bland-Hawthorna z University of Sydney opracowali "wielozakresowy spektograf integrujący fotony". Urządzenie wielkości kuchenki mikrofalowej korzysta w wielu warstw światłowodów, które tunelują indywidualne fotony, dzięki czemu możliwe jest odfiltrowanie najjaśniejszych z nich. Profesor Bland-Hawthorn mówi, że różnica jest taka, jakby patrzyć z przodu na samochód ze zgaszonymi i zapalonymi światłami. Jesteśmy w stanie wytłumić światło całego nocnego nieba z 80-procentową skutecznością, co całkowicie zrewolucjonizuje astronomię - dodaje uczony. Dzięki temu, że nocne niebo stanie się naprawdę ciemne w podczerwieni, możliwe będzie dokonywanie z powierzchni naszej planety obserwacji, które dotychczas były niedostępne. Prace Australijczyków pozwolą nie tylko na prowadzenie lepszych obserwacji, ale oznaczają również, że możliwe będzie znaczne zredukowanie rozmiarów teleskopów, co z kolei oznacza kolosalne obniżenie kosztów. Nowy spektograf to wynik 20 lat badań. Będzie on produkowany przez firmę Redfern Optical Components, a do marca przyszłego roku miesięczny poziom produkcji ma wynieść setki sztuk. O tym, jak olbrzymi krok został dokonany niech świadczy fakt, że dzięki nowemu urządzeniu znajdujące się na ziemi teleskopy będą miały moc większą od następcy Hubble'a - Kosmicznego Teleskopu Jamesa Webba.
×
×
  • Dodaj nową pozycję...