Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Księżyć' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 69 wyników

  1. Czterdzieści lat po lądowaniu ludzi na Księżycu nasz satelita wciąż pozostaje mało zbadany, a ostatnio wręcz regularnie nas zadziwia. Wszystko to dlatego, że nareszcie zabrano się za systematyczne i porządne jego badanie. Nie tak dawno potwierdziły się doniesienia o sporej ilości wykrytej wody w księżycowym gruncie oraz że głębokie kratery mogą być prawdziwymi rezerwuarami wody. Teraz okazuje się, że najprawdopodobniej w polarnych kraterach Księżyca znajduje się... elektryczność. Przypomnijmy, że za powstawanie cząsteczek wody w księżycowej glebie miałyby być odpowiedzialne reakcje powodowane przez wiatr słoneczny - czyli rozrzedzony, ale nieustanny strumień cząstek: protonów i elektronów, emitowany przez Słońce. Ten sam wiatr słoneczny prawdopodobnie powoduje powstawanie w księżycowych kraterach ładunków elektrycznych, które mogą sięgać setek volt. Księżyc jest ustawiony względem Słońca w ten sposób, że wiatr słoneczny przepływa nad biegunowymi kraterami, ocierając się o ich krawędzie. Komputerowe symulacje pokazują, że taki strumień cząstek zachowuje się podobnie, jak zwykły ziemski wiatr: załamuje się na krawędziach i „zawiewa" do środka dolin i głębokich kraterów, sięgając ich dna. Różnie jednak zachowują się cząstki słonecznego wiatru, wielokrotnie lżejsze elektrony docierają w większości do dna i przeciwległej ściany krateru, przekazując im swój ujemny ładunek elektryczny. Dodatnio naładowane protony są znacznie cięższe i nie zmieniają tak bardzo kierunku lotu; wpadają do wewnątrz znacznie rzadziej, co powoduje nierównowagę i powstawanie na wewnętrznych ścianach krateru silnego ładunku elektrostatycznego. Wg symulacji najsilniejszy ładunek powstaje po zawietrznej stronie krateru. Oczywiście taki ładunek nie gromadzi się w nieskończoność. W końcu oddziaływanie ujemnego ładunku z dodatnimi cząstkami wiatru słonecznego spowoduje przepływ prądu i rozładowanie napięcia. Przewodnikiem dla takiego przepływu może być naładowany ujemnie i unoszący się księżycowy pył. Odkrycie to może wyjaśnić niektóre zjawiska widziane przez astronautów programu Apollo. Orbitujący w Module Dowodzenia widzieli delikatne rozbłyski światła na księżycowym horyzoncie podczas wschodu Słońca. Pozostawione w dolinie Taurus-Littrow przez misję Apollo 17 instrumenty Lunar Ejecta i Meteorite Experiment rejestrowały uderzenia pyłu podczas przekraczania linii terminatora (kiedy wiatr słoneczny wieje poziomo ponad gruntem), które mogły być spowodowane takim właśnie rozładowywaniem się ładunków. Kiedy wreszcie ponowna misja załogowa na Księżyc dojdzie do skutku, takie zgromadzone w kraterach i dolinach ładunki elektryczne mogą być niebezpieczne dla elektronicznego wyposażenia, a być może nawet ludzi. Dlatego konieczne jest ich wcześniejsze zbadanie. W najbliższym czasie naukowcy biorący udział w projekcie Dynamic Response of the Environment at the Moon (DREAM) z NASA Lunar Science Institute chcą przeprowadzić dokładniejsze, trójwymiarowe symulacje efektu „elektryzowania się" kraterów i dowiedzieć się dokładniej, jak rozłożenie ładunków przebiega w rzeczywistości.
  2. Ponowna amerykańska załogowa wyprawa na Księżyc stoi dziś pod poważnym znakiem zapytania. Powodem są oczywiście finanse - od momentu udowodnienia w latach sześćdziesiątych, że technika amerykańska jest lepsza niż radziecka, zniknęły ideologiczne i ambicjonalne powody, dla których topiono w misje Apollo gigantyczne kwoty. Dziś przeważa zimna kalkulacja ekonomiczna, zaś od momentu rozpoczęcia się światowego kryzysu jeszcze bardziej bezwzględna. A tymczasem ostatnie badania wskazują, że Księżyc może być znacznie ciekawszy, niż dotąd sądzono. Odkrycie w księżycowej glebie pokaźnych ilości wody to nie tylko świetna wiadomość dla zwolenników załogowej bazy na naszym satelicie. To również doskonały cel badań, bo podobny mechanizm gromadzenia i powstawania wody mógłby istnieć także na innych planetach. Misja na Księżyc zapewne jednak wreszcie się odbędzie, NASA planuje ją na przyszłą dekadę. Ludzi mają jednak wspomagać wysoko wykwalifikowane roboty. Skoro samodzielne łaziki doskonale radzą sobie na odległym Marsie, wzbudzając nawet powszechne zainteresowanie, to również na Księżycu roboty będą poczynać sobie doskonale, a dzięki niewielkiej odległości w zasadzie możliwe jest nawet manualne nimi sterowanie. Przygotowany w kalifornijskich zakładach Jet Propulsion Laboratory (Laboratorium Napędów Odrzutowych - jeden z ważniejszych oddziałów NASA) robot jest trochę niecodzienny. ATHLETE (czyli All Terrain Hex-Limbed Extra Terrestrial Explorer) to sześcionożny pojazd, potrafi przenosić duże ciężary na swoim sześciokątnym, płaskim grzbiecie, kopać dziury, podnosić różne obiekty przy pomocy narzędzi mocowanych do kół, kręci stereoskopowe filmy swoją kamerą, bez trudu nawiguje i porusza się po każdej nawierzchni. Prototyp o wysokości ponad 180 centymetrów i średnicy ponad 270 centymetrów, czyli połowę mniejszy od planowanej ostatecznej wersji, potrafi podróżować z prędkością 10 kilometrów na godzinę. Ma jednak spore ograniczenia. Usprawnieniem pojazdu zajął się się robotyk-eksperymentator i profesor informatyki Marty Vona. Zmodyfikował oryginalną koncepcję, dodając nowe stawy, które działają jak łokcie i nowe człony, pełniące funkcję przedramion. Odbyło się to wirtualnie, poprzez modyfikację graficznego projektu robota przy pomocy algorytmów. Zaprojektował również odpowiedni interfejs komputerowy, przy pomocy którego operator może łączyć na różne sposoby zaprojektowane wirtualne przeguby z modelem rzeczywistego robota. Pozwala to na wykonywanie wielu trudnych, wymagających koordynacji zadań, tak samo, jak gdyby wirtualny model istniał naprawdę. Przyspiesza to zdecydowanie rozwój projektu, oszczędzając i czas i pieniądze. Roboty to duże i kosztowne projekty - mówi Vona. - Więc lepiej być zawczasu pewnym, jak będą sobie radzić w konkretnych okolicznościach. Idealnie byłoby, gdyby roboty i ludzie pracowali jako zespół. Marty Vona współpracował już wcześniej z Jet Propulsion Laboratory, gdzie opracował oprogramowanie dla marsjańskich łazików Spirit i Opportunity Mars rovers. W 2004 NASA roku otrzymała nagrodę Software of the Year Award za swoją pracę. Obecnie wykłada przedmioty informatyczne i komputerowe na Northeastern University w Bostonie. Projekt rozwoju ATHLETE finansowała National Science Foundation.
  3. Dzięki przeprowadzonemu niedawno bombardowaniu Księżyca NASA dowiedziała się, że na Srebrnym Globie występują duże ilości wody. Odkrycie to oznacza, że założenie stałej bazy księżycowej będzie łatwiejsze, niż dotychczas przypuszczano. Udowodniono przy tym, że niedawne doniesienia były prawdziwe. Od dłuższego już czasu wiedziano, że na biegunach Księżca uwięzione są duże ilości wodoru. Misja LCROSS pokazała, że woda występuje w różnych miejscach i jest jej więcej. Od czasu uderzenia LCROSS w krater Cabeus, naukowcy bez przerwy analizują uzyskane informacje. Jesteśmy niezwykle podekscytowani - mówi Anthony Colaprete, główny badacz z Ames Research Center. Wiele dowodów pokazuje, że woda jest obecna zarówno w pyle powstałym wskutek uderzenia, jak i wypełniła otwór powstały wskutek uderzenia LCROSS - dodaje. Naukowców czeka jeszcze wiele pracy. Misja dostarczyła bowiem olbrzymiej ilości danych. Obok śladów wody z Cabeusa znaleźliśmy też ślady wielu interesujących substancji. Stale zacienione obszary Księżyca to prawdziwe lodowate pułapki, które od miliardów lat gromadzą materiał - stwierdził Colaprete.
  4. Kallisto to trzeci co do wielkości księżyc w Układzie Słonecznym. Jego powierzchnia jest najciemniejsza spośród powierzchni księżyców galileuszowych, odbija tylko ok. 17% światła słonecznego. Ludzkość musiałaby żyć tam w ciągłej ciemności, a oprócz tego poradzić sobie z problemem zabójczego promieniowania. Długa podróż w kierunku Jowisza naraziłaby kosmicznych podróżników na zbyt wielką dawkę radioaktywnych substancji. Dlatego w planach naukowców pojawia się wizja stworzenia nuklearnego silnika rakietowego, który pozwoliłby mierzyć czas podróży nie latami, a miesiącami. Oprócz tego ludzie musieliby poradzić sobie z przeżyciem promieniowania już na samej powierzchni księżyca. Rozwiązaniem dla przyszłych zdobywców kosmosu jest gruba powłoka lodowa, z której można stworzyć schrony, odbijające promieniowanie. Ta powłoka na Kallisto mierzy aż 200 km! Pod skorupą lodową znajduje się najprawdopodobniej ocean słonej wody o głębokości około 10 km. Pod oceanem jest już prawdopodobnie mieszanka 60%krzemu z 40% wody, przy czym im głębiej, tym więcej krzemu. Na Kallisto można też utworzyć bazę do eksploracji innego księżyca Jowisza - Europy. Powierzchnia tego księżyca jest bardzo równa i płaska. Stwierdzono niewiele wzniesień, które byłyby wyższe od kilkuset metrów. Nie groziłyby nam wspinaczki na olbrzymie szczyty, jak na innych ciałach niebieskich Z badań prowadzonych przez naukowców wynika, że w ciepłej wodzie tego księżyca może istnieć prymitywne życie. Na zdjęciach zrobionych przez sondę Galileo widać w pęknięciach ciemniejsze zabarwienie powierzchni - to najprawdopodobniej sole i uwodniony kwas siarkowy. Wiadomo także, że powierzchnia Europy podlega dynamicznym zmianom. Chcesz wiedzieć więcej o możliwości zamieszkania na Kallisto i skolonizowania Europy? Oglądaj Kosmiczne wyzwania na Discovery Science, w piątek, 30 października o godzinie 21!
  5. Księżyc mógł nie powstać w wyniku zderzenia Ziemi z inną planetą, lecz został przez nią przygarnięty. Robert Malcuit z Denison University, który od lat domagał się alternatywnego wyjaśnienia pochodzenia naszego satelity, uważa, iż Srebrny Glob uformował się na orbicie Merkurego, a następnie oddalał się od niego, aż przechwyciły go oddziaływania grawitacyjne Ziemi. Obecnie dominującą teorią wyjaśniającą pochodzenie Księżyca jest teoria wielkiego zderzenia. Postuluje ona, że doszło do kolizji młodej Ziemi z planetą wielkości Marsa, zwaną Theą, a rzadziej Orfeuszem. Zdarzenie to miało ponoć miejsce 4,533 mld lat temu. Malcuit uważa jednak, że Księżyc ma kila ciekawych cech, których teoria ta nie wyjaśnia. Na samej Ziemi też znaleziono dowody sprzeczne z hipotezą zderzenia. Chodzi m.in. o odkryte w Australii minerały sprzed 4 mld lat, sugerujące, że nasza planeta była zbyt chłodna, by przetrwać kolizję prowadzącą do utworzenia Srebrnego Globu. W modelu wielkiego zderzenia wszystko jest gorące, gorące i jeszcze raz gorące. Nie zgadza się to z tym, co widzimy w zapisie geologicznym. W tym okresie Ziemia była na tyle chłodna, aby na jej powierzchni znajdował się ocean. Od lat 80. ubiegłego wieku Malcuit prowadzi badania z wykorzystaniem modelowania komputerowego. Uważa on, że oddziaływania grawitacyjne Ziemi mogły przyciągnąć Księżyc. Wg niego, początkowo orbita satelity była wysoce eliptyczna – przebiegał on blisko Ziemi, a następnie bardzo się oddalał i tak 8 razy w roku. Przy każdym takim minięciu siły grawitacyjne rozciągały Ziemię w pobliżu równika o 18 do 20 km. Towarzyszyło temu wzbudzenie w obrębie płaszcza i skorupy ziemskiej. Skały znajdujące się bliżej biegunów najprawdopodobniej nie podlegały już takiemu procesowi. Dopóki orbita Księżyca nie ustabilizowała się ok. 3 mld lat temu, jego górne warstwy stopiły się pod wpływem tarcia grawitacyjnego. Inni specjaliści zgadzają się, że teoria powstania Księżyca może zostać zrewidowana, a nawet zastąpiona inną, ale niekoniecznie zaproponowaną przez Malcuita. Podkreślają oni, że fakt, iż Ziemia była przed 4 mld lat chłodna, o niczym nie świadczy, gdyż ciepło uderzenia zwyczajnie szybko się rozproszyło.
  6. Dotychczas uważano, że woda znajdująca się na Księżycu jest zamknięta w postaci lodu w niektórych miejscach Srebrnego Globu. Najnowsze dane wskazują jednak, że wody jest znacznie więcej i jest ona dość równomiernie rozłożona. To oznacza, że przyszłe ekspedycje naukowe będą mogły korzystać z księżycowej wody. Dane z trzech satelitów, które w ostatnich latach okrążyły Księżyc wskazują, że przynajmniej w niektórych jego rejonach pod powierzchnią znajduje się warstwa wody. Zespół naukowców z Brown University, University of Maryland i U.S. Geological Survey przeanalizował dane z pomiarów dostarczoncych przez sondy Cassini, Deep Impact i indyjską Chandrayaan 1. Instrumenty wszystkich pojazdów wykazały obecność powiązanych tlenu i wodoru w wielu miejscach Księżyca. Również tam, gdzie za dania temperatury sięgają punktu wrzenia wody. Najwięcej znaleziono je w pobliżu obu biegunów. Samo istnienie OH nie jest jeszcze mocnym dowodem występowanie wody. Może być to hydroksyl. Jednak badacze z University of Maryland znaleźli we wskazaniach sondy Deep Space dowody na występowanie zarówno wody jak i hydroksylu. Lori Feaga i Jessica Sunshine uważają, że w tonie gruntu można znaleźć około litra wody. Nawet w przyszłości pozyskanie tej wody może być trudne. Jest jednak i dobra wiadomość. Gdy powierzchnia Księżyca się ogrzewa, woda migruje w kierunku biegunów, gdzie koncentruje się w takich ilościach, że być może już teraz będzie użyteczna. Odpowiedź na pytanie, ile jest jej na biegunach, możemy poznać już wkrótce. NASA ma bowiem zamiar "zbombardować" Księżyc i przeanalizować uzyskane dzięki temu próbki. Uczeni nie wiedzą na pewno, skąd na Księżycu woda. Istnieje kilka możliwych odpowiedzi. Jedna z teorii zakłada, że mogła być ona przyniesiona przez komety. Z kolei inna mówi o meteorytach, których bombardowanie przyczyniło się do odsłonięcia zbiorników istniejących pod powierzchnią ziemskiego satelity. Możliwe też, że w tworzeniu wody ma udział wiatr słoneczny, składający się z wodoru i helu. Niewykluczone, że wodór wiąże się z obecnym w gruncie księżycowym tlenem.
  7. Dzisiaj, pomiędzy godziną 13.30 a 13.34 czasu polskiego, NASA zbombarduje Księżyc. To część misji pojazdu LCROSS, o której pisaliśmy przed kilkoma miesiącami. LCROSS (Lunar Crater Observation and Sensing Satellite) ma skierować 12-metrowy pusty, górny człon rakiety Centaur w stronę jednego z kraterów i doprowadzić do kolizji, która ma wybić dziurę w powierzchni. Centaur oddzieli się od LCROSS na wysokości 87 000 kilometrów nad powierzchnią Księżyca i po 9 godzinach i 40 minutach uderzy w satelitę Ziemi z prędkością 2,5 kilometra na sekundę. W wyniku zderzenia z powierzchni uniesie się ponad 350 ton pyłu, a w Księżycu zostanie wybita dziura o średnicy 20 i głębokości 4 metrów. Po kolizji LCROSS wleci w unoszący się pył i przeprowadzi jego badania, które mają dać odpowiedź na pytanie, czy w miejscu uderzenia (na jednym z biegunów Księżyca), znajduje się zamrożona woda. Kilka minut później sam LCROSS uderzy w powierzchnię Srebrnego Globu. O godzinie 12.15 czasu polskiego NASA rozpocznie bezpośrednią, 1,5-godzinną relację telewizyjną z całego wydarzenia. Więcej o kosmosie i możliwości życia na innych planetach dowiemy się z "Kosmicznych wyzwań"
  8. NASA odkryła niemal niewidoczny gigantyczny pierścień wokół Saturna. Jest on tak wielki, że zmieściłoby się w nim miliard planet wielkości Ziemi. Pierścień odchylony jest o 27 stopni od głównych pierścieni planety. Znaleziono go w odległości 6 milionów kilometrów od Saturna, a z drugiej strony planety jest od oddalony od niej o 12 milionów kilometrów. Jego średnica jest 300-krotnie większa od średnicy Saturna. Pierścienia nie zauważono dotychczas, gdyż składa się on z cząstek kurzu i lodu, które są bardzo od siebie oddalone. Odbijają one ponadto niewiele światła. Zauważono go dopiero dzięki teleskopowi Spitzer, który dostrzegł go dzięki temu, iż temperatura pierścienia wynosi 80 kelwinów (-193,15 stopnia Celsjusza), a więc jest on cieplejszy od otoczenia. Uczeni spekulują, że nowo odkryty pierścień został utworzony przez resztki komet, które uderzają w księżyc Saturna, Febe, orbitujący wewnątrz pierścienia. Istnienie pierścienia może za to wyjaśnić tajemnicę innego księżyca - Japeta. Odkryty w 1671 roku od razu zwrócił uwagę astronomów swoją niezwykłą cechą. Jedna z jego półkul jest bowiem wyraźnie ciemniejsza od drugiej. Astronomowie dotychczas nie byli zgodni, dlaczego się tak dzieje. Teraz naukowcy mówią, że być może pył z gigantycznego pierścienia, który orbituje w kierunku przeciwnym do Japeta, opada na połowę księżyca, gdy ten się do niego zbliża.
  9. Sądzimy, że istnieją niskoenergetyczne ścieżki pomiędzy planetami i księżycami, które umożliwią znacznie zmniejszenie ilości paliwa potrzebnego do eksploracji Układu Słonecznego - mówi profesor Shane Ross z Virginia Tech. Te ścieżki to rodzaj grawitacyjnych prądów morskich, które ułatwiają podróż w określonym kierunku. Mają one istnieć wokół dużych obiektów w systemie słonecznym i pomiędzy nimi. To rodzaj tub, które zaczynają jako bardzo wąskie, a później się rozszerzają, mogą się też dzielić. Jeśli jesteś na orbicie Ziemi i trafisz na taką tubę, musisz mieć tylko tyle paliwa, by zmienić swoją prędkość, a dzięki tubie za darmo zmienisz trajektorię - dodaje profesor Ross. Jego zdaniem, wykorzystanie tub podczas misji sondy Genesis pozwoliłoby na 10-krotne zmniejszenie ilości potrzebnego paliwa. Ross dodaje, że korytarze grawitacyjne są szczególnie przydatne podczas eksploracji księżyców. Gdy już dotrzemy do jakiejś planety, która ma własne tuby, możemy wykorzystać je, by za darmo dotrzeć do jej księżyca. Potrzeba tylko troszkę paliwa na korektę kursu - mówi. Stwierdza przy tym, że zawsze będziemy potrzebowali trochę paliwa. Kosmiczne "prądy morskie" nie są zbyt szybkie. Wykorzystanie ich do podróży na Marsa bez użycia paliwa zajęłoby tysiące lat.
  10. W piśmie Monthly Notices of the Royal Astronomical Society ukaże się wkrótce artykuł, które autor twierdzi, że teleskop Kepler jest w stanie zauważyć nie tylko potencjalnie zamieszkane planety, ale również księżyce, na których może rozwijać się życie. David Kipping, autor artykułu, to astronom z University College London, który specjalizuje się w poszukiwaniu egzoksiężyców, czyli księżyców spoza naszego Układu Słonecznego. Uważa on, że tego typu ciała będzie łatwo znaleźć wokół gazowych gigantów. Jeśli te planety będą znajdowały się w takiej odległości od swoich gwiazd, że będzie możliwe występowanie wody w stanie ciekłym, to ich księżyce mogą być zamieszkane. Zdaniem uczonego, Kepler jest w stanie wykryć obiekty o masie zaledwie 20% masy Ziemi. Kepler ma w swoim zasięgu około 25 000 gwiazd, które może badać. Jednak uruchomienie większego programu badawczego i wykorzystanie urządzenia klasy Keplera pozwoliłoby na sprawdzenie ponad miliona gwiazd i poszukiwanie w ich okolicach potencjalnie zamieszkanych księżyców. Dlatego też Kipping uważa, że Kepler powinien skupiać się nie tylko na planetach, ale również na księżycach.
  11. Astronomowie pracujący zatrudnieni przy projekcie WASP (Wide Angle Search for Planets) dokonali drugiego w ostatnim czasie odkrycia niezwykłej planety. "Gorący Jowisz", czyli gazowy gigant nazwany Wasp-18b, okrąża gwiazdę Wasp-18 znajdującą się w odległości około 330 lat świetlnych od Ziemi. Obiekt wielkości Jowisza charakteryzuje się masą 10-krotnie większą od tej planety. Najdziwniejsza jest jednak jej orbita. Wasp-18b znajduje się w odległości zaledwie 3 milionów kilometrów od swojej gwiazdy. To 50-krotnie bliżej niż odległość od Słońca do Ziemi. Czas obiegu nowo odkrytej planety wokół jej gwiazdy to zaledwie 22,6 godziny. Dotychczas znamy ponad 370 planet poza Układem Słonecznym i Wasp-18b jest drugą o tak krótkiej orbicie. Planeta, która znajduje się tak blisko gwiazdy powinna opaść na nią w ciągu miliona lat. Tymczasem Wasp-18b liczy sobie około miliarda lat. Nie powinna już zatem istnieć. Astronom Douglas P. Hamilton z University of Maryland, który jest autorem komentarza do raportu na temat niezwykłej planety, ma kilka teorii, które mogą wyjaśniać fakt ciągłego istnienia Wasp-18b. Być może, twierdzi, gwiazda Wasp18 ma tysiące razy mniej energii, niż się można spodziewać, a więc przyciąga planetę z mniejszą siłą. To przyciąganie powoduje, że po każdym okrążeniu planeta ma mniej energii, by utrzymać orbitę i w końcu spada na gwiazdę. Jednak, jak zauważa Hamilton, jeśli rzeczywiście gwiazda posiada tysiące razy mnie energii, to oznacza, że współczesna nauka nie do końca rozumie składu i charakterystyk gwiazd podobnych do Słońca. Drugie wyjaśnienie jest takie, że Wasp-18b stosunkowo niedawno została wybita ze swojej orbity np. przez inną planetę. Jeśli tak, to w ciągu najbliższych lat naukowcy będą w stanie zaobserwować jej powolne opadanie na gwiazdę. Trzecią dopuszczaną przez Hamiltona możliwością jest przeoczenie czegoś przez naukowców. Być może istnieje jakaś właściwość gwiazd lub sił oddziałujących między nimi a planetami, której nie rozumiemy. Hamilton zdaje się skłaniać ku trzeciej możliwości. Przywołuje tutaj tajemnicę z naszego sąsiedztwa. Fobos, księżyc Marsa, jest tak blisko swej planety, że powinien na nią spaść w ciągu 30 milionów lat. Tymczasem liczy nasz Układ Słoneczny liczy sobie 4-5 miliardów lat.
  12. Gary Peach, 73-letni obecnie brytyjski naukowiec, twierdzi, że jest autorem słów wypowiedzianych przez Neila Armstronga po wylądowaniu na Księżycu: To jeden mały krok dla człowieka, lecz wielki skok dla ludzkości. Myślałem, że będąc Amerykanami, mogą w kluczowym momencie powiedzieć coś w stylu "o kur.." lub "patrz na ten cholerny kurz". Czułem, że to się nie będzie nadawało do cytowania po wieczność w podręcznikach do historii. Podczas przygotowań do startu sławnej misji Brytyjczyk przebywał w Canberra Deep Space Communication Complex, stacji śledzącej ruchy sztucznych satelitów. Podobno poproszono go o opinię, co mogłaby powiedzieć pierwsza osoba spacerująca po Księżycu. Peach zasugerował to, co usłyszeliśmy w 1969 r. Scenariusz został zrealizowany, ponieważ Amerykanin stacjonujący w tej samej bazie przekazał jego pomysł kontroli lotów NASA.
  13. Płazy na całym świecie synchronizują swój cykl rozrodczy z fazami Księżyca. Do tej pory nikt nie zauważył, że lubią kopulować w czasie pełni. Zwierzęta wykorzystują cykl księżycowy jako rodzaj terminarza, by samce i samice spotkały się w jednym miejscu w określonym czasie (Animal Behaviour). W ten sposób zwierzęta maksymalizują szanse na zapłodnienie i minimalizują ryzyko zjedzenia przez drapieżniki. W 2005 r. Rachel Grant z Open University obserwowała salamandry żyjące w pobliżu jeziora w środkowych Włoszech. Nagle zorientowała się, że podczas pełni na drodze aż zaroiło się od ropuch. To mógł być przypadek, ale w następnym miesiącu codziennie chodziłam po tej samej drodze o zmierzchu i liczba ropuch wzrasta w miarę przybywania księżyca, osiągając szczyt w czasie pełni, a potem spadała. Zaciekawiona biolog przejrzała literaturę przedmiotu, ale nie natrafiła właściwie na żadne wzmianki na ten temat. Postanowiła więc zająć się tym zagadnieniem sama i wróciła do Włoch w kolejnych latach, czyli w 2006 i 2007 roku. Porównała swoje dane z obejmującą dekadę analizą zwyczajów rozrodczych żab i ropuch w sadzawce koło Oksfordu (autorem tych badań był promotor jej pracy doktorskiej Tim Halliday) oraz ze studium walijskich ropuch i traszek (jego realizatorką była Elizabeth Chadwick z Cardiff University). Przeanalizowaliśmy dane i odkryliśmy istnienie wpływu księżycowego we wszystkich 3 miejscach – opowiada Grant. Ropucha zwyczajna (Bufo bufo) przybywała na gody, kopulowała i składała jaja w okolicach pełni. Podobnie zachowywała się żaba trawna (Rana temporaria). Fazy Księżyca oddziaływały też na traszki, ale w nieco mniej oczywisty sposób. Szczyty gromadzenia się traszek zwyczajnych (Lissotriton vulgaris), helweckich (L. helveticus) i grzebieniastych (Triturus cristatus) przypadały zarówno na pełnię, jak i nów. Traszki unikały jednak przybywania na miejsce odbywania godów w trzeciej kwadrze, być może dlatego, że pole magnetyczne Ziemi jest wtedy najsilniejsze. Trzeba to będzie dogłębniej zbadać. Brytyjczycy przeanalizowali też historyczne dane dotyczące ropuchy azjatyckiej. Zauważyli, że samice owulują w pobliżu pełni. Grant podejrzewa, że wpływ Księżyca na poszczególne gatunki będzie zależny choćby od ekologii gatunku i jego strategii reprodukcyjnych. Jej zespół zamierza stworzyć model statystyczny, który uwzględnia wiele czynników, w tym pogodę, geomagnetyzm i cykl księżycowy. Biolog uważa, że precyzyjne przewidywanie masowych ruchów płazów pozwoli je lepiej chronić.
  14. Jeden z kraterów na Księżycu zostanie nazwany na cześć Michaela Jacksona. W poniedziałek (6 lipca) zadecydował o tym zarząd Lunar Republic Society. Jacko był właścicielem parceli o powierzchni niemal 5 km kwadratowych. Działka z przyległym 22-km kraterem znajduje się na terenie Jeziora Marzeń (Lacus Somniorum), zlokalizowanego na widocznej części Srebrnego Globu. Krater, już wkrótce Michaela Josepha Jacksona, nosił dotąd nazwę Posejdonios J. Oprócz dużej księżycowej posiadłości, którą nabył w 2005 r., piosenkarz mógł się też pochwalić mniejszym skrawkiem Księżyca z okolic Morza Oparów (Mare Vaporum). Na Księżycu Jacksonów nie brakuje. Poza królem popu w ten sam sposób upamiętniono szkockiego astronoma Johna Jacksona. Dla niego zarezerwowano krater o średnicy 71 km na niewidocznej stronie naturalnego satelity Ziemi. O przemianowaniu nie zadecydowały wyłącznie względy właścicielskie, lecz także, a właściwie przede wszystkim artystyczne. Nie ma chyba nikogo, kto nigdy nie widziałby księżycowego chodu (moonwalk) Michaela... Krater Michaela Josepha Jacksona stanowi część grupy kraterów Posejdoniosa (greckiego filozofa z Apamei, astronoma, historyka i geografa, nauczyciela Cycerona). W sumie naliczono ich 12. Mają one bardzo różne rozmiary - najmniejsze są zaledwie 2-kilometrowe - a ten przypisany Jacksonowi należy do największych i ma aż 650 m głębokości. W klasyfikacji Félixa Chemli Lamècha krater ten występował pod nazwą Héllène.
  15. Dzisiaj z Przylądka Canaveral wystartuje rakieta Atlas V, która zabierze w przesteń kosmiczną dwa urządzenia - Lunar Reconnaissance Orbiter (LRO) oraz Lunar Crater Observation and Sensing Satellite (LCROSS). Pierwszy z nich będzie badał powierzchnię Księżyca, sporządzał mapy oraz szukał miejsc do lądowania dla przyszłych misji załogowych. LRO będzie obiegał Księżyc na wysokości 50 kilometrów, bliżej niż jakiekolwiek urządzenie przed nim. Bardziej interesującą misję ma jednak LCROSS. Ma on skierować 12-metrowy pusty, górny człon rakiety Centaur w stronę jednego z kraterów i doprowadzić do kolizji, która ma wybić dziurę w powierzchni. Centaur oddzieli się od LCROSS na wysokości 87 000 kilometrów nad powierzchnią Księżyca i po 9 godzinach i 40 minutach uderzy w satelitę Ziemi z prędkością 2,5 kilometra na sekundę. W wyniku zderzenia z powierzchni uniesie się ponad 350 ton pyłu, a w Księżycu zostanie wybita dziura o średnicy 20 i głębokości 4 metrów. Po kolizji LCROSS wleci w unoszący się pył i przeprowadzi jego badania, które mają dać odpowiedź na pytanie, czy w miejscu uderzenia (na jednym z biegunów Księżyca), znajduje się zamrożona woda. Kilka minut później sam LCROSS uderzy w powierzchnię Srebrnego Globu. Pyły unoszące się z Księżyca po kolizjach mają wznieść się na wysokość co najmniej 10 kilometrów i powinny być widoczne z Ziemi. Obecnie celem LCROSS-a jest niewidoczny z Ziemi krater. Jednak może się to zmienić, a o ostatecznym celu zostaniemy poinformowani 30 dni przed planowanym uderzeniem.
  16. Freeman Dyson, fizyk teoretyk i futurolog, uważa, że powinniśmy szukać życia pozaziemskiego tam, gdzie najłatwiej je wykryć, a nie tam, gdzie jest, wg nas, prawdopodobne. Specjalne wskazanie dla sond to skute lodem księżyce i komety, gdzie warto skupić się na tropieniu kwiatów podobnych do tych spotykanych w Arktyce. Na konferencji Przyszłość rodzaju ludzkiego w kosmosie przekonywał, że naukowcy zbyt często koncentrują się na prawdopodobieństwie, a że nie mamy aż tak bujnej wyobraźni jak natura, możemy się mylić. Wspominał o Europie, czwartym co do wielkości księżycu Jowisza. Jego zewnętrzne warstwy są zbudowane z wody: na wierzchu znajduje się lodowa skorupa, a pod nią ocean. Astrobiolodzy nie wykluczają więc, że można tam znaleźć organizmy żywe. Dokładna grubość skorupy lodowej nie jest znana, a oszacowania bardzo się od siebie różnią. Jedni wspominają o jednym kilometrze, a inni o ponad stu. Dyson jest przekonany, że życie dałoby się dostrzec z pokładu promów kosmicznych, gdyby zasiedliło ono pęknięcia w lodzie pokrywającym ocean. Dywaguje on, że jeśli kwiaty miałyby kształt paraboli, byłyby w stanie skupić w swoim wnętrzu przyćmione promieniowanie słoneczne. Tak właśnie postępują ziemskie kwiaty arktyczne. Fizyk brytyjskiego pochodzenia utrzymuje, że rośliny można by wykryć dzięki pewnemu zjawisku – retrorefleksji. Jest to zmiana kierunku padania promieni na odwrotny od dotychczasowego, czyli w kierunku źródła światła. Tak działają np. materiały odblaskowe. Jeśli roślinom udałoby się przemieścić do stosunkowo niedużych obiektów w dwóch rezerwuarach komet – Pasie Kuipera i Obłoku Oorta – zmniejszyłaby się oddziałująca na nie grawitacja, a one same mogłyby urosnąć, by zmaksymalizować zdolność skupiania promieni słonecznych.
  17. Kiperzy i miłośnicy wina przekonują, że na ocenę smaku najlepszych i najstarszych nawet trunków wpływa księżycowy kalendarz biodynamiczny. Niektórzy dystrybutorzy z Wielkiej Brytanii zrezygnowali wręcz z sesji smakowania w niektóre dni, ponieważ wtedy wszystkie alkohole wydawały się sędziom niedobre. Tesco oraz Marks & Spencer zachęcają do kipowania wyłącznie w ramach dni kwiatowych czy owocowych - wtedy bowiem wina smakują najlepiej - nigdy podczas dni korzeniowych. Do idei przekonali się nawet sceptycy, a wśród nich Jo Ahearne, winiarz zaopatrujący M&S. Parę lat temu jednego dnia próbowaliśmy 140 win i smakowały wyśmienicie, następnego powtórzyliśmy procedurę w identycznej kolejności. Różnica była zdumiewająca. Były jak niebo i ziemia, bez porównania. Drugiego dnia wszystkie stały się przytępione, gorzkie. Potem uświadomiliśmy sobie, że z dnia kwiatowego przeszliśmy do korzeniowego. Niektóre magazyny winiarskie zaczęły zalecać swoim czytelnikom, by przed otwarciem egzemplarza na specjalne okazje zerknęli najpierw do kalendarza biodynamicznego na dany rok. Ahearne sądzi, że skoro po rozlaniu do butelek wino nadal ewoluuje, podobnie jak woda morska, może reagować na zbliżanie się i oddalanie Księżyca. W dniu owocowym najwyraźniejszą nutą smaku jest właśnie owocowość, wzmaga się także zapach alkoholu. W dniach korzeniowych wszystko ulega stępieniu. Nie oznacza to, że powinniśmy wtedy w ogóle zrezygnować z wina. Zamiast czerwonego należy jednak wybrać białe, ponieważ zawiera ono mniej tanin, maleje więc wpływ niekorzystnej zmiany właściwości organoleptycznych.
  18. Obserwując księżyce możemy dowiedzieć się sporo o powierzchni planet, które okrążają. Tak przynajmniej uważa Sally Langford, astrofizyk z University of Melbourne. Lądy i oceany inaczej odbijają światło. Dociera ono do Księżyca, a różnice w odbiciu można obserwować na ciemnych fragmentach powierzchni wschodzącego satelity Ziemi. W arktykule opublikowanym w piśmie Astrobiology Langford opisuje, jak obserwowała na Księżycu refleksy światła odbijanego przez Ziemię. Ich intensywność zmienia się w miarę obracania się naszej planety. Zdaniem Lanford, opracowana przez nią technika przyda się przy obserwacji odległych planet, których powierzchni nie możemy zobaczyć. Możemy jednak badać różnice w intensywności docierającego do nas światła i na tej podstawie stwierdzimy, od czego - lądu czy wody - zostało ono odbite.
  19. Firma Paragon Space Development, która jest autorem pomieszczeń dla zwierząt i roślin żyjących w warunkach zmniejszonej grawitacji, chce obecnie zaprojektować księżycowe szklarnie. Urządzenia trafią na Srebrny Glob wraz z lądownikiem Odyssey Moon. Na powierzchni ziemskiego satelity mają kiełkować nasiona gorczycy. Zdjęcie roślin kiełkujących i kwitnących na Księżycu ma mieć też wydźwięk propagandowy. Twórcy szklarni mają nadzieję, że zwiększy ono społeczne zainteresowanie podbojem kosmosu. Zbudowane szklarni nie będzie łatwe. Musi ona przetrwać podróż, wytrzymać warunki panujące na Księżycu, zapewnić odpowiednie warunki rozwoju roślinom oraz być na tyle przezroczysta, by udało się wykonać dobrej jakości zdjęcie. Pokazany prototyp zbudowano ze szkła wzmocnionego metalem. Miał on 9 centymetrów średnicy i 30 centymetrów wysokości. Wystarczyłby do wyhodowania 6 roślin. Już teraz wiadomo, że trzeba go zmodyfikować. Temperatury na Księżycu wahają się od -170 do +100 stopni Celsjusza. Ponadto trzeb ochronić rośliny przed promieniowaniem kosmicznym. Z tego też powodu wybrano szybko kiełkującą gorczycę. Twórcy szklarni chcą bowiem uniknąć zimnej księżycowej nocy, trwającej 14 ziemskich dni, a gorczyca może rozwinąć się w ciągu księżycowego dnia, czyli ziemskich dwóch tygodni. Konieczne jest też opracowanie automatycznego systemu nawodnienia. Nasion nie można nawodnić przed startem z Ziemi, gdyż mogą wykiełkować zanim trafią na księżyc. Muszą dostać wodę dopiero na miejscu. Odyssey Moon ma wystartować przed końcem 2011 roku. Jeśli misja się powiedzie, twórcy lądownika otrzymają 20 milionów nagrody w ramach Lunar X Prize.
  20. Na jednym z najbardziej oddalonych pierścieni Saturna przez przypadek dostrzeżono maleńki punkcik. Okazało się, że to kolejny księżyc tej planety. Wytropiono go na zdjęciach wykonanych przez sondę Cassini, bezzałogową misję kosmiczną NASA, Europejskiej Agencji Kosmicznej i włoskiej agencji ASI. Wystrzelono ją 15 października 1997 roku. W orbitę Saturna wleciała w lipcu 2004 r. Miniaturowy księżyc ma zaledwie pół kilometra średnicy. Na razie nie nadano mu jeszcze nazwy, lecz wiadomo, że porusza się w obrębie łuku pierścienia G. Naukowcy wpadli na jego ślad, analizując fotografie wykonywane na przestrzeni 600 dni. Przed wysłaniem sondy Cassini pierścień G był zaledwie dziwnym skupiskiem pyłu, niepowiązanym z żadnymi znanymi księżycami. Odkrycie tego księżyca oraz inne dane z sondy pomogły nam zrozumieć ten tajemniczy pierścień – opowiada Matthew Hedman, analityk materiału zdjęciowego z Uniwersytetu Cornella. Pierścienie Saturna nazywano w kolejności odkrywania. G jest 6., licząc od planety. Na mniej więcej jednej szóstej jego długości rozciąga się dość jasny i wąski łuk (ma szerokość 250 km). Malutki księżyc znajduje się właśnie tu. Badacze sfotografowali obiekt 15 sierpnia 2008 roku, a następnie potwierdzili jego obecność na dwóch wcześniejszych zdjęciach. Potem widywali go już wielokrotnie przy różnych okazjach. Ostatnio 20 lutego bieżącego roku. Księżyc jest zbyt mały jak na rozdzielczość sprzętu fotograficznego znajdującego się na wyposażeniu sondy, jego wymiarów nie dało się więc wyznaczyć bezpośrednio. Naukowcy wzięli się zatem na sposób i określili ją na postawie porównania z jasnością innego księżyca Saturna Pallene. Orbita małego księżyca jest zakłócana przez pobliskiego większego "kolegę" – Mimasa. Astronomowie przypuszczają, że nowo odkryty księżyc może nie znajdować się w łuku pierścienia G sam. Zgodnie z pomiarami sondy Cassini, występuje tu skupisko obiektów o zróżnicowanej wielkości (od 1 do 100 m). Uderzenia meteoroidów i kolizje między okruchami skalnymi a księżycem mogły uwolnić pył tworzący łuk – uważa Hedman. W przyszłym roku sonda Cassini wykona w zbliżeniu kolejne zdjęcia księżyca.
  21. Ponieważ Księżyc podlega rotacji synchronicznej, czyli okres jego obrotu wokół własnej osi jest równy okresowi obrotu wokół Ziemi, stale widzimy tylko jedną jego stronę. Po przeanalizowaniu wieku i rozmieszczenia 46 kraterów Srebrnego Globu Mark Wieczorek i Matthieu Le Feuvre z Paryskiego Instytutu Fizyki Ziemi stwierdzili jednak, że 3,9 mld lat temu dzisiejsza strona niewidoczna mogła być stroną widoczną, a więc skierowaną w stronę naszej planety. Kratery powstały pod wpływem zderzenia ze skałami odrywającymi się od pasa asteroid. Wcześniejsze symulacje komputerowe sugerowały, że na zachodniej połowie tarczy Księżyca powinno być o ok. 30% więcej kraterów niż na połowie wschodniej. Twierdzono tak, ponieważ zachodnia część jest zawsze zwrócona w kierunku, w którym nasz satelita obiega Ziemię, przez co wzrasta prawdopodobieństwo zderzenia z odłamkami. Kiedy jednak Wieczorek i Le Feuvre porównali relatywny wiek kraterów (posłużyli się danymi na temat kolejności, w jakiej wyrzucony materiał odkładał się na powierzchni), sprawy przyjęły nieoczekiwany obrót. Okazało się, że chociaż większość śladów najmłodszych uderzeń rzeczywiście znajdowała się na zachodniej części tarczy, to starszych należało szukać głównie na wschodniej. Oznacza to, że w przeszłości część wschodnia podlegała silniejszemu bombardowaniu. Fragmenty skały zebrane w miejscach odpowiednio dużych kolizji wskazują, że do wypadku doszło mniej więcej 3,9 mld lat temu. Potem na długi czas Księżyc wypadł najprawdopodobniej z rytmu i obracał się powoli, zanim nie ustaliła się jego współczesna pozycja.
  22. Specjaliści z należącego do NASA Jet Propulsion Lab, University of Colorado oraz University of Central Florida zbadali dane dotyczące pary wodnej i cząstek lodu, które unoszą się nad powierzchnią jednego z księżyców Saturna - Encladusa. Przeanalizowali oni informacje przekazane przez sondę Cassini, która od lipca 2004 roku okrążą Saturna. Naukowcy uważają, że źródłem pary wodnej i lodu jest sam księżyc. Pod jego powierzchnią najprawdopodobniej znajduje się zbiornik wody, z którego podgrzany płyn jest wyrzucany z ponaddźwiękową prędkością. W Układzie Słonecznym znamy tylko trzy miejsca, w których w pobliżu powierzchni znajduje się woda w stanie płynnym. Są to Ziemia, księżyc Jowisza Europa oraz księżyc Saturna Encladus. Woda to podstawa życia. Jeśli znajdziemy źródło ciepła, które powoduje powstawanie gejzerów na Encladusie, to będzie bardzo interesujące odkrycie - mówi profesor Joshua Colwell. Wcześniej przypuszczano, że para wodna i cząstki lodu przedostają unoszą się z powierzchni Encladusa wskutek oddziaływania Saturna, która powoduje pękanie pokrywy lodowej na powierzchni księżyca. Jednak zgodnie z tą teorią w roku 2007 powinniśmy zaobserwować znaczne zmniejszenie ilości gazu. Tymczasem było ich więcej, niż powinno być. Oznacza to, że otwory w lodzie powstają nie wskutek oddziaływania planety, ale są powodowane siłami działającymi wewnątrz księżyca. Naukowcy wciąż nie mają jednoznacznej odpowiedzi dotyczącej procesów zachodzących na księżycu Saturna. Mogą ją uzyskać już wkrótce. Cassini zaczęła bowiem uważniej przyglądać się Encladusowi i będzie go badała do września 2010 roku.
  23. NASA planuje udostępnić w Sieci zdjęcia powierzchni Księżyca wykonane w latach 60. w ramach misji Apollo. Historyczne fotografie będą mogli zobaczyć nie tylko ciekawscy z całego świata. Staną się one źródłem olbrzymiej ilości danych dla naukowców, którzy po raz pierwszy zobaczą te zdjęcia w wysokiej rozdzielczości i będą mogli porównać, jak w ciągu ponad 40 lat zmieniła się powierzchnia Srebrnego Globu. Fotografie zostały wykonane przez aparaty umieszczone na pokładach pięciu różnych pojazdów Lunar Orbiter. Pojazd księżycowy zapisywał dane na taśmach magnetycznych, a dopiero później specjaliści przenosili je na błony fotograficzne. Nie byli jednak w stanie odzyskać wszystkich informacj. Ówczesna technika nie pozwalała zatem na uzyskanie zdjęć w wysokiej rozdzielczości. Taśmy magnetyczne spoczęły więc w magazynach w oczekiwaniu na decyzję, co z nimi zrobić. Obecnie w ramach Lunar Orbiter Image Recovery Project (LOIRP) prowadzonego w NASA Ames Research Center, możliwe stało się przełożenie danych magnetyczych na zdjęcia wysokiej jakości. Dane z 1500 taśm są przekładane na obrazy, które ostatecznie trafią do Internetu. Zdjęcia z lat 60. to najdokładniejsze fotografie ziemskiego satelity, jakimi dysponujemy. W przyszłym roku ruszy projekt, którego celem będzie wykonanie co najmniej równie dokładnych zdjęć. To przygotowanie do powrotu człowieka na Księżyc. Przy okazji zaś naukowcy będą mogli porównać zmiany na powierzchni, wywołane np. uderzeniami niewielkich meteorytów, których nie widać z większych odległości.
  24. Podpisy "Byłem tu" i inne pamiątki po turystach można znaleźć właściwie w każdym zakątku świata. Ponieważ człowiek zaczyna też podróżować po Układzie Słonecznym, naukowcy zastanawiają się nad ochroną pozaziemskich środowisk i kosmowandalizmem. Eugene Hargrove z Uniwersytetu Północnego Teksasu wygłosił na ten temat referat. Mogli go wysłuchać uczestnicy konferencji Instytutu Księżycowego i Planetarnego NASA. Choć wydaje się, że ludzi prawie na Księżycu nie było albo że zatrzymali się tam na bardzo krótko, to nieprawda. Każda misja Apollo wiązała się z emisją gazów, a gdy statki zaczną lądować na Srebrnym Globie bardziej regularnie, zanieczyszczenie rakietowymi spalinami stanie się prawdopodobnie normą. Wizja przyszłości Hargrove'a jest daleka od świetlanej. Filozof uważa, że jeśli wszystko ułoży się podobnie jak w filmach SF i ludzie skolonizują Księżyc, Marsa oraz inne ciała niebieskie i będą wydobywać ich surowce naturalne, mogą nie zauważyć powodowanych przez siebie zniszczeń. Da się to, wg Edwarda O. Wilsona, wyjaśnić biofilią, czyli zamiłowaniem do ziemskiej biosfery. Zjawisko to uznaje się za produkt uboczny wyewoluowania w konkretnym środowisku. Wyszliśmy z wody na Ziemi, nie na Saturnie, nie będziemy się więc przejmować, do czego dojdzie gdzie indziej wskutek naszej niszczycielskiej działalności. Wg Hargrove'a, podejście do ochrony środowisk pozaziemskich będzie się zmieniać jak stosunek do przyrody w kulturze zachodniej na przestrzeni dziejów. W średniowieczu wykształceni Europejczycy uważali, że natura nie jest piękna. Potem stopniowo zaczęli ją doceniać i zabezpieczać przed zniszczeniem. Amerykanin podkreśla, że zgodnie z hipotezą W. Hartmanna, społeczeństwa kosmiczne popierające kosmiczną eksplorację podzielą się na dwa opozycyjne ugrupowania, analogiczne do konserwatystów i preekologów z początku XX. Pierwsi będą utrzymywać, że wykorzystanie pozaplanetarnych surowców zmniejszy eksploatację zasobów ziemskich. Drudzy będą utrzymywać, że to zwykłe przedłużenie niszczycielskiej działalności prowadzonej u siebie. H. Rolston zaproponował przewodnik po ochronie pozaziemskich abiologicznych środowisk. Uznał on, że należy szanować: 1) miejsca, które są na tyle istotne, że zasługują na własną nazwę; 2) pozaziemską egzotykę; 3) obszary o znaczącej wartości historycznej; 4) miejsca, w których powstaje lub może powstać coś nowego; 5) obszary mające walory estetyczne; 6) miejsca, które się zmieniają. I tak księżycowe Morze Spokoju (łac. Mare Tranquillitatis) można zaliczyć do kategorii 1. lub 3., a gejzery na Io lub Tytanie do kategorii 2. lub 6. Skoro staramy się nie naruszać utworów geologicznych na Ziemi, tak samo powinno być i na Księżycu. NASA musi koniecznie przestrzec astronautów, by nie zostawiali na Srebrnym Globie swoich podpisów. Należy też zadbać o naturalny wygląd naszego satelity (tyczy się to głównie zasad prowadzenia ewentualnej działalności górniczej). W przypadku Układu Słonecznego możemy się zastanowić nad swoim postępowaniem, zanim stanie się coś złego. Warto się uczyć na swoich ziemskich błędach, pozostaje więc mieć nadzieję, że tak właśnie postąpią kosmiczni eksploratorzy.
  25. Widniejący na Księżycu zarys twarzy od dawna fascynował ludzi. Teraz wiadomo, kiedy się tam pojawił. Powstał ponad 4 mld lat temu w wyniku erupcji wulkanicznej. Wyjaśnienie spadło, i to dosłownie, prosto z nieba... W naszego satelitę uderzyła asteroida, która odłupała kawałek srebrzysto-szarej skały. Została ona ściągnięta przez siłę ciążenia i spadła w 1999 roku na obszarze Botswany, a konkretnie kotliny Kalahari. Znaleźli ją mieszkańcy wioski Kuke. Kamień ważył 13,5 kg. Sprzedano go łowcom meteorytów. Naukowcy potwierdzili, że Kalahari 009 pochodzi z Księżyca. Świadczy o tym zawartość izotopów tlenu i stosunek żelaza do manganu w dwóch minerałach: oliwinie i (orto)piroksenie. Wszystko to spowodowało, że kamień zaliczono do grupy bazaltów morskich. Morza księżycowe są zbudowane z zastygłego bazaltu. Bazalt morski przypomina odmianę wyżynną, ale zawiera o wiele więcej żelaza oraz tytanu i prawie żadnych związków wodoru. Dlaczego nazwano je morzem, skoro nie mają nic wspólnego z wodą? Lawa wypłynęła z krateru i zastygła w ciemne plamy, które w przeszłości wzięto błędnie właśnie za morza. Wcześni astronomowie nazwali je maria (łac. morze). Są ciemniejsze, gdyż odbijają mniej światła niż pokryte regolitem lub glebą góry. Ponieważ skała liczy sobie 4,35 mld lat (plus minus 150 mln lat), zjawiska wulkaniczne typu morskiego pojawiły się już na początkowych etapach tworzenia się skorupy Księżyca. Zespołowi naukowców szefowali dr Kentaro Terada z Uniwersytetu w Hiroszimie i dr Mahesh Anand z Open University w Wielkiej Brytanii. Przypomnijmy, co składa się na księżycową twarz. Idąc od góry, oczy tworzą Morze Deszczu (Mare Ibrium) i Morze Jasności (Mare Serenitatis), nos – zatoka Sinus Aestuum, a usta – Morze Chmur (Mare Nubium) oraz Morze Poznane (Mare Cognitum).
×
×
  • Dodaj nową pozycję...