Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Hendrik Poinar' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Naukowcom udało się zrekonstruować ważną część genomu historycznego patogenu - bakterii odpowiedzialnej za czarną śmierć, czyli epidemię dżumy, która spustoszyła Europę w XIV w. Na łamach Nature zaprezentowano nową metodę postępowania ze zniszczonymi fragmentami DNA, wypróbowaną na wariancie Yersinia pestis. Zaczęło się od drobnych elementów układanki, lecz dość szybko prace objęły odtwarzanie i sekwencjonowanie większych partii genomu. Wyniki kanadyjsko-niemiecko-amerykańskiego zespołu są niezwykle ważne, ponieważ pozwalają prześledzić ewolucję i zmiany zjadliwości patogenu na przestrzeni 660 lat, a to wiedza niezwykle przydatna z punktu widzenia zarządzania współczesnymi epidemiami. Dane genomiczne pokazują, że ten szczep bakteryjny, albo wariant, jest przodkiem wszystkich [bakterii] dżumy, jakie mamy teraz na świecie. Każdy współczesny wybuch epidemii to wynik działalności potomków średniowiecznej dżumy. Zrozumienie ewolucji tego zabójczego patogenu wprowadza nas w nową erę badań nad chorobami zakaźnymi - uważa genetyk Hendrik Poinar z McMaster University. Johannes Krause z Uniwersytetu w Tybindze przekonuje, że za pomocą metody wypróbowanej na Y. pestis będzie można w przyszłości odtworzyć genomy innych historycznych patogenów. Po wstępnym zbadaniu szczątków ponad 100 osób, ostatecznie naukowcy skupili się na miazdze zębowej 5 najbardziej obiecujących szkieletów z masowego grobu w przy drodze East Smithfield w Londynie. Jako pierwsi bezspornie wykazali, że za czarną śmierć odpowiadały właśnie pałeczki Y. pestis. Choć bakterie były obecne w średniowiecznych próbkach, wcześniejsze rezultaty odrzucono ze względu na zanieczyszczenia współczesnym DNA, m.in. bakterii glebowych. Międzynarodowej ekipie udało się odkodować niewielki plazmid pPCP1, który odpowiada za syntezę proteazy serynowej Pla (warunkuje ona inwazyjność patogenu, m.in. zdolność wnikania do komórek nabłonka). Dr Krause zastosował metodę molekularnego poławiania "wzbogaconych" fragmentów DNA pałeczek dżumy, które później poddawano sekwencjonowaniu. Okazało się, że plazmid pPCP1 jest identyczny jak u współczesnych Y. pestis. Oznacza to, że przynajmniej ta część informacji genetycznej niewiele się zmieniła na przestrzeni ubiegłych 600 lat.
  2. Naukowcy z kanadyjskiego McMaster University wykazali, że lekooporność jest naturalnym zjawiskiem, które o wiele, wiele lat poprzedza zastosowanie antybiotyków w praktyce klinicznej. W artykule opublikowanym w Nature powołują się na przykład antybiotykooporności sprzed co najmniej 30 tys. lat. Antybiotykooporność jest postrzegana jako współczesnym problem. Nie da się co prawda zaprzeczyć, że antybiotyki stają się obecnie mniej skuteczne w wyniku szerzącej się w szpitalach oporności, lecz nadal podstawowym pytaniem pozostaje: skąd zjawisko się wzięło? – przekonują Gerry Wright i Hendrik Poinar. Po latach badania bakteryjnego DNA z gleby pochodzącej ze zmarzliny Jukonu sprzed 30 tys. lat akademikom udało się opracować skuteczną metodę ekstrahowania niewielkich fragmentów prehistorycznego kwasu nukleinowego. Poza DNA mamutów, koni, bizonów i różnych roślin, które występowały tylko tutaj w czasie ostatniego interglacjału w plejstocenie, zidentyfikowano geny antybiotykooporności. Kanadyjczycy skupili się na rejonie związanym z opornością na wankomycynę. Problem ten pojawił się w latach 80. ubiegłego wieku i nadal nie został rozwiązany. Brian Golding z Wydziału Biologii tłumaczy, że nie mamy do czynienia ze współczesnymi zanieczyszczeniami. Gdy odtworzyliśmy produkt genu w laboratorium, a następnie oczyściliśmy białko, wykazaliśmy, że przed tysiącami lat działało ono tak samo i miało taką samą budowę jak teraz. Naukowcy z McMaster University z dumą podkreślają, że to drugi przypadek, kiedy w laboratorium udało się ożywić prehistoryczne białko. Antybiotyki stanowią część naturalnej ekologii planety, dlatego kiedy sądzimy, że wynaleźliśmy lek, który nie będzie wywoływał oporności […], sami siebie oszukujemy. […] Mikroorganizmy opracowały sposób radzenia sobie z nimi, nim w ogóle wymyśliliśmy, jak je stosować. W dalszej kolejności akademicy chcą badać jeszcze starszą zmarzlinę (sprzed milionów lat), by dotrzeć do jak najwcześniejszych przykładów antybiotykooporności.
×
×
  • Dodaj nową pozycję...