Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Craig Venter' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Nazwa firmy "Complete Genomics" nie jest obecnie zbyt szeroko rozpoznawalna. Wygląda jednak na to, że możemy o niej usłyszeć jeszcze wiele razy. Przedstawiciele przedsiębiorstwa planują uruchomienie usługi sekwencjonowania genomu człowieka za przełomową cenę 5000 dolarów. Udostępnienie usługi klientom indywidualnym jest planowane na najbliższą wiosnę. Firma, mająca swoją siedzibę w kalifornijskim mieście Mountain View, opracowała technologię sekwencjonowania DNA pozwalającą na drastyczne obniżenie kosztów przeprowadzenia tego procesu. Dzięki jej wdrożeniu cena procedury spadła aż dwudziestokrotnie(!) w porównaniu do cen obowiązujących dotychczas. Ułatwiony dostęp do usługi sekwencjonowania jest najważniejszym krokiem na drodze do tzw. medycyny spersonalizowanej. Zgodnie z jej założeniami, lekarz powinien mieć dostęp do danych o indywidualnych cechach pacjenta, dzięki czemu możliwe jest zoptymalizowanie sposobu leczenia, dawek podawanych leków itp. Dotychczas zbieranie informacji tego typu ograniczało się do pojedynczych genów, które analizowane były głównie w przypadku podejrzenia zwiększonego ryzyka wystąpienia ściśle okreslonej choroby. Teraz, gdy cena badania spadła do tej stosunkowo niedużej kwoty, istnieje ogromna szansa na zebranie znacznie większej ilości danych i wprowadzenie szeroko zakrojonych programów profilaktyki wielu chorób. Przedstawiciele firmy planują, że w roku 2009 będzie ona w stanie przeprowadzić 1000 reakcji sekwencjonowania DNA, zaś w ciągu kolejnego roku zwiększy swoje "moce przerobowe" dwudziestokrotnie. Warto jednak zaznaczyć, że przedstawiciele Complete Genomics nie udostępnili jeszcze swoich danych żadnemu niezależnemu recenzentowi. Jednym z założycieli firmy jest Craig Venter - prawdopodobnie najbardziej znany biotechnolog na świecie. Ponieważ naukowiec pracował już wcześniej nad projektem sekwencjonowania genomu człowieka, zebrane wówczas informacje służą dziś jako próba odniesienia wobec nowej technologii. Co ciekawe, jako materiał do badań wykorzystano wówczas własne DNA Ventera. Aby przeprowadzić sekwencjonowanie DNA zgodnie z założeniami nowej metody, najpierw zostaje ono pocięte na krótkie fragmenty składające się z 80 nukleotydów, czyli jednostek kodujących informację genetyczną (cały genom ma ich aż 3 miliardy). Każdy z tych fragmentów jest następnie łączony z krótkimi syntetycznymi nićmi DNA, a następnie dochodzi do replikacji powstałych kompleksów z wykorzystaniem specjalnego enzymu. Ze względu na charakter fizykochemiczny syntetycznego fragmentu, ma on tendencję do bardzo ścisłego zwijania się do postaci zwanej nanopiłeczkami. Są one tak drobne, że na płytce o wielkości typowego szkiełka mikroskopowego mieści się ich około miliarda. Dzięki tak silnemu "upakowaniu" materiału genetycznego możliwe jest przeprowadzenie całej procedury na pojedynczej płytce, co pozwala na radykalną redukcję zużycia bardzo drogich odczynników. Gdy nanopiłeczki zostaną osadzone na powierzchni szkiełka, przeprowadza się właściwą reakcję sekwencjonowania. W tym celu wykorzystuje się cząsteczki wzbogacone o barwniki fluorescencyjne. Każda z nich przyłącza się do DNA w losowym miejscu, lecz zawsze do ściśle określonego rodzaju nukleotydu. Powstałe kompleksy oświetla się następnie za pomocą lampy ultrafioletowej, by wywołać świecenie barwnych cząsteczek. Specjalna aparatura pozwala nie tylko na określenie, jaki nukleotyd został związany, lecz także na ustalenie jego pozycji w analizowanej sekwencji. W ten sposób, krok po kroku, możliwe jest odkrycie kolejności wszystkich elementów kodujących informację genetyczną danego osobnika. Schemat ilustrujący całą procedurę jest dostępny tutaj. Losowe przyłączanie pojedynczych cząsteczek służących jako "sondy" wykrywające nukleotydy jest pomysłem bardzo nowatorskim. Ma ono co najmniej jedną istotną zaletę: zgodnie z założeniami dotychczasowych metod sekwencjonowania konieczne było poprawne odczytanie sekwencji wszystkich kolejnych nukleotydów. Powodowało to powstawanie licznych błędów w trakcie analizy, przez co wiarygodność testu spadała. W przypadku technologii opracowanej przez Complete Genomics każda "sonda" przyłącza się niezależnie od innych, dzięki czemu maleje ryzyko popełnienia "lawiny" błędów. Co ciekawe, przedstawiciele Complete Genomics nie planują sprzedaży produkowanych przez siebie urządzeń. Zamiast tego uruchomione zostanie ogromne centrum badawcze, w którym realizowana będzie ta usługa. Jak tłumaczy prezes firmy, Cliff Reid, będzie to rozwiązanie bardzo wygodne dla wielu przedsiębiorstw: oni nie chcą kupować własnego instrumentu, chcą kupić dane. Co ciekawe jednak, sekwencja DNA klienta będzie do niego wracała w postaci "surowej", tzn. bez jakiejkolwiek analizy informacji zapisanych w genach. Oznacza to, niestety, że całkowity koszt usługi będzie najprawdopodobniej powiększony o dopłatę związaną z analizą danych przez innego specjalistę. Środowisko naukowe nie kryje podziwu dla tego osiągnięcia. Chad Nusbaum, jeden z dyrektorów zarządzających Programem Sekwencjonowania i Analiz Genomu uruchomionym przez Broad Institute, ocenia: nagle ci goście zaczęli mówić o sekwencjonowaniu setek, a nawet tysięcy genomów w ciągu kilku najbliższych lat. Otwiera to niesamowite perspektywy na taki rodzaj nauki, jakiego naprawdę chcemy. Jest to możliwe właśnie dzięki uzyskiwaniu setek sekwencji ludzkiego genomu. Od tego momentu można zacząć zadawać trudne pytania na temat genetyk człowieka. Podobnego zdania jest Jeffrey Schloss, specjalista pracujący dla amerykańskiego Narodowego Instytutu Badań nad Ludzkim Genomem: Słowo "oszałamiające" wcale nie będzie zbyt wielkie, jeżeli będą mogli to zrobić w naprawdę krótkim czasie. Nie widziałem jednak jakichkolwiek danych i nie znam nikogo, kto by je widział, a jest to, oczywiście, kluczowe. Wyścig trwa. Biotechnologiczny gigant, firma Applied Biosystems, planuje udostępnienie w najbliższej przyszłości platformy, dzięki której możliwe będzie przeprowadzenie kompletnej analizy genomu za około 10 tysięcy dolarów. Która z firm wygra tę rywalizację, dowiemy się prawdopodobnie w ciągu najbliższych kilku lat.
  2. Naukowcy z Venter Institute, którego współzałożycielem jest słynny Craig Venter, zakończyli drugą z trzech faz projektu, którego celem jest stworzenie sztucznego życia. Uczeni stworzyli kompletną kopię genomu bakterii. Udało się im skopiować coś, co już istnieje. Nie stworzyli więc nowego nieznanego w przyrodzie organizmu. Nie potrafią też spowodować, by powstał z niego żywy organizm. Gdyby się to udało człowiek byłby w stanie tworzyć np. rośliny wychwytujące z atmosfery olbrzymie ilości węgla, bakterie zmieniające trawę w paliwo czy produkujące lekarstwa. Naukowcy mówią jednak, że jeszcze sporo czasu upłynie, zanim będzie to możliwe. Wciąż bowiem nie rozumiemy, w jaki sposób powstaje samo życie. Venter jest jednak przekonany, że z czasem uda się przezwyciężyć wszystkie bariery i kiedyś ludzie będą tworzyli nowe formy życia. David Magnus, dyrektor Centrum Etyki Biomedycznej na Uniwersytecie Stanforda przestrzega, że gdy nauczymy się to robić, będziemy mogli tworzyć zarówno organizmy pożyteczne jak i niebezpieczne.
  3. Dwudziestego kwietnia 2008 roku rozpoczęło się niezwykłe spotkanie specjalistów związanych z naukami o życiu (ang. life science). Tematem spotkania jest jeden z najambitniejszych i jednocześnie najbardziej kontrowersyjnych projektów badawczych nadchodzących lat - biologia syntetyczna, czyli próba stworzenia całkowicie nowego życia w laboratorium. Nowa dyscyplina, za której ojca uznaje się jednego z najważniejszych badaczy ludzkiego genomu, Craiga Ventera, stawia sobie za cel "okrojenie" genomów mikroorganizmów do absolutnego minimum, a następnie stworzenie nowego gatunku o możliwie prostej informacji genetycznej. Pozwoliłoby to (przynajmniej teoretycznie) na stworzenie taniego w utrzymaniu i bardzo wydajnego "narzędzia" do takich zadań, jak produkcja leków czy neutralizowanie zanieczyszczeń. Krytycy biologii syntetycznej upatrują w niej wielkie zagrożenie dla ludzkości i środowiska naturalnego. Przestrzegają oni, że już teraz jest możliwe zamówienie przez Internet odpowiednich sekwencji DNA, a następnie zsyntetyzowanie na ich podstawie groźnych białek lub nawet - potencjalnie - całych wirusów (interesujący artykuł opublikowało czasopismo New Scientist). Zdaniem przeciwników tej dyscypliny, jej rozwój jest potencjalnie niebezpieczny i powinien zostać zabroniony. Pracujący dla Laboratorium Biologii Molekularnej Uniwersytetu Cambridge dr Philipp Holliger ocenia swoją pracę następująco: Naukowcy uczą się, jak projektować życie aż do najdrobniejszych szczegółów. Nie wiemy jeszcze wystarczająco wiele, by stworzyć wyrafinowane dzieła, lecz nasza wiedza wciąż się rozwija. Naukowiec będzie jednym z prelegentów w czasie konferencji. Większość badaczy zajmujących się biologią syntetyczną, co oczywiste, broni swoich działań. Podkreślają przede wszystkim możliwe korzyści osiągalne dzięki ich odkryciom. Richard Kitney, pracownik Imperial College London: Biologia syntetyczna reprezentuje nowe podejście do inżynierii. Pomogła nam stanąć na czele nowej rewolucji przemysłowej, w czasie której nowe paliwa, leki, terapie i czujniki mogą być wytwarzane z materiałów biologicznych. Jako przykład podawane są np. mikroorganizmy, których zadaniem byłoby wchłanianie z powietrza dwutlenku węgla i przetwarzanie go na paliwa węglowodorowe. Historia manipulacji genetycznych nie jest nowością. Do tej pory jednak przedsięwzięcia z nimi związane, takie jak tworzenie roślin genetycznie zmodyfikowanych, były stosunkowo proste. W większości przypadków polegały na zwiększeniu genomu organizmu o zaledwie jeden gen, którego białkowy produkt spełniałby pożądane zadania. Zupełnie nowym wyzwaniem jest przeprowadzenie procesu odwrotnego: jak najsilniejsze "okrojenie" genomu bakterii aż do stanu, w którym pozostają w nim jedynie geny absolutnie niezbędne do przeżycia. Tak przygotowana "minimalna" forma życia mogłaby być wzbogacona o dodatkowe geny, tworząc w ten sposób tanią i łatwą do wykorzystania "matrycę" do produkcji organizmów zmodyfikowanych na potrzeby nowoczesnej biotechnologii. Spotkanie, które odbywa się w siedzibie Imperial College London, zakończy się jutro.
  4. Craig Venter, sława wśród specjalistów badających DNA, stworzył pierwszy sztuczny chromosom. Praca Ventera nie została jeszcze oficjalnie zaprezentowana środowisku naukowemu, ale już teraz wiadomo, że wywoła ona gorące dyskusje. Sztuczny chromosom może pozwolić na kreowanie w przyszłości sztucznego życia, np. nowych gatunków roślin i zwierząt. Może się też przyczynić do powstania nieznanych dotąd źródeł energii i wspomóc ludzi walczących z globalnym ociepleniem. Nasuwa się też jednak wiele pytań o etyczną stronę takich działań oraz o to, jak na wprowadzenie nowych gatunków zareaguje ziemski ekosystem. Venter i jego zespół stworzyli chromosom składający się z 381 genów i 580 000 par zasad kodu genetycznego. Do eksperymentalnych badań wykorzystano bakterię Mycoplasma genitalium. Naukowcy usunęli z niej 20% genów, pozostawiając tylko te konieczne do podtrzymania życia. Następnie sztucznie zrekonstruowali chromosom. Nowy organizm nazwali Mycoplasma laboratorium. Uzyskana w ten sposób forma życia polega na mechanizmach replikacyjnych i metabolicznych gospodarza. Później stworzony przez ludzi kod genetyczny przeszczepiono innej bakterii.
×
×
  • Dodaj nową pozycję...