Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'życie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 52 wyników

  1. Dotąd sądzono, że spotykane w jaskiniach kolorowe osady to minerały, teraz jednak okazuje się, że w niektórych przypadkach dokładnie tak samo wyglądają odchody nieznanych wcześniej mikroorganizmów. Badacze z Geological Society of America uważają, że opisywane odkrycie może pomóc podczas poszukiwania życia pozaziemskiego. Stwierdziliśmy, że na rzeczy wyglądające na pierwszy rzut oka na nieożywione trzeba patrzeć, jakby mogły mieć pochodzenie biologiczne – zaznacza Penelope Boston, badaczka jaskiń z Nowomeksykańskiego Instytutu Górnictwa i Technologii w Socorro. Mikroby znaleziono w jaskiniach lawowych – naturalnych tunelach, którymi lawa płynie pod powierzchnią ziemi – na Hawajach, w Nowym Meksyku oraz na Azorach. Jak opowiada prof. Diana Northup, geomikrobiolog z Uniwersytetu Nowego Meksyku, na Hawajach odkryto skapujący ze stropu niebieskozielony szlam, w Nowym Meksyku kruchy minerał, a na portugalskim archipelagu różowe sześciokąty. Od 1994 r. Northup i zespół poszukiwali w jaskiniach niezwykłych kryształopodobnych depozytów. Oglądali je potem pod mikroskopem lub badali DNA. Odkrycia tej ekipy potwierdzają to, co postulowano już wcześniej: że na innych planetach jaskinie lawowe mogą być najlepszymi miejscami do poszukiwania życia. W 2007 roku krążąca wokół Marsa sonda przysłała zdjęcia, na których widniały czarne dziury, będące najprawdopodobniej miejscami, gdzie zapadły się sklepienia wydrążonych przez lawę tuneli. Wg naukowców, jaskinie stanowią jedyne w swoim rodzaju środowisko, gdzie nie brakuje wytrącających się z wody minerałów i mikroorganizmów. Na Marsie woda mogła się przesączyć do podziemnych jaskiń już bardzo dawno temu, zapewniając pokarm mieszkającym tam stworzeniom. Dodatkowym plusem jest to, że pieczara jest zacisznym zakątkiem, z o wiele łagodniejszym klimatem niż ten panujący na powierzchni planety. W 2003 r. Northup, Penny Boston i Mike Spilde zjawili się w stale powiększającej się jaskini w południowym Meksyku, znanej jako Cueva de Villa Luz. Zauważyli, że stężenie siarkowodoru wynosi tam 210 części na milion (ppm), a to naprawdę bardzo dużo, ponieważ już przy poziomie H2S przekraczającym 10 ppm ludzie muszą wkładać ochronne respiratory, czyli maski z filtrem. Dla niektórych bakterii takie warunki to jednak raj. Utleniając siarczek wodoru, wydzielają one jako produkt uboczny kwas siarkowy. W jaskini Amerykanie natrafili na ociekające H2SO4 przypominające stalaktyty struktury. Nazwali je snotytami. Ich analiza molekularna wykazała, że były one wypełnione bakteriami blisko spokrewnionymi z siarkolubnymi Aciditheobacillus theooxidans.
  2. W piśmie Monthly Notices of the Royal Astronomical Society ukaże się wkrótce artykuł, które autor twierdzi, że teleskop Kepler jest w stanie zauważyć nie tylko potencjalnie zamieszkane planety, ale również księżyce, na których może rozwijać się życie. David Kipping, autor artykułu, to astronom z University College London, który specjalizuje się w poszukiwaniu egzoksiężyców, czyli księżyców spoza naszego Układu Słonecznego. Uważa on, że tego typu ciała będzie łatwo znaleźć wokół gazowych gigantów. Jeśli te planety będą znajdowały się w takiej odległości od swoich gwiazd, że będzie możliwe występowanie wody w stanie ciekłym, to ich księżyce mogą być zamieszkane. Zdaniem uczonego, Kepler jest w stanie wykryć obiekty o masie zaledwie 20% masy Ziemi. Kepler ma w swoim zasięgu około 25 000 gwiazd, które może badać. Jednak uruchomienie większego programu badawczego i wykorzystanie urządzenia klasy Keplera pozwoliłoby na sprawdzenie ponad miliona gwiazd i poszukiwanie w ich okolicach potencjalnie zamieszkanych księżyców. Dlatego też Kipping uważa, że Kepler powinien skupiać się nie tylko na planetach, ale również na księżycach.
  3. Mężczyźni, których plemniki są zdrowsze, żyją dłużej. Nieważne, czemu się przyglądamy. Ryzyko zgonu spada, jeśli sperma jest lepszej jakości – przekonuje dr Tina Kold Jensen z Uniwersytetu Południowej Danii w Odense (American Journal of Epidemiology). Naukowcy zbadali ponad 40 tys. mężczyzn w wieku do 40 lat. Uważają, że właściciele plemników niższej jakości powinni się zbadać pod kątem innych chorób, zwłaszcza nowotworów jąder. Jako że zjawisko męskiej niepłodności nasila się mniej więcej od półwiecza, Duńczycy sugerują, że powodem może być nieprawidłowy rozwój narządów płciowych w łonie matki. Ta sama hipoteza źródeł płodowych wyjaśnia także choroby starszego wieku, np. cukrzycę czy problemy z sercem. Chcąc sprawdzić, czy jakość spermy da się powiązać z zapadalnością na choroby czy śmiertelnością, naukowcy przyglądali się przypadkom mężczyzn skierowanych do Kopenhaskiego Laboratorium Badania Spermy w latach 1963-2001. Ich losy śledzono do końca 2001 r. lub do momentu zgonu. Ograniczono się do 43277 panów ze zdolnymi do życia plemnikami w ejakulacie. Okazało się, że wzrost liczby plemników w spermie oznaczał wzrost długości życia. Duńska ekipa stwierdziła, że mężczyźni z 40 mln plemników na milimetr sześcienny o 40% rzadziej umierali w czasie trwania studium niż panowie, u których w ml występowało poniżej 10 mln gamet. Długość życia rosła również w miarę powiększania się odsetka ruchliwych plemników i wraz z liczbą gamet o prawidłowej budowie anatomicznej. Z tego powodu ryzyko zgonu mężczyzn, u których etykietę "normalne" przypisywano co najmniej 75% plemników, było o 54% niższe niż mężczyzn, u których znamiona prawidłowości stwierdzano u mniej niż 25% gamet. Duńczycy zauważyli, że mężczyźni, którzy mieli dzieci, żyli dłużej od osób bezpotomnych. Potwierdza to wnioski wypływające z innych badań, że ludzie płodni są bardziej długowieczni. Wzrost długości życia odnotowywano u wszystkich mężczyzn ze zdrowszymi plemnikami: zarówno u "dzieciatych", jak i u bezdzietnych. Oznacza to, że mamy do czynienia z dwoma czynnikami, które niezależnie wpływają na długość życia. Wysoka jakość nasienia może być markerem dobrego ogólnego stanu zdrowia, zwiększającego szanse przeżycia. Zmniejsza ona ryzyko wystąpienia wielu chorób, w tym nowotworów, chorób układu pokarmowego i oddechowego.
  4. Na wybieraniu ubioru odpowiedniego do okoliczności, pory roku czy nastroju kobiety spędzają 287 dni, czyli niemal rok swojego życia. Najwięcej czasu pożerają dylematy dotyczące stroju na piątkowe czy sobotnie wyjście (nawet 20 min) oraz selekcja ciuszków na wakacyjny wyjazd (52 min). Przeciętna kobieta przemienia się w "selekcjonera" na 16 min każdego ranka, w sobotę i niedzielę nieco sobie folguje i przebiera w zawartości szafy tylko przez 14 minut. W sondażu wzięło udział 2491 Brytyjek w wieku od 16 do 60 lat, a rezultaty przeanalizowali przedstawiciele tamtejszej sieci sklepów Matalan. Będąc na wakacjach, przedstawicielka płci pięknej poświęca co rano 10 min na wyjęcie z walizki rzeczy najlepszych na dany dzień. Tyle samo czasu zajmuje jej dobór stroju na kolację. Kolacje bożonarodzeniowe i eleganckie przyjęcia to prawdziwe wyzwanie dla męskiej cierpliwości. Na podjęcie decyzji ich partnerka potrzebuje bowiem 36 minut. Okazuje się też, że przeciętna kobieta przymierza przed wyjściem do pracy dwie wersje stroju, a jedna na dwie spędza wieczorem poprzedniego dnia kwadrans na przygotowaniu sobie stroju na następny dzień.
  5. Najwyżej usytuowane mikroorganizmy na Ziemi, nie licząc tych żyjących w chmurach, znajdują się na wysokości ponad 6 tysięcy metrów, dowodzą najnowsze odkrycia. Steve Schmidt z Uniwersytetu Kolorado razem ze swoim zespołem zajmuje się badaniem miejsc, które niegdyś pokryte były lodowcem, a ostatnimi czasy, między innymi w związku z globalnym ociepleniem, zostały odsłonięte. Prace prowadzone przez Schmidta mają kluczowe znaczenie w poznaniu procesów sterujących klimatem na Ziemi, ale mogą okazać się pomocne także w przypadku poszukiwania życia na innych planetach, w warunkach ekstremalnie nieprzyjaznych. Jak sam mówi: moi współpracownicy, próbują sprawdzić, czy jest jakaś granica dla życia. Okazuje się, że tak. Jest nią poziom 6 tysięcy metrów nad poziomem morza (dokładnie 6,050 m). Właśnie na tej wysokości znaleziono "oazę życia". Bakterie oraz mchy, odkryte w wysokogórskim jeziorze niedaleko krateru wulkanu Socompa na granicy Argentyny i Chile, zajmują jedynie niewielką przestrzeń kwadratu o boku 9 metrów. Znajdująca się tam woda jest bogata w metan oraz dwutlenek węgla. Występuje tu ogromna różnorodność gatunków - mówi Schmidt, dodając jednocześnie, że w wodzie tuż obok oazy nie ma zupełnie niczego. Co ciekawe, znalezionym gatunkom nie przeszkadzają nawet ogromne dobowe wahania temperatury od -17,5 st. C do ponad 65,5. Wyprawa została zorganizowana między innymi dzięki grantom National Geographic Society.
  6. Przed około 4 miliardami lat nasza planeta doświadczyła Wielkiego Bombardowania. Przez miliony lat wszystkie ciała wewnętrznej części Układy Słonecznego były bardzo mocno bombardowane przez meteoryty. Zdaniem wielu naukowców Wielkie Bombardowanie wyznacza granicę, dla życia na Ziemi. Uważają oni, że w jego trakcie panowały tak niekorzystne warunki, że wszelkie organizmy żywe, o ile w ogóle istniały, musiały zostać zniszczone. Naukowcy z Uniwersytetu Kalifornijskiego w Boulder przeprowadzili badania, z których wynika, że wcale nie musiało się tak stać. Liczne mikroorganizmy mogły przetrwać Bombardowanie, a panujące wówczas warunki mogły tylko... wspomóc ich rozwój. Jako, że Wielkie Bombardowanie zakończyło się około 3,9 miliarda lat temu, a mamy geologiczne dowody na istnienie życia przed 3,83 miliarda lat, możemy stwierdzić, że organizmy żywe mogły powstać przed Wielkim Bombardowaniem i je przetrwać. Naukowcy z Boulder wykorzystali dane z badań próbek gruntu księżycowego, informacje uzyskane z kraterów Księżyca, Marsa i Merkurego oraz z wcześniejszych studiów teoretycznych. Na ich podstawie utworzyli komputerowy model Wielkiego Bombardowania, uwzględniając to, co wiemy o ówczesnej wielkości asteroidów, częstotliwości uderzeń i ich rozmieszczeniu. Trójwymiarowy model bombardowanej kuli ziemskiej umożliwił im zbadanie zmian zachodzących na powierzchni planety. Z ich badań wynika, że stopieniu uległo mniej niż 25% obszaru Ziemi. Nawet po symulowanym 10-krotnym zwiększeniu częstotliwości bombardowań, które doprowadziłoby do wyparowania oceanów, eksperyment wykazał, że nie cała powierzchnia planety zostałaby "wysterylizowana". Wiele bakterii, szczególnie tych, które lubią wysoką wilgotność i wysokie temperatury, przeżyłyby w licznych gejzerach i pod powierzchnią planety. Co więcej, wiele kolonii bakterii mogłoby, dzięki podniesionym temperaturom, rozkwitnąć w okolicach uderzeń meteorytów. Zdaniem twórców studium, Olega Abramova i Stephena Mojzsisa, Wielkie Bombardowanie nie mogło zniszczyć życia na Ziemi. Niewykluczone zatem, że organizmy żywe istnieją na naszej planecie nieprzerwanie od 4,5 miliarda lat. Wtedy bowiem w Ziemię uderzyła planeta wielkości Marsa. W wyniku kolizji wyparowała ona sama oraz część Ziemi i powstał Księżyc. To wydarzenie, które poprzedzało Wielkie Bombardowanie o co najmniej 500 milionów lat, mogło 'zresetować' Ziemię. Jednak nasze badania pokazują, że od czasu tego zderzenia nie nastąpiło nic, co byłoby w stanie zniszczyć powierzchnię planety i całą istniejącą na niej biosferę - stwierdził Mojzsis. Astrobiolog z NASA, Michael New, mówi, że badania uczonych z Boulder są bardzo ważne, gdyż wskazują, że życie na Ziemi mogło powstać już w erze hadeiku.
  7. Wg japońskich naukowców, trzęsienia ziemi i biały azbest (chryzotyl, Mg6[(OH) 8/Si4O10]) mogły się łącznie przyczynić do powstania życia na naszej planecie. Trzy i pół miliarda lat temu minerał zaliczany do serpentynów włóknistych wyściełał szczeliny w dnie morskim. By odtworzyć takie warunki, Naoto Yoshida i Nori Fujiura z University of Miyazaki doprowadzili do powstania bakteryjnego biofilmu na warstwie gumy. Następnie dodali białego azbestu, trochę plazmidów bakterii z genami antybiotykooporności oraz nieco krzemionki. Później przez minutę potrząsali tą mieszaniną, naśladując niskoenergetyczne wstrząsy sejsmiczne. Gdy po tym wszystkim naukowcy zastosowali antybiotyki, które miały unieszkodliwić bakterie, okazało się, że u ok. 1:10.000 doszło do wychwycenia odpowiednich fragmentów DNA i wytworzenia się lekooporności. Yoshida twierdzi, że taki transfer genów wystarczy, by zwiększyć zróżnicowanie genetyczne i pomóc ewolucji. Inni eksperci demaskują mechanizm leżący u podłoża omawianego zjawiska. Sądzą oni, że igiełki chryzotylu nakłuwały komórki, pozwalając plazmidom wnikać do ich wnętrza. Podobnie jak materiał wykorzystywany kiedyś w budownictwie uszkadzał ludzkie płuca, prowadząc do zagrażającej życiu azbestozy. Biały azbest, zwany też azbestem serpentynowym, jest z chemicznego punktu widzenia zasadowym krzemianem magnezu. Co ważne, czasem dzieli się na długie włókna, które stanowią skupiska elastycznych fibryli. W Polsce występuje na Dolnym Śląsku.
  8. Młoda mieszkanka Pekinu Chen Xiao miała już dość podejmowania niewłaściwych decyzji i oddała swój los w cudze ręce, a w Chinach jest ich przecież niemało. Od grudnia zeszłego roku to internauci planują dziewczynie poszczególne dni tygodnia. Na jej witrynie widnieje napis: Waszym prawem jest aranżować życie Chen Xiao, a jej obowiązkiem jest wam służyć. Większość 2008 roku była, wg przedsiębiorczej Chinki, jednym wielkim pasmem klęsk. Rodzinne miasto nawiedziła zamieć śnieżna, kraj zdewastowało trzęsienie ziemi, przyjaciele się rozwodzili, a sklep z ubraniami, z którego się utrzymywała, zbankrutował. Za każdym razem, gdy planowałam, jak ma wyglądać moje życie, nic z tego nie wychodziło. To było bardzo rozczarowujące. Czemu więc inni nie mieliby wpadać na lepsze pomysły? W sumie nie ma już nic do stracenia... Dziewczyna otrzymuje ok. 3 dol. za godzinę. Jak dotąd dostarczała m.in. karmę dla psów, zajmowała się bezpańskimi kotami i częstowała lunchem bezdomnego człowieka, a także uczestniczyła w narodzinach dziecka (Chen Xiao nie znała rodziców, ale ojcu malucha bardzo zależało, by ktoś zrobił pamiątkowe zdjęcia). Wygląda więc na to, że klienci postanowili jej pomóc w spełnianiu dobrych uczynków. Co więcej, dzięki nim odkryła w sobie nowego człowieka. Wykonywanie prostych zadań uszczęśliwiło ją i wpłynęło na samoocenę. Tak przynajmniej twierdzi sama zainteresowana. Nie wszystkie chwyty są dozwolone. Chen Xiao odmawia wykonania zadań związanych z pogwałceniem prawa, niemoralnych lub brutalnych, ale część klientów i tak próbuje ją o to prosić. Chinka nie ma pojęcia, jak długo będzie realizować internetowe zamówienia. Gdy ludzie nie będą mnie już potrzebować, wrócę do swojego starego życia. Na razie jednak nowoczesne technologie pomagają jej przetrwać kryzys ekonomiczny.
  9. NASA wydało oświadczenie dotyczące pochodzenia marsjańskiego metanu. Wbrew wcześniejszym spekulacjom mediów, Agencja nie potwierdziła źródła pochodzenia gazu. Wiadomo jedynie, że Mars "żyje". Najważniejsze pytanie brzmi: czy jest to "życie" w sensie geologicznym czy biologicznym. Dotychczasowe badania wykazały, że na Czerwonej Planecie występuje metan oraz że ulega on szybkiej degradacji w marsjańskiej atmosferze. Musi więc istnieć jakieś źródło, z którego jest on odnawiany. I rzeczywiście, na północnej półkuli znaleziono źródła, z których wydobywa się metan. Jedno z nich dostarcza nawet 19 000 ton rocznie. Naukowcy z NASA zastrzegają, że obecnie nie mają żadnych danych, które pozwoliłyby stwierdzić, jakie jest pochodzenie marsjańskiego metanu. Na Ziemi aż 90% tego gazu jest produkowanych przez organizmy żywe. Jednak może on też powstawać podczas procesów geologicznych. Mars więc w jakimś sensie żyje. I niewykluczone, że jest to życie biologiczne. Na Ziemi mikroorganizmy znajdowane są na głębokości nawet 3 kilometrów pod powierzchnią planety. Występujące na takich głębokościach promieniowanie jonizujące rozbija wodę na wodór i tlen. Mikroorganizmy korzystają z wodoru jako źródła energii. Niewykluczone, że podobne organizmy przeżyły miliardy lat pod zamrożoną powierzchnią Marsa, na głębokościach, na których woda jest w stanie ciekłym, promieniowanie zapewnia energię, a dwutlenek węgla dostarcza węgiel - mówi doktor Michael Mumma z NASA. Gazy, takie jak metan, mogą wydobywać się spod powierzchni właśnie w miesiącach letnich, gdy otwierają się szczeliny w powierzchni planety - dodaje. Doktor Carl Pilcher, dyrektor Instytutu Astrobiologii NASA zauważa: Mikroorganizmy, które produkują metan z wodoru i dwutlenku węgla były jednymi z pierwszych form życia na Ziemi. Jeśli życie kiedykolwiek istniało na Marsie, to logiczne staje się przypuszczenie, że wyewoluowały tak, by wytwarzać metan z tlenku węgla obecnego w atmosferze planety. Niewykluczone jednak, że źródłem metanu są współczesne lub wygasłe procesy geologiczne. Dopiero w przyszłości, podczas kolejnych misji na Marsa, mamy szansę na poznanie źródła metanu. Jednym ze sposobów jego zbadania jest przeprowadzenie badań na obecność izotopów. Jeśli okaże się, że w metanie występuje mniej deuteru, niż w wodzie, która się wraz z nim uwalnia spod powierzchni planety, będzie to dowód na biologiczne pochodzenie gazu.
  10. NASA zdobyła ponoć dowody na istnienie życia na Marsie. Gdy w 2003 roku zauważono na Marsie chmury metanu, zaczęto zastanawiać się nad ich pochodzeniem. Na Ziemi bowiem aż 90% tego gazu produkują organizmy żywe. Marsjański metan mógł więc wskazywać na istnienie życia na Czerwonej Planecie. Jednak, podobnie jak 10% ziemskiego, mógł on pochodzić ze źródeł geochemicznych. Przez ostatnie 6 lat prowadzono obserwacje Marsa. Obecnie media doniosły, że wkrótce NASA wyda oświadczenie dotyczące źródeł metanu. Ma z niego wynikać, iż marsjański metan jest pochodzenia organicznego i jest on na bieżąco produkowany przez bakterie żyjące pod powierzchnią planety. Oświadczenie ma zostać przedstawione jeszcze dzisiaj.
  11. Na zlecenie Narodowej Akademii Nauk amerykańscy uczeni przygotowali raport dotyczący ewentualnych pozaziemskich form życia. Wnioski do których doszli, mogą zrewolucjonizować sposób poszukiwania życia poza naszą planetą. Zdaniem akademików, nie należy skupiać się tylko na „najpopularniejszym” potencjalnym miejscu, w którym możemy znaleźć życie, czyli na Marsie. I nie należy wiązać życia z koniecznością występowania wody. Naukowcy twierdzą, że zamiast korzystać z wody obce organizmy mogą potrzebować metanu, a energię będą czerpały nie ze słońca, a z kwasu hydrochlorowego. Autorzy raportu uważają, że należy poszerzyć listę cech charakterystycznych, które powinny wystąpić, by gdzieś w kosmosie pojawiło się życie. Przykłady organizmów żyjących w zadziwiających warunkach znajdowane są na samej Ziemi (informowaliśmy np. o bakteriach żywiących się asfaltem), więc tym bardziej prawdopodobne, że pojawią się one poza naszą planetą. Naukowcy mają też konkretną propozycję dla poszukiwaczy pozaziemskiego życia. Zamiast wysyłać sondy na Marsa, lepiej zwrócić uwagę na księżyc Saturna – Tytana. Występują na nim oceany płynnego metanu i etanu, a autorzy raportu uważają, że to najbardziej prawdopodobne miejsce w Układzie Słonecznym, w którym może występować życie. To świat węgla. Jest tam bardzo dużo różnych związków węgla i możliwe, że są tam i takie, z których powstało życie – mówi John Baross, oceanograf z University of Washington, który kierował pracami nad raportem. Głównym problemem, jaki miał do rozwiązania jego zespół, była odpowiedź na pytanie: jak bardzo inne światy mogą różnić się od naszej planety. Baross zauważa, iż przyjmując obecnie obowiązujące założenia, możemy po prostu nie rozpoznać życia, które będzie znacznie różniło się od tego, co znamy. Dotychczas wszystkie poznane przez nas formy ziemskiego życia potrzebowały do istnienia wody, zdolności do ewolucji, energii bazującej na chemii lub świetle oraz metabolizmu bazującego na węglu. Przez lata uważano, że takie warunki są konieczne do zaistnienia życia. Ostatnie badania w dziedzinie biologii i biochemii sugerują jednak, że życie może powstać też w innych warunkach. Seth Shostak, astronom z SETI Institute, który zajmuje się poszukiwaniem obcego życia uważa, że spostrzeżenia przedstawione w opisywanym raporcie są „bardzo usprawiedliwione”. Przypomina, że dotychczas sondy nie znalazły życia, być może dlatego, że szukały form podobnych do ziemskich. Zauważa przy tym, iż trudno będzie nam odnaleźć inne formy życia, gdyż nie wiemy, czego szukać.
  12. Po raz pierwszy w historii naukowcy potwierdzili, że fragmenty materiału genetycznego znalezionego na meteorycie nie pochodzą z Ziemi. Na meteorycie Murchinson, który spadł w Australii w 1969 roku znaleziono molekuły uracylu (to jedna z zasad azotowych wchodzących w skład RNA) oraz ksantyny (jedna z zasad purynowych). Uczeni z USA i Europy analizowali wspomniany materiał by sprawdzić, czy pochodzi on z kosmosu czy też doszło do zanieczyszczenia meteorytu po upadku na Ziemię. Badania wykazały, że materiał zawiera ciężką odmianę węgla, która mogła uformować się tylko poza naszą planetą. Doktor Zita Martins z Wydziału Nauk o Ziemi Imperial College London mówi, że odkrycie rzuca nowe światło na ewolucję życia na ziemi. Przed miliardami lat, gdy ono powstawało, nasza planeta była niezwykle często bombardowana przez meteoryty. To właśnie z nich mogły pochodzić zaczątki życia. Inny autor badań, profesor Mark Sephton z Imperial College London zauważa, że meteoryty zawierające materiał potrzebny do formowania się DNA i RNA mogą być rozpowszechnione w kosmosie. Bardzo więc prawdopodobne, że wiele z nich trafiło na planety, gdzie, tak jak na Ziemi, istniały odpowiednie warunki do powstania życia.
  13. Profesor Becca Levy z Yale University udowadnia, że mówienie do starszych osób jak do dzieci może szkodzić ich zdrowiu, a nawet skracać życie (The American Journal of Alzheimer's Disease and Other Dementias). Psycholodzy napiętnowali protekcjonalne zwracanie się do staruszków, zwłaszcza per słoneczko lub kochanie. Skrytykowali też próby wypowiadania się zbyt wolno i za głośno. Bardzo często lekarze rozmawiają z dziećmi pacjentów w jesieni życia, a nie z nimi samymi. Poza tym młodsze pokolenia z góry zakładają, że ktoś powyżej pewnego wieku nie umie się posługiwać komputerem, telefonami komórkowymi i innymi nowoczesnymi gadżetami. Tego typu sytuacje nie tylko chwilowo wyprowadzają z równowagi, ale także negatywnie wpływają na zdrowie. Wg pani Levy, prztyczki czy zniewagi prowadzą do wytworzenia bardziej negatywnego obrazu starzenia się. Kto ma gorszy stosunek do starości, z czasem zaczyna podupadać na zdrowiu, co zmniejsza szanse na przeżycie. Amerykanie odkryli, że osoby pozytywnie odnoszące się do starości żyją średnio o 7,5 roku dłużej. Optymizm dodaje zatem więcej lat niż częste ćwiczenia oraz niepalenie. Badania podłużne psychologów z Yale objęły 660 mieszkańców miasta Ohio, którzy przekroczyli pięćdziesiątkę. U zdrowych staruszków protekcjonalne komunikaty wywołały poczucie niekompetencji. Jako skutek pojawiały się zaniżona samoocena, depresja, wycofanie i zachowania wskazujące na zależność od innych. Jeszcze gorzej reagowali pacjenci z łagodnymi i umiarkowanymi postaciami demencji: stawali się agresywni i niewspółpracujący. Dla osoby może nie tak sprawnej fizycznie, ale w pełni władz umysłowych traktowanie nielicujące z wiekiem jest w najlepszym razie irytujące. Jeszcze gorzej, gdy dotyczy pacjenta z demencją. Podstawowym celem kogoś z chorobą Alzheimera jest zachowanie własnego ja i godności. Jeśli wiesz, że twoje możliwości intelektualne się pogarszają i chcesz zachować szacunek do siebie, gdy ktoś zwraca się do ciebie jak do dziecka, czujesz się naprawdę przybity.
  14. Badania brytyjskich naukowców sugerują, że ślady najwcześniejszego ziemskiego życia możemy znaleźć na... Księżycu. W 2002 roku amerykański astronom John Armstrong wysunął teorię, że gdy przed czterema miliardami lat Księżyc był bombardowany przez meteoryty, mogła nań dotrzeć z Ziemi materia biologiczna. Teorię przyjęto z zainteresowaniem, naukowcy zastanawiali się jednak, czy materia biologiczna przetrwałaby uderzenie w powierzchnię Srebrnego Globu. Ian Crawford i Emily Baldwin z BirkBeck College School of Earth Sciences na University of London przeprowadzili odpowiednie symulacje, z których wynika, że w wielu przypadkach materia biologiczna niesiona przez meteoryt powinna przetrwać upadek. Oznacza to, że Księżyc jest dobrym miejscem do poszukiwania śladów najwcześniejszego ziemskiego życia. Śladów takich nie uda się znaleźć na Ziemi. Miliardy lat aktywności wulkanicznej i erozji wszystko zniszczyły. Armstrong ocenia, że na ziemskiego satelitę trafiły dziesiątki tysięcy ton fragmentów naszej planety. Sam wyliczał, że materiał biologiczny mógłby przetrwać. Teraz zespół Crawforda i Baldwin wykorzystał oprogramowanie AUTDYN do symulacji zachowania dwóch różnych typów meteorytów uderzających w Księżyc. Musimy bowiem pamiętać, że nie da się tutaj zastosować wprost doświadczeń z meteorytami upadającymi na Ziemię. Atmosfera naszej planety znacznie spowalnia meteoryty. Co prawda powoduje też stopienie się ich powierzchni, ale wnętrze pozostaje nietknięte. Brytyjczycy symulowali wiele meteorytów uderzających w Księżyc pod różnym kątem i z różną prędkością. Na każdym z wirtualnych meteorytów "umieścili" 500 punktów, z których były zbierane dane. Okazało się, że przetrwać mógł nawet materiał na tych meteorytach, które uderzyły z Księżyc z prędkością 5 kilometrów na sekundę. W takim przypadków wskutek uderzenia część meteorytu ulegała stopieniu, ale większość pozostała nietknięta. Gdy meteoryt uderzał z prędkością 2,5 km/s lub mniejszą "żadna z jego części nie była poddawana ciśnieniu bliskiemu punktu topienia się". Znalezienie ziemskich meteorytów na Księżycu nie będzie łatwe. Brytyjczycy mają jednak i na to sposób. Ich zdaniem trzeba szukać śladów wody, a można tego dokonać za pomocą spektroskopii w podczerwieni. Wiele skał na Ziemi zawiera wodę, której brakuje skałom księżycowym. Crawford uważa, że przy obecnej technice krążący nad Księżycem satelita byłby w stanie zauważyć zawierające wodę meteoryty o średnicy co najmniej 1 metra. Pojazd poruszający się po powierzchni Srebrnego Globu może szukać mniejszych pozostałości. Być może konieczne będzie kopanie pod powierzchnią Księżyca.
  15. Jak głęboko sięga życie? Trudno tu o właściwą odpowiedź, ponieważ organizmy biją naprawdę imponujące rekordy. Ostatnio zespół Johna Parkesa z Uniwersytetu w Cardiff odkrył mikroby w skale sprzed 111 mln lat, która tkwi 1,6 km pod dnem oceanu (Science). Skałą tą jest uboga w magmę Krawędź Nowofunlandzka Oceanu Atlantyckiego. Wiercenia prowadzono z pokładu statku-platformy JOIDES Resolution. Poprzedni rekord to "zaledwie" 842 metry pod dnem Oceanu Spokojnego. Obowiązywał przez 6 lat, od 2002 roku, i został odnotowany również przez ekipę Parkesa. Eksperci sądzą, że nowy rekord nie utrzyma się zbyt długo, ponieważ, wg nich, maleńkie żyjątka zasiedlają tereny sięgające 5 km pod dnem. Niektórzy postulują nawet, że ¾ biomasy mikroorganizmów można znaleźć właśnie pod dnem. Im głębsza warstwa osadów, tym trudniej się w niej żyje. W starszych skałach znajduje się mniej pożywki dla mikrobów, w dodatku stale rosną ciśnienie i temperatura (w niektórych rejonach każdy dodatkowy kilometr pod dnem oznacza skok temperatury aż o 20 stopni Celsjusza). Obecnie za najwyższą temperaturę, z jaką życie może sobie jeszcze poradzić, uznaje się pułap 120°C. Jeśli temperatura jest ostatecznym czynnikiem ograniczającym, z przyczyn racjonalnych można się spodziewać, że biosfera sięga głębokości 5 km pod dnem – tłumaczy Steven D’Hondt, oceanograf z University of Rhode Island. JOIDES Resolution (Joint Oceanographic Institutions Deep Earth Sampler) służyła pierwotnie do wydobycia ropy. Ponad dwadzieścia lat temu przerobiono ją na pływające laboratorium naukowe. Zespół Parkesa wyekstrahował mikroby z rdzenia wydrążonej próbki, który z zasady jest rzadziej skażony przez słoną wodę. Mikroorganizmy wykryto dzięki fluorescencyjnemu zielonemu barwnikowi, który zaczyna się jarzyć po dostaniu do wnętrza żywych komórek. Naukowcom udało się też zdobyć i zsekwencjonować DNA. Na głębokości 1000 metrów natrafiono na przedstawicieli archeowców (łac. Archaea), głównie na gorącolubne Pyrococcus. Wraz z głębokością zwiększało się stężenie metanu, dlatego też niżej wyodrębniono kolejne sekwencje DNA, które wskazywały na obecność mikroorganizmów uzyskujących energię z utleniania gazu błotnego. Parkes nie może się nadziwić, jak można przetrwać w tak trudnych warunkach. Skała jest tak stara, że jakiekolwiek biodegradowalne substancje dawno stamtąd zniknęły. Naukowiec domyśla się, że nowo odkryci rekordziści zadowalają się bardzo niedużą ilością pożywienia. W sytuacji braku drapieżników, przed którymi należałoby uciekać, mikroby mogą utrzymywać się przy życiu, uzupełniając raz na jakiś czas niedobory ATP. W przyszłości Parkes zamierza wiercić jeszcze głębiej, być może w okolicach 6. km poniżej dna. W ten sposób stwierdzono by, czy biosfera rzeczywiście kończy się na piątym kilometrze.
  16. Naukowcy z Centrum Astrobiologii w Cardiff stworzyli komputerowy model ruchów Układu Słonecznego względem Drogi Mlecznej. Twierdzą, że odkryte cykle pokrywają się z pojawiającym się okresowo na Ziemi katastrofami, doprowadzającymi do wyginięcia wielu gatunków (Monthly Notices of the Royal Astronomical Society). Gdy Układ Słoneczny kołysał się w tę i z powrotem w stosunku do płaszczyzny Galaktyki, w pewnym momencie dochodziło do wzrostu oddziaływań grawitacyjnych chmur gazu i pyłu, co z kolei doprowadzało do zmiany toru komet. Niektóre z nich zderzały się z Błękitną Planetą. Badacze z Cardiff twierdzą, że kiedy co 35-40 mln lat "przechodzimy" przez płaszczyznę Galaktyki (równik), szanse na zderzenie z kometą wzrastają aż 10-krotnie. Kratery znajdowane na powierzchni Ziemi także sugerują, że liczba kolizji z kometami wzrasta mniej więcej co 36 mln lat. To idealna zgodność między tym, co widzimy na powierzchni, a tym, czego się spodziewamy po przeanalizowaniu danych galaktycznych – cieszy się profesor William Napier. W dalszej części swoich wywodów Napier utrzymuje, że okresy bombardowania przez komety pokrywają się z incydentami masowego wyginięcia, takimi jak wymarcie dinozaurów 65 mln lat temu. Naukowcy sądzą, że o ile sprężynujący ruch doprowadził do zniknięcia konkretnych organizmów z powierzchni naszej planety, o tyle dopomógł w rozprzestrzenieniu się życia jako takiego. Kiedy kometa uderzała w Ziemię, w przestrzeń kosmiczną wylatywały fragmenty materii z ważnym ładunkiem: mikroorganizmami. Dyrektor Centrum Astrobiologii profesor Chandra Wickramasinghe przedstawia też prognozy na przyszłość. Bazując na wskazaniach modelu, twierdzi, że kolejny okres zderzeń Ziemi z kometami zbliża się już wielkimi krokami.
  17. Dwudziestego kwietnia 2008 roku rozpoczęło się niezwykłe spotkanie specjalistów związanych z naukami o życiu (ang. life science). Tematem spotkania jest jeden z najambitniejszych i jednocześnie najbardziej kontrowersyjnych projektów badawczych nadchodzących lat - biologia syntetyczna, czyli próba stworzenia całkowicie nowego życia w laboratorium. Nowa dyscyplina, za której ojca uznaje się jednego z najważniejszych badaczy ludzkiego genomu, Craiga Ventera, stawia sobie za cel "okrojenie" genomów mikroorganizmów do absolutnego minimum, a następnie stworzenie nowego gatunku o możliwie prostej informacji genetycznej. Pozwoliłoby to (przynajmniej teoretycznie) na stworzenie taniego w utrzymaniu i bardzo wydajnego "narzędzia" do takich zadań, jak produkcja leków czy neutralizowanie zanieczyszczeń. Krytycy biologii syntetycznej upatrują w niej wielkie zagrożenie dla ludzkości i środowiska naturalnego. Przestrzegają oni, że już teraz jest możliwe zamówienie przez Internet odpowiednich sekwencji DNA, a następnie zsyntetyzowanie na ich podstawie groźnych białek lub nawet - potencjalnie - całych wirusów (interesujący artykuł opublikowało czasopismo New Scientist). Zdaniem przeciwników tej dyscypliny, jej rozwój jest potencjalnie niebezpieczny i powinien zostać zabroniony. Pracujący dla Laboratorium Biologii Molekularnej Uniwersytetu Cambridge dr Philipp Holliger ocenia swoją pracę następująco: Naukowcy uczą się, jak projektować życie aż do najdrobniejszych szczegółów. Nie wiemy jeszcze wystarczająco wiele, by stworzyć wyrafinowane dzieła, lecz nasza wiedza wciąż się rozwija. Naukowiec będzie jednym z prelegentów w czasie konferencji. Większość badaczy zajmujących się biologią syntetyczną, co oczywiste, broni swoich działań. Podkreślają przede wszystkim możliwe korzyści osiągalne dzięki ich odkryciom. Richard Kitney, pracownik Imperial College London: Biologia syntetyczna reprezentuje nowe podejście do inżynierii. Pomogła nam stanąć na czele nowej rewolucji przemysłowej, w czasie której nowe paliwa, leki, terapie i czujniki mogą być wytwarzane z materiałów biologicznych. Jako przykład podawane są np. mikroorganizmy, których zadaniem byłoby wchłanianie z powietrza dwutlenku węgla i przetwarzanie go na paliwa węglowodorowe. Historia manipulacji genetycznych nie jest nowością. Do tej pory jednak przedsięwzięcia z nimi związane, takie jak tworzenie roślin genetycznie zmodyfikowanych, były stosunkowo proste. W większości przypadków polegały na zwiększeniu genomu organizmu o zaledwie jeden gen, którego białkowy produkt spełniałby pożądane zadania. Zupełnie nowym wyzwaniem jest przeprowadzenie procesu odwrotnego: jak najsilniejsze "okrojenie" genomu bakterii aż do stanu, w którym pozostają w nim jedynie geny absolutnie niezbędne do przeżycia. Tak przygotowana "minimalna" forma życia mogłaby być wzbogacona o dodatkowe geny, tworząc w ten sposób tanią i łatwą do wykorzystania "matrycę" do produkcji organizmów zmodyfikowanych na potrzeby nowoczesnej biotechnologii. Spotkanie, które odbywa się w siedzibie Imperial College London, zakończy się jutro.
  18. Naukowcy z Harvard-Smithsonian Center for Astrophysics opracowali technologię, która może przynieść przełom w astronomii. Dzięki ich pracom wyszukiwanie planet podobnych do Ziemi, a więc takich, na których może zaistnieć życie w znanych nam formach, stanie się znacznie łatwiejsze. Amerykańscy naukowcy wykorzystali stosunkowo niedawno odkrytą technologię laserową i dzięki niej stukrotnie zwiększyli dokładność analiz spektrograficznych. Sara Seager, profesor z MIT, mówi, że jeśli nowa technologia będzie współpracowała z współczesnymi teleskopami, to będziemy świadkami olbrzymiego przełomu. Jej kolega, George Ricker wyjaśnia, że gdy planeta krąży wokół gwiazdy, to oddziałuje na nią za pomocą własnej grawitacji i zakłóca jej ruch. Te zakłócenia powodują, zgodnie z efektem Dopplera, niewielkie zmiany w długościach fali światła, które dociera do nas z danej gwiazdy. Analizując to światło spektrografem możemy wykryć planety. Im większa jest planeta, tym łatwiej ją zauważyć. Najczęściej więc odkrywane są planety należące do kategorii gorących Jowiszy, czyli duże, gazowe ciała niebieskie. Na nich jednak nie może powstać życie takie, jak znamy je z Ziemi. Współczesne spektrografy nadają się do wykrywania w ruchach gwiazd zakłóceń rzędu około 1 metra na sekundę. Takie zmiany są jednak wywoływane przez duże planety jak Jowisz, a nie małe skaliste jak Ziemia. Naukowcy już w latach 80. ubiegłego wieku zaczęli się zastanawiać nad wykorzystanie lasera do zwiększenia rozdzielczości spektrografu, ale nie wiedzieli jak to zrobić. Dopiero Ronald Walsworth i Chih-Hao Li wpadli na pomysł, by połączyć laser i interferometr Fabry'ego-Perota, dzięki czemu powstała bardzo precyzyjna "linijka" pozwalająca zbadać właściwości światła z odległych gwiazd. W najbliższym czasie zostanie ona zamontowana w Multiple Mirror Telescope (MMT) na Mount Hopkins w Arizonie.
  19. Do tej pory uważano, że życie w dawnej stolicy starożytnego Egiptu Tell el-Amarnie opływało w dostatki. Przynajmniej to starano się przekazać w dziełach sztuki z tamtego okresu. Po zbadaniu szczątków "zwykłych" Egipcjan z cmentarza wyszło jednak na jaw, że wielu z nich cierpiało na anemię, złamania, zaburzenia wzrostu (jego zahamowanie). Wysoka śmiertelność nieletnich również znajdowała się na porządku dziennym. Profesor Jerome Rose, antropolog z University of Arkansas, sądzi, że dorosłych pogrzebanych na terenie tej nekropolii zwożono z różnych części kraju. Oznacza to, że przed okresem amarneńskim w Egipcie wystąpił okres niedostatku. Może przeciętnemu Egipcjaninowi nie wiodło się wtedy zbyt dobrze i Amenhotep postanowił, że trzeba coś zrobić, by zmienić ten stan rzeczy. Tell el-Amarna (staroegipskie Achetaton) to miasto nad środkowym biegiem Nilu, oddalone o 320 km na południe od Kairu. Było stolicą Egiptu za panowania Amenhotepa IV Echnatona, czyli w 1. połowie XIV wieku p.n.e. Po śmierci tego faraona miasto w dużej mierze opuszczono. Amenhotep mieszkał tam i tworzył przez 15 lat. Profesor Barry Kemp z Uniwersytetu w Cambridge jest szefem Projektu Amarna. Chce zwiększyć powszechną wiedzę na temat Tell el-Amarny i okolic. Uważa, że jak dotąd zbyt małą uwagę poświęcano szaremu Egipcjaninowi. Wykopaliska prowadzono na bardzo wielu zwykłych cmentarzach, ale koncentrowano się na wydobywaniu przedmiotów, a nie na ludzkich szczątkach. Przypomina on, że badanie kondycji populacji na podstawie pozostałości jej członków jest, o dziwo, stosunkowo nową praktyką. Podczas gdy malowidła z grobowców wielmożów kreowały wizję obfitości darów, szkielety członków społeczności "mówiły" coś zupełnie innego. Same dzieła sztuki także stanowią dokumentację. Widnieją na nich na przykład młodzi ludzie z urazami kręgosłupa, powstałymi najprawdopodobniej podczas budowy stolicy. Badanie szkieletów wykazało, że anemia dotyczyła aż 74% dzieci i młodzieży oraz 44% dorosłych. Średni wzrost mężczyzny wynosił 159, a kobiet – 153 cm. Profesorowie wytłumaczyli, że wzrost jest miarą stopy życiowej społeczeństwa. Niski oznacza, że w diecie brakowało białka. Wg Kempa, dalsze wykopaliska na tym stanowisku powinny potwierdzić wnioski zespołu. Naukowcy podkreślają, że ich spostrzeżenia nie wykluczają, że mimo sytuacji, Amenhotep był bardzo opiekuńczy i dobry dla swoich poddanych.
  20. Ponieważ hipoteza zupy nie sprawdziła się przy wyjaśnianiu początków życia na Ziemi, Helen Hansma, biochemik z Uniwersytetu Kalifornijskiego w Santa Barbara, zdecydowała się na inne kulinarne porównanie: kanapkę. Wg niej, przypominające ciasto francuskie warstwy pewnego minerału, miki, stworzyły idealne warunki dla formowania się istotnych dla życia substancji. Koncepcję wyjaśniającą powstanie życia procesem zagęszczania bulionu pierwotnego, w wyniku czego utworzyły się koacerwaty, sformułował w 1924 roku Aleksander Oparin. Teoria ta doczekała się wielu wersji. Ostatecznie nauka zna ją jako teorię Oparina-Haldana. Zgodnie z jej założeniami, życie to wynik ewolucji materii, wszystkie organizmy żywe wywodzą się od wspólnych przodków, a życie koncentruje się w koacerwatach, czyli układach względnie odgraniczonych od swojego otoczenia, które wymieniają z nim zarówno materię, jak i energię. Teoria ta zainspirowała wiele późniejszych koncepcji biogenezy. Hansma po raz pierwszy zaprezentowała swoje rozwiązanie zagadki pochodzenia życia na 47. dorocznym spotkaniu Amerykańskiego Towarzystwa Biologii Komórkowej. Mika jest jak olbrzymia kanapka z milionami warstw, które przypominają kromki chleba. W zakątkach między nimi mogła się rozpocząć synteza istotnych dla życia związków. W dodatku blaszki miki stanowiły doskonałą ochronę. Hansma sądzi, że teoria bulionu nie wyznaczała dobrego miejsca, gdzie cząsteczki miałyby ze sobą reagować. Teoria pizzy już je uwzględniła. Miały się one formować na powierzchni naładowanych elektrycznie minerałów. Słabym punktem tej koncepcji jest jednak niewystarczające wyjaśnienie procesu łączenia się pierwotniejszych związków w RNA i inne kluczowe substancje. Teoria kanapki miała zapewnić powierzchnię reakcyjną (warstwę minerału) i substraty, które unosiły się w bulionie uwięzionym między blaszkami. Cały proces przebiegał w przestrzeni odgraniczonej strukturą miki. Skąd energia do przebiegu reakcji? Z przesuwania się warstw minerału, niewykluczone, że także z pływów oceanu czy promieniowania słonecznego. Hansma uważa, że jako pierwsza wykazała, czemu w naszych komórkach znajduje się tak dużo potasu. Mika jest bowiem uwodnionym krzemianem potasu. Na razie kalifornijski zespół przeprowadził tylko wstępne eksperymenty potwierdzające teorię. Pozostało jeszcze dużo pracy...
  21. Czterdziestodwuletnia Kalifornijka A.J. pamięta w szczegółach całe swoje życie. W związku z tym nadano jej nawet przydomek Totalna Pamięć. Ona sama opisuje to, czego doświadcza, jako film, który nigdy się nie zatrzymuje. Pamięć zdominowała jej życie. Działa bezustannie, automatycznie, w niekontrolowany sposób. Wg raportu, A.J. spędza nieproporcjonalnie dużo czasu na przypominaniu sobie osobistej przeszłości (z dużą dokładnością i wiarygodnością). Różni się od innych osób z superpamięcią, ponieważ one wykorzystują wypracowane mnemotechniki, by zapamiętać ogromne ilości niezwiązanych z własną osobą danych. W ramach eksperymentu pytano ją o losowo wybierane daty, poczynając od okresu, gdy była nastolatką (od 1976 r.). Pamiętała nie tylko okoliczności ważnych wydarzeń, np. śmierć Elvisa Presleya, ale także zupełnie nieistotne szczegóły, m.in. lokalne stawki podatkowe z 1978 roku. Potrafiła opisać, gdzie była, co robiła i jakie wydarzenia znalazły się w nagłówkach gazet. Podanie dnia tygodnia, w którym coś się stało, nie stanowiło dla niej najmniejszego problemu. Profesor James McGaugh, specjalista ds. mózgu z Uniwersytetu Kalifornijskiego w Irvine, badał A.J. i mężczyznę obdarzonego podobnymi zdolnościami (Brada Williamsa). Zaburzenie to nazywa zespołem hipertymestycznym (od greckiego thymesis – zapamiętywać). U obojga występują zachowania obsesyjne, które zdają się wspomagać pamięć. Kobieta i mężczyzna przechowują wiele roczników gazet telewizyjnych. Dodatkowo A.J. zachowała pamiętniki z 32 lat. A.J. nie ma pamięci ejdetycznej (fotograficznej), ponieważ po zamknięciu oczu nie potrafi sobie przypomnieć, jak byli ubrani naukowcy. Jej pamięć autobiograficzna, choć niesamowita, jest jednak wybiórcza – wyjaśnia profesor.
  22. Brak snu wpływa na ocenę moralną. William Killgore i zespół z Walter Reed Army Institute of Research w Silver Spring zebrali do udziału w eksperymencie grupę 26 zdrowych dorosłych, którzy pracują dla armii. W ich przypadku prawidłowość osądu jest niezwykle ważna, ponieważ albo sami dysponują bronią, albo w jakiś sposób wpływają na tych, którzy się nią posługują. Uczestnikom badań przedstawiano serię hipotetycznych problemów. Przy pierwszym pokazie byli wypoczęci, za drugim razem nie spali przez 53 godziny. Jeden z dylematów moralnych polegał na konieczności dokonania wyboru, czy poświęcić jedno życie dla uratowania kilku innych, czy też nie. Nie wszystkie pytania wiązały się z osądem moralnym, czasami trzeba było powiedzieć, czy można zastępować jedne składniki innymi przy pieczeniu ciasteczek czekoladowych. To ostatnie zdarza się od czasu do czasu niemal wszystkim, a szczypta sody zamiast proszku do pieczenia nie zrujnowała jeszcze nikomu życia... Killgore opowiada, że wskutek braku snu badani nie stawali się niemoralni, potrzebowali tylko średnio dwóch dodatkowych sekund, by rozwiązać dylemat moralny. Czas odpowiedzi na zwykłe pytania nie zmieniał się. Brak snu silnie wpływa na obszary mózgu związane z podejmowaniem decyzji, które w dużej mierze opierają się na emocjach. Kiedy ludzie nie śpią więcej niż 24 godziny, znacznie spada aktywność kory przedczołowej. Pozbawienie snu zmieniało nieco odpowiedzi dotyczące zachowań właściwych w danych sytuacjach, przy czym w większym stopniu dotyczyło to osób, które uzyskały najniższe wyniki w testach na inteligencję emocjonalną. Killgore przypuszcza, że mogą one być mniej odporne na pozbawienie snu. Naukowcy podkreślają, że trzeba prowadzić dalsze badania, ponieważ warunki laboratoryjne to nie realne życie (Sleep).
  23. Niemieccy naukowcy twierdzą, że można wydłużyć życie, zarzucając jedzenie słodyczy i unikając pewnych witamin. U nicieni Caenorhabditis elegans wykluczenie z diety glukozy skutkowało wydłużeniem życia nawet o 25%. Kluczowym zjawiskiem był wzrost stężenia wolnych rodników, które zazwyczaj staramy się wyeliminować z organizmu poprzez spożywanie napojów i pokarmów z dużą zawartością antyutleniaczy, np. witaminy E (Cell Metabolism). Zmniejszenie dostaw glukozy najpierw wywołało gwałtowny wzrost poziomu wolnych rodników, ale szybko wytworzył się trwały mechanizm obrony przed ich uszkadzającym działaniem – tłumaczy szef badań Michael Ristow, endokrynolog z Uniwersytetu w Jenie. Organizm potrzebuje glukozy, ale spożywanie jej w zbyt dużych ilościach jest niezdrowe. Od jakiegoś czasu gerontolodzy wiedzieli, że poprzez ograniczenie liczby pobieranych kalorii można wydłużyć życie małp i nicieni. Teraz wytypowano substancję, która pozwala wyjaśnić opisywane zjawisko: glukozę. Po raz pierwszy Niemcy wykazali też, dlaczego przeciwutleniacze (od dawna uznawane za dobroczynne substancje) mogą w przynosić więcej szkód niż korzyści. Podczas eksperymentów na nicieniach zastosowano związek chemiczny, który blokował metabolizm glukozy. Wydłużenie życia Caenorhabditis elegans o 25% to odpowiednik 15 lat u człowieka. Nie mogąc polegać na glukozie jako podstawowym źródle energii, nicienie nasiliły działanie mitochondriów. Spowodowało to wzrost stężenia wysoce reaktywnych wolnych rodników. Wkrótce jednak rozpoczynała się produkcja enzymów, zapewniających długotrwałą ochronę przed szkodliwymi cząsteczkami. Kiedy nicienie mogły znowu żyć w swoim zwykłym środowisku i wykorzystywać glukozę, ich mechanizm obronny i długowieczność nie zanikały. Jeśli zastosowano terapię przeciwutleniaczami, które eliminowały stres oksydacyjny, Caenorhabditis elegans żyły jednak krócej.
  24. Międzynarodowy zespół naukowców zauważył, że pewne struktury nieorganiczne mogą w określonych warunkach zachowywać się jak związki organiczne. Spostrzeżenie to pozwala przypuszczać, że do powstania życia obecność węgla nie jest konieczna i że na innych planetach może się ono znacznie różnić od tego, co widzimy na Ziemi. Życie na naszej planecie opiera się na związkach organiczych, czyli takich, w skład których wchodzi węgiel (oprócz tlenków węgla, węglanów, wodorowęglanów itp.). Być może jednak brak związków organicznych wcale nie oznacza, że życie nie może powstać. Profesor Wadim Cytowicz z Instytutu Fizyki Rosyjskiej Akademii Nauk we współpracy z kolegami z Instytutu Maxa-Plancka i Uniwersytetu w Sydney badał zachowanie struktur nieorganicznych w plazmie. Dotychczas naukowcy uważali, że cząsteczki w plazmie są bardzo słabo zorganizowane. Tymczasem okazało się, że w momencie gdy ładunki elektryczne zostają odseparowane i plazma się polaryzuje, dochodzi do samoorganizowania się cząstek. Samoistnie łączą się one w struktury przypominające helisę DNA. Te łańcuchy helis nie są elektrycznie obojętne i przyciągają się wzajemnie. Uczeni ze zdumieniem stwierdzili, że nieorganiczne helisy nie tylko oddziałują na siebie, ale również przechodzą zmiany podobne do tych, zachodzących w DNA czy białkach. Mogą się na przykład dzielić tak, by stworzyć dwie identyczne kopie oryginalnego łańcucha. Kopie z kolei potrafią wpływać na sąsiednie łańcuchy. Zauważono też swoistą ewolucję nieorganicznych helis: mniej trwałe struktury rozpadają się, a pozostają tylko te bardziej solidne. Te złożone, samoorganizujące się struktury plazmowe wykazują wszystkie cechy, które pozwalają zakwalifikować je jako nieorganiczną żywą materię. Są autonomiczne, reprodukują się i ewoluują – mówi profesor Cytowicz. Dodaje przy tym, iż warunki konieczne do powstania takich struktur są bardzo często spotykane w kosmosie. Plazma może powstawać w sposób naturalny również na Ziemi. Ma to miejsce np. podczas uderzenia pioruna.
  25. Astrobiolog z Cardiff University, Chandra Wickramasinghe i jego zespół poinformowali, że z ich wyliczeń wynika, iż życie pochodzi z wnętrza komet, a nie powstało na Ziemi. Naukowcy przeprowadzili kalkulacje i stwierdzili, iż prawdopodobieństwo powstania życia w kometach jest kwadrylion (1024) razy większe, niż powstanie go na naszej planecie. Komety i ich gorące, wypełnione wodą wnętrze jest miejscem, gdzie organiczne molekuły dały początek życiu. Zaistnienie takiego procesu jest bardziej prawdopodobne we wnętrzu komety, niż w jakimś zbiorniku wodnym na Ziemi – mówi Wickramasinghe. Większość naukowców zgadza się z tezą, że komety mogły przynieść na Ziemię wodę i materiał organiczny. Jednak niektórzy krytykują Wickramasinghe mówiąc, że jego stwierdzenia są czystymi spekulacjami. Moim zdaniem wysnuł on wnioski z szeregu spekulacji, które nie zostały poparte dowodami – mówi David Morrison, naukowiec z należącego do NASA Ames Research Center. Brytyjski astrobiolog oparł się na założeniu, że komety są porowate i mogą od milionów lat przechowywać wodę w stanie ciekłym. Morrison zwraca jednak uwagę, iż nie wiadomo, czy komety zawierają wodę. Nie wiadomo również, czy komety istnieją poza naszym systemem słonecznym. Dotychczas żadnej takiej komety nie odkryto. W rewelacje Wickramasinghe nie wierzy też Paul Falkowski, biochemik z Rutgers University. Jego zdaniem miejsca powstania życia nie można po prostu wyliczyć. To wymaga uczynienia podstawowych założeń. A my nie znamy szans na powstanie życia. Wiemy tylko o jednej planecie, na której ono istnieje. O innych nie wiemy nic – mówi. Sam Falkowski ze swoim zespołem jest autorem badań, które sugerują, iż życie nie byłoby w stanie przetrwać daleko w kosmosie, w warunkach, w jakich podróżują komety. Badał on liczące sobie 8 milionów lat DNA wydobyte z lodów Antarktyki. Było ono mocno zdegradowane. Na jego podstawie wyliczono, że okres rozpadu DNA wynosi na Ziemi około 1,1 miliona lat. Do jego degradacji przyczynia się promieniowanie z kosmosu. W przestrzeni kosmicznej jest ono znacznie większe, niż na Ziemi, a to oznacza, że wszelkie życie organiczne, które powstałoby na kometach, bardzo szybko zostałoby zniszczone. Falkowski wyliczył, że przetrwałoby ono najwyżej kilkaset tysięcy lat.
×
×
  • Dodaj nową pozycję...