Search the Community
Showing results for tags ' stopień swobody'.
Found 1 result
-
Fizycy z Chińskiego Uniwersytetu Nauki i Technologii poinformowali o splątaniu 18 kubitów. To największa jak dotychczas liczba splątanych kubitów z zachowaniem kontroli nad pojedynczym kubitem. Jako, że każdy z kubitów może reprezentować 2 stany, możemy w tym przypadku uzyskać 262 144 kombinacje ich stanów (218). Artykuł opisujący osiągnięcie Xi-Lin Wanga i jego kolegów został opublikowany na łamach Physical Review Letters. W artykule informujemy o splątaniu 18 kubitów, co rozszerza efektywną przestrzeń Hilberta do 262 144 wymiarów z pełną kontrolą o trzech stopniach swobody dla sześciu fotonów, w tym z kontrolą ich polaryzacji, orbitalnego momentu pędu oraz drogi, stwierdził współautor badań Chao-Yang Lu. To największa jak dotąd liczba splątanych kubitów. Splątywanie coraz większej liczby kubitów interesuje nie tylko specjalistów zajmujących się badaniami podstawowymi. Stanowi to jedno z głównych wyzwań informatyki kwantowej. Istnieją dwa sposoby na splątanie większej liczby kubitów. Można albo dodawać kolejne cząstki do już splątanych, albo wykorzystywać dodatkowe stopnie swobody splątanych cząstek. Gdy korzystamy z dodatkowych stopni swobody mówimy o hipersplątaniu. Jak dotychczas największymi osiągnięciami na tym polu było splątanie 14 jonów z jednym stopniem swobody oraz pięciu fotonów z dwoma stopniami swobody, co odpowiada 10 kubitom. Mimo, że przejście od dwóch do trzech stopni swobody stanowi poważne wyzwanie, chińskim naukowcom udało się uzyskać nie tylko trzy stopnie swobody, ale i zwiększyć liczbę fotonów do sześciu, przez co uzyskali 18 splątanych kubitów. Użycie dodatkowych stopni swobody niesie ze sobą liczne korzyści. Na przykład zwiększenie z dwóch do trzech stopni swobody oznacza, że każdy foton może znajdować się nie w czterech, a w ośmiu różnych stanach. Ponadto hipersplątany 18-kkubitowy stan z trzema stopniami swobody jest o 13 rzędów wielkości bardziej efektywny niż 18-kubitowy stan składający się z 18 fotonów o pojedynczym stopniu swobody. Dzięki naszej pracy uzyskaliśmy nową platformę do optycznego przetwarzania informacji kwantowej. Możliwość kontrolowania 18 kubitów pozwala nam na przeprowadzenie niedostępnych dotychczas badań, takich jak na przykład wykorzystanie kodu Raussendorfa-Harringtona-Goyala do korekcji błędów czy teleportacji trzech stopni swobody pojedynczego fotonu, mówi Lu. « powrót do artykułu