Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' soczewkowanie grawitacyjne' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Rozbłyski gamma, jako jedne z najbardziej energetycznych procesów zachodzących w najdalszych zakątkach Wszechświata, od lat są w centrum zainteresowania astrofizyków. Naukowcy spodziewają się, że podobnie jak w przypadku innych dalekich obiektów, istnieje możliwość soczewkowania grawitacyjnego sygnałów pochodzących od takich zdarzeń. NCBJ bierze udział w poszukiwaniach potwierdzenia tych oczekiwań. Rozbłyski gamma (GRB, z ang. Gamma-Ray Burst) są obserwowane na całym niebie i są tak jasne, że sygnały od nich docierają z najodleglejszych zakątków Wszechświata. Właściwe zrozumienie kosmologicznego pochodzenia rozbłysków gamma oraz ich natury, zawdzięczamy Polakowi, profesorowi Bohdanowi Paczyńskiemu. Najdalsze obserwowane GRB mają przesunięcie ku czerwieni (z ang. redshift) ~10. Wynika z tego, że ich źródłami są obiekty, od których światło podróżowało do nas ponad 13 miliardów lat. Ze względu na dużą odległość należy się spodziewać, że światło dochodzące do nas od wielu z nich może ulegać soczewkowaniu grawitacyjnemu wywołanemu przez bliższe nam galaktyki. Jednak poza jednym niedawnym przypadkiem opublikowanym w czasopiśmie Nature, nie zdołano jeszcze zaobserwować soczewkowanego GRB tylko i wyłącznie w oparciu o dane z zakresu gamma. Od dawna sugerowano, że soczewkowanie grawitacyjne może powielać obrazy GRB. Obserwacje takich zjawisk mogłyby być wykorzystane między innymi do znaczącego polepszenia dokładności pomiarów parametrów kosmologicznych, takich jak stała Hubble'a, do badania fizyki fundamentalnej (testując prędkość ich propagacji w zależności od energii), oraz do uzyskania ograniczenia na obfitość ciemnej materii w postaci zwartych obiektów (czarne dziury, wystygłe: gwiazdy neutronowe lub białe karły). Tradycyjne poszukiwania soczewkowanych GRB skupiają się na zakresie promieni gamma. Międzynarodowy zespół naukowców, w którym pracuje prof. Marek Biesiada z Narodowego Centrum Badań Jądrowych, proponuje by poszukiwania takich zjawisk oprzeć nie tylko o dane gamma, ale też o wielozakresowe obserwacje poświaty rozbłysków (z ang. GRB afterglow). Problemów przy szukaniu soczewkowanych rozbłysków gamma jest kilka – mówi prof. Marek Biesiada. Po pierwsze, promieniowanie gamma emitowane jest w obszar dość wąskiego stożka – zatem musimy mieć więcej szczęścia, aby wzajemne ustawienie źródła i soczewki skutkowało obserwowalnymi wielokrotnymi obrazami. Po drugie, detektory gamma mają zbyt słabą rozdzielczość, aby zidentyfikować położenie tych wielokrotnych obrazów. Na szczęście sygnały z obrazów docierają do nas z pewnym opóźnieniem czasowym, czyli detektor powinien zarejestrować dwa sygnały o identycznym kształcie. Tu też tkwi pewien problem: opóźnienie czasowe musi być większe niż 1 sekunda, lecz krótsze niż 300 sekund. W innym przypadku nie mamy szans na odkrycie soczewkowania w detektorze promieni gamma. Ograniczenie czasowe oznacza, że soczewkami mogą tu być obiekty o masach między 100 a 10 mln mas Słońca – to zapewne musiałyby być egzotyczne obiekty, np. masywne czarne dziury o tzw. pośrednich masach, które wciąż są jedynie hipotetyczne. Na szczęście, rozbłyskom gamma towarzyszą znacznie dłużej trwające późniejsze poświaty: najpierw w promieniach X, następnie w świetle widzialnym i na falach radiowych. Co więcej, promieniowanie poświaty nie jest już skolimowane do wnętrza stożka. Mamy więc większe szanse na odkrycie układu soczewkowanego grawitacyjnie. Jest to pomysł, który jakiś czas temu zainspirował mnie i dr Aleksandrę Piórkowską-Kurpas z Uniwersytetu Śląskiego. Korzystając ze standardowego modelu poświaty GRB, badacze określili, jak wyglądałyby dane obserwacyjne soczewkowanej poświaty błysków gamma. Analizy oparte zostały o dwa modele soczewek grawitacyjnych: model punktowy (opisujący gwiazdy lub czarne dziury) oraz model galaktyki (tzw. osobliwa izotermiczna sfera). W takiej sytuacji poświata rentgenowska składałaby się z kilku rozbłysków o podobnym kształcie. Z kolei optyczna krzywa jasności poświaty mogłaby posiadać pojaśnienia na swej gałęzi opadającej, gdy jej blask nieuchronnie się zmniejsza. Symulacje numeryczne pozwoliły uzyskać przewidywane profile krzywych jasności poświat w zależności od masy soczewki i opóźnienia czasowego sygnałów. W oparciu o swoje analizy naukowcy sugerują, aby przyszłe poszukiwania soczewkowanych GRB oprzeć na dwóch przypadkach obiektów soczewkujących: 1) Zwarty obiekt, typu czarnej dziury o masie nie większej niż 10 mln mas Słońca. Opóźnienie będzie wtedy niewielkie (~100 sekund lub mniejsze), a zwielokrotnione obrazy gamma mogą być rozdzielone lub nakładające się. Jeśli jednak sygnał opóźniony będzie słabszy niż czułość detektora, aparatura zarejestruje tylko jeden sygnał. W takim przypadku, można wykorzystać późniejsze obserwacje poświaty w zakresach rentgenowskim i optycznym, by ocenić, czy obraz jest soczewkowany, czy może obiekt miał kilka następujących po sobie emisji. Jeśli sygnał GRB jest faktycznie soczewkowany, wówczas poświata rentgenowska najprawdopodobniej zawierałaby kilka rentgenowskich flar o podobnym kształcie. W obrazie optycznym poświaty również powinniśmy zaobserwować pojaśnienia „górki” krzywej jasności. 2) Galaktyki o masie 1-100 mld mas Słońca. W takim przypadku typowe opóźnienie będzie rzędu ~17 min – 28 h. Wobec tego w zakresie gamma niezmiernie trudno będzie wykryć soczewkowanie (o ile w ogóle będzie to możliwe). Natomiast w zakresie promieni X, światła widzialnego, czy fal radiowych powinny się ujawnić wyraźne flary (pojaśnienia) na tle słabnącej emisji poświaty. Takie zjawisko pozwoliłoby na łatwą weryfikację czy doszło do soczewkowania. Biorąc pod uwagę, że teleskopy optyczne oraz radioteleskopy są zazwyczaj w stanie rozróżnić poszczególne obrazy zwielokrotnione, pozwoli to na weryfikację soczewkowania. Jest to kolejny argument na rzecz rozwijania tzw. astronomii wielozakresowej (ang. multimessenger astronomy), co również jest domeną NCBJ. W ramach powyższych badań, w archiwalnych danych naukowcy znaleźli potencjalnego kandydata soczewkowanego błysku gamma o katalogowej nazwie – GRB130831A. Opóźnienie czasowe było rzędu 500 sekund, co mieści się w zakresie omawianych sytuacji. Pewne detale tego zjawiska nie pozwalają jednak na stuprocentowe potwierdzenie postawionej hipotezy. Naukowcy nie poddają się i zapowiadają dalsze badania GRB 130831A. Tym samym żywią ogromne nadzieje, że dzięki wielozakresowym przeglądom nieba, w szczególności monitoringu całego nieba w zakresie gamma, znalezienie kolejnych soczewkowanych błysków gamma jest tylko kwestią czasu. « powrót do artykułu
  2. Pomiary potwierdzają, że mamy kryzys w kosmologii, stwierdził Geoff Chih-Fan Chen, kosmolog z University of California, Davis, podczas 235. spotkania Amerykańskiego Towarzystwa Astronomicznego. Kryzysowi temu na imię stała Hubble'a, jedna z podstawoywch stałych kosmologicznych, co do wartości której trwa ostry spór. Stała Hubble'a została po raz pierwszy obliczona przez Edwina Hubble'a, który zauważył, że galaktyki oddalają się od Ziemi w tempie proporcjonalnym do ich odległości od naszej planety. Problem w tym, że w ostatnich latach różne zespoły naukowe nie mogą się zgodzić, co do wartości stałej Hubble'a. Pomiary mikrofalowego promieniowania tła (CMB), które jest pozostałością po Wielkim Wybuchu, wskazują, że stała Hubble'a wynosi 64,4 km/s/Mpc (kilometrów na sekundę na megaparsek). Jednak pomiary wykonywane z użyciem cefeid, zmiennych gwiazd pulsujących, wskazują, że wartość ta to 73,4 km/s/Mpc. Grupa naukowców, której członkiem jest Chen, postanowiła wykonać pomiary metodą soczewkowania grawitacyjnego. Wykorzystali fakt, że masywne obiekty zaginają czasoprzestrzeń, a co za tym idzie, światło. Naukowcy wykorzystali więc Teleskop Hubble'a do przyjrzenia się światłu docierającemu do nas z sześciu kwazarów położonych w odległości od 3 do 6,5 miliarda lat świetlnych od Ziemi. Kwazary zaginają światło, a że same pulsują, to impulsy te docierają do nas o różnym czasie, w zależności od tego, jaką drogę przebywa światło. Różnice te można wykorzystać do obliczenia tempa rozszerzania się wszechświata. Z nowych obliczeń wynika, że stała Hubble'a wynosi 73,3 km/s/Mpc. To bardzo blisko wartości uzyskanej za pomocą badania cefeid, ale wciąż daleko od tego, co pokazują pomiary CMB. Chen przyznaje, że różnica w pomiarach prawdopodobnie nie wynika z błędów metodologicznych i przypomina, że jeszcze inna grupa badawcza, która wykorzystała w tym samym celu czerwone nadolbrzymy uzyskała wynik pośredni, wynoszący 69,8 km/s/Mpc. W związku z tym coraz więcej fizyków sugeruje, że musi istnieć jakiś błąd w obecnie obowiązujących modelach wszechświata. « powrót do artykułu
  3. Niezwykła koniunkcja pozwoliła astronomom na dostrzeżenie najbardziej odległej znanej nam gwiazdy. Znajduje się ona w odległości 9 miliardów lat świetlnych od Ziemi. Jej zarejestrowanie to niezwykłe osiągnięcie, gdyż zwykle nie potrafimy dostrzec gwiazd znajdujących się w odległości większej niż 100 milionów lat świetlnych. Astronomowie standardowo obserwują galaktyki odległe o miliardy lat świetlnych. Można też obserwować równie odległe supernowe, które często są jaśniejsze niż cała ich galaktyka. Jednak poza wspomnianą granicą 100 milionów lat nie można odróżnić poszczególnych gwiazd w galaktykach. Tym razem jednak było inaczej, a zaobserwowanie błękitnego olbrzyma Icarus (MACS J1149 LS1) było możliwe dzięki soczewkowaniu grawitacyjnemu. Zjawisko to pojawia się, gdy masywna galaktyka zagnie i powiększy światło obiektu znajdującego się za nią. Zwykle podczas soczewkowania grawitacyjnego obiekt powiększany jest to 50 razy. Jednak tym razem gwiazda została powiększona ponad 2000 razy. "Po raz pierwszy obserwujemy normalną pojedynczą gwiazdę – nie supernową, nie rozbłysk gamma, ale normalną stabilną gwiazdę – znajdującą się w odległości 9 miliardów lat świetlnych", cieszy się profesor Alex Filippenko z Uniwersytetu Kalifornijskiego w Berkeley. Icarusa odkrył Patrick Kelly z UC Berkeley, który monitorował supernową odkrytą w 2014 roku przez Teleskop Hubble'a. Supernową SN Refsdal zauważono dzięki soczewkowaniu grawitacyjnego, a jej obraz został powiększony przez galaktykę MACS J1149+2223 znajdującą się w odległości 5 miliardów lat. Kelly podejrzewał, że obiekt Icarus mógł zostać powiększony mocniej od SN Refsdal, dlatego postanowił mu się przyjrzeć. Szczegółowa analiza światła Icarusa wykazała, że jest to błękitny nadolbrzym, a dzięki doskonałej koniunkcji jego obraz został powiększony ponad 2000 razy, dzięki czemu można było go dostrzec. Astronomowie sądzą, że w ciągu najbliższej dekady wielokrotnie będzie można obserwować Icarusa dzięki soczewkowaniu grawitacyjnemu. Niewykluczone, że jego jasność – z punktu widzenia obserwatora na Ziemi – zostanie zwiększona nawet 10 000 razy. « powrót do artykułu
×
×
  • Dodaj nową pozycję...