Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' połączenie'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. European XFEL i Narodowe Centrum Badań Jądrowych (NCBJ) w Otwocku-Świerku pod Warszawą zamierzają ustanowić pierwsze ultraszybkie połączenie komputerowe Niemiec i Polski. Celem przedsięwzięcia jest wykorzystanie Centrum Superkomputerowego CIŚ w NCBJ do przetwarzania i analizy danych generowanych w European XFEL. Dedykowane połączenie komputerowe pomiędzy Hamburgiem i NCBJ będzie zapewniało szybkość transferu 100 gigabitów na sekundę (Gbit/s). Z wyjątkiem szybszego połączenia z DESY, to połączenie będzie około 100 razy szybsze niż obecne typowe połączenie internetowe European XFEL z innymi instytutami badawczymi. Dzięki niemu transfer danych dla średniego eksperymentu w obiekcie zajmuje około miesiąca . Dla porównania, szybkie łącza internetowe dla gospodarstw domowych zazwyczaj zapewniają około 250 Mb/s przy pobieraniu danych. Nowe połączenie będzie co najmniej 400 razy szybsze. W projekcie instalacji nowego szybkiego połączenia dla przesyłu danych, wraz z European XFEL i NCBJ, wezmą również udział: Niemiecka Krajowa Sieć Badań i Edukacji (DFN), Centrum Superkomputerowo-Sieciowe w Instytucie Chemii Bioorganicznej w Poznaniu (PCSS), Naukowa i Akademicka Sieć Komputerowa (NASK) oraz Deutsches Elektronen-Synchrotron (DESY). Pod koniec maja tego roku partnerzy podpisali protokół ustaleń, który posłuży jako podstawa i punkt wyjścia do ustanowienia nowego szybkiego połączenia. Można je w dużej mierze zbudować na istniejącej infrastrukturze technicznej, ale trzeba będzie dodać pewne szczególne elementy. Na przykład połączenie między niemieckimi i polskimi sieciami badawczymi będzie możliwe dzięki Uniwersytetowi Europejskiemu Viadrina we Frankfurcie nad Odrą i sąsiedniemu polskiemu miastu Słubice. Połączenie z NCBJ zapewni dodatkowe zasoby uzupełniające obecne zlokalizowane w Centrum Obliczeniowym DESY, gdzie wszystkie dane eksperymentalne z europejskiego XFEL były dotychczas analizowane i gdzie większość przetwarzania danych będzie nadal wykonywana. Dzięki laserowi rentgenowskiemu dostarczającemu do 27 000 impulsów na sekundę, najszybsze detektory urządzenia umożliwiają przechwytywanie do 8000 obrazów w wysokiej rozdzielczości na sekundę. W połączeniu z innymi danymi z lasera rentgenowskiego i jego instrumentów badawczych uzyskuje się ogromny strumień danych, wymagający specjalnego zarządzania i analizy w celu zapewnienia prawidłowego uzyskiwania informacji naukowych. Strumień danych może osiągnąć nawet wielkość 1 petabajta na tydzień w szczytowym czasie działania użytkownika, co odpowiada milionowi gigabajtów (GB). Analiza tych danych stanowi podstawę do określenia trójwymiarowej struktury molekuł, badania niezwykle szybkich procesów za pomocą tak zwanych filmów molekularnych oraz badania nowych i ultraszybkich zjawisk w badaniach materiałowych. Robert Feidenhans’l, dyrektor zarządzający European XFEL, powiedział: Współpraca z NCBJ w dziedzinie analizy danych jest przełomowym krokiem w kierunku coraz ściślejszego powiązania badań w Europie. Dodatkowe zasoby obliczeniowe nie tylko zwiększą wydajność, ale również zapewnią większą elastyczność operacyjną, co jest bardzo mile widziane. Musimy zwiększyć wymaganą wydajność obliczeniową dla naszych eksperymentów i cieszymy się, że wspólnie z naszymi partnerami NCBJ i DESY znaleźliśmy znakomite rozwiązanie. European XFEL to europejski laser na swobodnych elektronach zbudowany międzynarodowym wysiłkiem w Hamburgu w Niemczech. Narodowe Centrum Badań Jądrowych jest polskim współudziałowcem tej inwestycji. XFEL rozpoczął badania we wrześniu 2017 r. W liczącym ponad 3 km długości tunelu elektrony najpierw rozpędzane są do prędkości bliskiej prędkości światła, a następnie przepuszczane są przez specjalnie ukształtowane pole magnetyczne, co zmusza je do emisji promieniowania elektromagnetycznego o bardzo dobrze kontrolowanych parametrach. Wytworzone w ten sposób wiązki rentgenowskie docierające do hali eksperymentalnej w ultrakrótkich impulsach mogą być wykorzystywane przez fizyków, chemików, biologów i inżynierów do badania materii i procesów w niej zachodzących. PolFEL to polski laser na swobodnych elektronach budowany w NCBJ w Świerku na bazie doświadczeń zdobytych przy budowie lasera XFEL w Hamburgu. PolFEL będzie jedynym tego typu urządzeniem w Europie północno-wschodniej. Ze względu na swoją konstrukcję, w tym nadprzewodzące źródło elektronów opracowane przez naukowców ze Świerka, laser będzie oferował możliwości wykonywania badań dotąd niedostępnych na żadnym urządzeniu na świecie. Narodowe Centrum Badań Jądrowych jest instytutem działającym na podstawie przepisów ustawy o instytutach badawczych. Ministrem nadzorującym instytut jest minister energii. NCBJ jest największym instytutem badawczym w Polsce zatrudniającym ponad 1100 pracowników, w tym ponad 200 osób ze stopniem naukowym doktora, z czego ponad 60 osób ma status samodzielnych pracowników naukowych. W NCBJ pracuje ponad 200 osób z tytułem zawodowym inżyniera. Główna siedziba instytutu znajduje się w Otwocku w dzielnicy Świerk, gdzie zlokalizowany jest ośrodek jądrowy należący do NCBJ, w tym reaktor badawczy Maria. Instytut prowadzi badania naukowe i prace rozwojowe oraz wdrożeniowe w obszarze powiązanym z szeroko rozumianą fizyką subatomową, fizyką promieniowania, fizyką i technologiami jądrowymi oraz plazmowymi, fizyką materiałową, urządzeniami do akceleracji cząstek oraz detektorami, zastosowaniem tych urządzeń w medycynie i gospodarce oraz badaniami i produkcją radiofarmaceutyków. Instytut posiada najwyższą kategorię A+ przyznaną w wyniku oceny polskich jednostek naukowych dokonanej w 2017 r. Pozycję naukową instytutu wyznacza także liczba publikacji (ok. 500 rocznie) i liczba cytowań mierzona indeksem Hirscha (ponad 140). Są to wartości lokujące NCBJ w pierwszej piątce wśród wszystkich jednostek badawczych i akademickich w Polsce prowadzących porównywalne badania. « powrót do artykułu
  2. Naukowcy zwykle sądzą, że łączenie więcej niż dwóch leków w celu zwalczania bakterii nie jest wskazane. Rozpowszechniona teoria mówi, że połączenie więcej niż trzech leków nie da tak dużych korzyści, by takie działanie miało sens lub też, że interakcje pomiędzy lekami będą na tyle duże, że zniweczą wszelkie korzyści z połączenia. Tymczasem naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) znaleźli tysiące kombinacji czterech i pięciu antybiotyków, które po połączeniu są znacznie bardziej efektywne niż przewidują teorie. Odkrycie to może być ważnym krokiem w kierunku walki z bakteriami, szczególnie istotnym w czasach, gdy powszechnie rośnie antybiotykooporność. Tradycyjnie używa się jednego leku, może dwóch. My oferujemy bardzo obiecującą alternatywę. Nie powinniśmy ograniczać się do jednego czy dwóch antybiotyków. Sądzimy, że co najmniej kilkanaście z odkrytych przez nas połączeń będzie działało znacznie lepiej niż istniejące antybiotyki, mówi profesor ekologii i biologii ewolucyjnej Pamela Yeh z UCLA. Naukowcy, którzy pracowali z ośmioma antybiotykami, stworzyli wszystkie możliwe połączenia czterech i pięciu leków w różnych dawkach. Otrzymali 18 278 kombinacji, które testowali przeciwko E. coli. Wśród połączeń czterech leków było 1676 takich, które dały lepsze wyniki niż spodziewane, wśród połączeń 5 leków aż 6443 było bardziej efektywnych niż oczekiwane. Byłem całkowicie zaskoczony tym, jak bardzo wzrosła liczba skutecznych połączeń, gdy zwiększyliśmy liczbę lekarstw. Wielu specjalistów uważa, że wiedzą, w jaki sposób dochodzi do interakcji pomiędzy lekami. Jednak tak naprawdę nie wiedzą tego, mówi profesor Van Savage. Część z badanych połączeń była bardziej efektywna, gdyż wchodzące w ich skład leki w różny sposób atakują E. coli. Osiem wspomnianych antybiotyków wykorzystywało sześć różnych metod zwalczania bakterii. Niektóre leki atakują ścianę komórkową, inne DNA. To jak atakowanie zamku. Połączenie różnych metod może być bardziej skuteczne niż jeden sposób, dodaje uczony. W obliczu rosnącej antybiotykooporności i realnego zagrożenia, że sytuacja powróci do tej sprzed epoki antybiotyków, wykorzystanie skutecznych połączeń leków jest bardzo potrzebne. Te badania przyspieszą testy na ludziach, stwierdził Michael Kurilla, szef Division of Clinical Innovation w Narodowych Instytutach Zdrowia. Autorzy wspomnianych badań tworzą właśnie otwartoźródłowe oprogramowanie, które pozwoli innym grupom badaczy prowadzić podobne analizy i udostępniać wyniki. « powrót do artykułu
  3. Udało się dokonać wielkiego przełomu na polu materiałoznawstwa w skali nano. Grupa naukowców stworzyła nanocząstki złożone z ośmiu pierwiastków, o których wiadomo, że nie tworzą jednorodnych struktur. Zmieszanie tych pierwiastków i stworzenie z nich homogenicznej nanostruktury zwanej stopem nanocząstki o wysokiej entropii znacząco rozszerza naszą wiedzę o materiałach w skali nano oraz to, co potrafimy z nimi zrobić. Dotychczas udawało się w ten sposób bowiem połączyć najwyżej trzy pierwiastki, które nie mieszają się równo. Wyobraźmy sobie, że pierwiastki to klocki Lego. Gdy są tylko trzy kolory i rozmiary, to masz bardzo ograniczoną liczbę kombinacji i struktur, jakie możesz stworzyć. My zwiększyliśmy liczbę klocków w pudełku, możemy tworzyć nanomateriały z niemal wszystkim metali i półprzewodników, mówi Liangbing HU, profesor z University of Maryland. Do stworzenia stopu nanocząstek o wysokiej entropii naukowcy wykorzystali dwustopniową metodę, w skład której wchodziło nagłe ogrzanie i nagłe schłodzenie pierwiastków. Metale, takie jak platyna, nikiel, żelazo, kobalt, miedź czy złoto zostały poddane nagłemu działaniu temperatury niemal 3000 stopni Fahrenheita. Ogrzewano je przez 0,55 sekundy. W ten sposób uzyskano jednorodną mieszaninę, którą schłodzono w tempie ponad 100 000 stopni Fahrenheita na sekundę. Dzięki temu całość została ustabilizowana i powstał jednorodny nanomateriał. To prosta metoda, ale jeszcze nikt nie wykorzystał jej do tworzenia nanocząstek. Dzięki podejściu fizycznemu, a nie chemicznemu, osiągnęliśmy coś wyjątkowego, dodaje Yonggang Yao, doktorand z University of Maryland. « powrót do artykułu
×
×
  • Create New...