Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' pestycydy' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Mieszkające w naszych domach pająki unikają powierzchni, po których przeszły mrówki pewnego agresywnego gatunku. To wskazuje, że pozostawiają one po sobie jakiś chemiczny ślad. A ten można by wykorzystać do stworzenia ekologicznych środków odstraszających pająki, dzięki którym np. ludzie z arachnofobią mogliby czuć się bezpieczniej w swoich domach. Andreas Fischer z kanadyjskiego Simon Fraser University specjalizuje się w badaniu feromonów pająków. Poszukuje też praktycznych sposobów na utrzymanie zdrowego ekosystemu, przy jednoczesnym zniechęceniu pająków do odwiedzania ludzkich domów. Uczony mówi, że z jednej strony mamy pestycydy, które zabijają wszystko i zaburzają równowagę w ekosystemie, z drugiej zaś domowe porady, takie jak stosowanie skórki cytrynowej czy olejku migdałowego, w żaden sposób nie działają na pająki. Ostatnio Fischer zwrócił uwagę na prace innych naukowców, z których wynikało, że tam, gdzie jest więcej mrówek, występuje mniej pająków. Uczony zebrał mrówki z trzech różnych gatunków oraz samice czterech gatunków pająków często występujących w północnoamerykańskich domach. Najpierw przez 12 godzin mrówki przebywały na papierowym filtrze w szklanej klatce. Mrówki dobrano równo pod względem wagi, co oznacza, że w przypadku jednego gatunku do eksperymentu użyto 43 mrówek, w przypadku zaś innego – zaledwie trzech. Po 12 godzinach mrówki z klatki usuwano i na 24 godziny umieszczano w niej samice pająków, obserwując, jak się zachowuje. Okazało się, że większość czarnych wdów (Latrodectus hesperus), fałszywych czarnych wdów (Steatoda grossa) oraz pająków hobo (Eratigena agrestis), unika papierowego filtra, po którym chodziły wścieklice zwyczajne (Myrmica rubra). Podobne, chociaż nie tak silne zachowanie, zauważono u krzyżaka ogrodowego (Araneus diadematus). Fischer sądzi, że pająki mogą unikać mrówek, gdyż wścieklice zwyczajne są szczególnie agresywne, mogą otaczać i zabijać pająki, które weszły na ich teren. Pająki mogły więc wyewoluować tak, by unikać tego gatunku. Hipoteza ta jest tym bardziej uprawniona, że pająki nie unikały miejsc, po których chodziły mrówki z gatunków hurtnica pospolita (Lasius niger) i Camponotus modoc. Uczony i jego koledzy nie wiedzą jeszcze, co konkretnie odstrasza pająki. Mają jednak nadzieję, że wkrótce się dowiedzą. A gdy odnajdą roznoszony przez mrówki środek chemiczny, którego boją się pająki, chcą rozpocząć eksperymenty nad stworzeniem jego wersji do użycia w domu. Fischer nie zaleca jednocześnie zbierania mrówek i chronienia w ten sposób domów przed pająkami. Ugryzienie wścieklicy zwyczajnej jest bardzo bolesne, a mrówek trudno jest się pozbyć. Stałyby się w domu większym problemem niż pająki, stwierdza. « powrót do artykułu
  2. Mrówki hamują co najmniej 14 chorób roślinnych. Jest to możliwe, bo uwalniają z gruczołów szereg antybiotyków. Na ich odnóżach i innych częściach ciała znajdują się też kolonie bakterii wydzielających antybiotyki. Naukowcy z Uniwersytetu w Aarhus mają nadzieję, że dzięki temu uda się opracować pestycydy, które pomogą zwalczać oporne choroby roślin. Autorzy artykułu z pisma Oikos podkreślają, że mrówki utrzymują w koloniach bliskie kontakty, dlatego grozi im rozprzestrzenianie infekcji. Owady mogą się jednak przed nimi chronić. Po pierwsze, dbają o higienę. Po drugie, leczą siebie i inne mrówki za pomocą wytwarzanych antybiotyków. Antybiotyki pochodzą z dwóch źródeł: z gruczołów na ciele i z kolonii bakteryjnych hodowanych m.in. na odnóżach. Wcześniejsze 2-letnie badania duńskich naukowców pokazały (ich wyniki ukazały się w sierpniowym wydaniu pisma Sociobiology), że wprowadzenie mrówek ćmawych (Formica polyctena) do sadu zmniejszało występowanie parcha jabłoni oraz brunatnej zgnilizny drzew ziarnkowych i pestkowych. Skłoniło to akademików do przejrzenia dostępnej literatury. W ten sposób znaleźli oni naukowe dowody, że mrówki mogą hamować co najmniej 14 chorób roślinnych. Na razie nie wiemy jeszcze, jak mrówki mogą leczyć rośliny. Wiemy jednak, że znakują one drogę prowadzącą po roślinach feromonami, a część z nich ma właściwości antybiotyczne. Efekt leczniczy może więc być wynikiem działania feromonów - opowiada Joachim Offenberg. Mamy nadzieję, że kolejne badania terenowe ujawnią nowe rodzaje czynników biologicznych do zwalczania opornych chorób roślin [...]. Duńczycy są przekonani, że to jak najbardziej realne rozwiązanie, gdyż np. 2 lata temu zespół z Uniwersytetu Wschodniej Anglii odkrył na afrykańskich mrówkach Tetraponera penzigi bakterie, którym nadano nazwę Streptomyces formicae. Wytwarzają one antybiotyki - formikamycyny. Testy laboratoryjne pokazały, że są one skuteczne zarówno wobec MRSA (metycylinoopornego gronkowca złocistego), jak i opornych na wankomycynę enterokoków (ang. Vancomycin-Resistant Enterococci, VRE). Niewykluczone więc, że mrówcze antybiotyki przydadzą się zarówno w ludzkiej medycynie, jak i w rolnictwie. « powrót do artykułu
  3. Im więcej trzmiele mają kontaktu z pokarmem (roztworem cukru) z pestycydami, tym bardziej do niego dążą. Wg naukowców, to zachowanie przywodzące na myśl uzależnienie. Mając wybór, owady, które nie stykały się wcześniej z neonikotynoidami, wydawały się unikać pokarmu z pestycydem. Jednak u owadów mających coraz większe doświadczenie z takim roztworem, rozwijała się [wyraźna] preferencja - tłumaczy dr Richard Gill z Imperial College London (ICL). Neonikotynoidy działają u owadów na receptory nerwowe, które przypominają receptory nikotynowe ssaków. Nasze odkrycie, że trzmiele nabierają ochoty na neonikotynoidy, przywodzi na myśl pewne symptomy uzależnienia, co jest intrygujące, zważywszy na uzależniające właściwości nikotyny u ludzi. By potwierdzić to u pszczół, potrzeba jednak dalszych badań. Naukowcy z ICL śledzili przez 10 dni 10 kolonii trzmieli. Każda z nich miała dostęp do własnej areny, na której można było wybierać między pojnikami z pokarmem zawierającym i pozbawionym neonikotynoidów. Okazało się, że o ile na początku trzmiele wolały pokarm bez pestycydu, o tyle z czasem coraz częściej żerowały na roztworze zaprawionym neonikotynoidami i rzadziej odwiedzały pojnik z czystym pokarmem. Owady preferowały roztwór z pestycydem nawet po zamianie pojników miejscami (to zaś oznacza, że trzmiele potrafią wykryć neonikotynoidy w pożywieniu). W ramach wielu badań owadom podawano wyłącznie pokarm z pestycydami, ale w rzeczywistości dzikie pszczoły mają wybór, gdzie żerować. Chcieliśmy sprawdzić, czy pszczoły potrafią wykryć pestycydy i nauczyć się unikać ich, żerując, gdy jest taka możliwość, na nieskażonym pokarmie. Choć na początku faktycznie wydawało się, że owady unikają pokarmu skażonego pestycydami, później stwierdziliśmy, że z czasem trzmiele coraz częściej odwiedzają roztwór z neonikotynoidami. Teraz musimy przeprowadzić dalsze badania, by zrozumieć, jaki mechanizm leży u podłoża tej nabytej preferencji - podkreśla dr Andres Arce. « powrót do artykułu
  4. W miarę jak ssaki morskie nabywały zdolności do życia w środowisku wodnym, traciły możliwość produkcji proteiny, która chroni ludzi i ssaki lądowe przed neurotoksycznym wpływem popularnego pestycydu. Naukowcy z Wydziału Medycyny University of Pittsburgh, którzy odkryli to zjawisko, apelują o lepsze monitorowanie wód w celu zbadania wpływ pestycydów na delfiny, manaty, foki i inne ssaki. Ponadto dalsze badania pomogą nam zdobyć wiedze na temat funkcjonowania u człowieka genu kodującego wspomniane proteiny. Musimy sprawdzić, czy ssaki morskie są bardziej narażone na ryzyko poważnych uszkodzeń neurologicznych gdyż utraciły możliwość rozkładania tego pestycydu, czy też są chronione, gdyż w jakiś nieznany nam sposób zyskały oporność, mówi profesor Nathan L. Clark. Tego typu badania pozwalają nam zrozumieć, jak działają nasze geny i jaki wpływ na nie ma środowisko naturalne. Z innych badań wiemy, że ssaki morskie utraciły z czasem niektóre geny związane z węchem i smakiem.Clark i jego kolega Wynn K. Meyer chcieli dowiedzieć się, jakie inne geny zostały też przez nie utracone. Po przeanalizowaniu DNA 5 gatunków ssaków morskich i 53 gatunków ssaków lądowych naukowcy zauważyli, że genem, który najbardziej odpowiada schematowi utraty funkcji jest PON1 (Paraoxynase 1). U wszystkich ssaków lądowych zachował on swoją funkcję. U ludzi i ssaków lądowych PON1 zmniejsza uszkodzenia powodowane przez niestabilne atomy tlenu i chroni przed estrami fosforanowymi. Związki te wykorzystywane są m.in. do produkcji pestycydów, które atakują układ nerwowy owadów. Zwierzętom tym brakuje bowiem PON1. Przeprowadzone badania wykazały, że krew ssaków morskich nie rozkłada estrów fosforanowych tak, jak czyni to krew ssaków lądowych. To sugeruje, że pestycydy, spływające z pól do wód mogą uszkadzać układ nerwowy ssaków morskich. Być może jednak istnieje jakiś nieznany nam mechanizm biologiczny, który chroni te ssaki przed szkodliwym działaniem estrów fosforanowych. Naukowcy zbadali też historię utraty PON1 przez ssaki morskie. Okazało się, że u waleni i delfinów gen ten przestał działać przed 53 milionami lat, wkrótce po tym, jak oddzieliły się od wspólnego przodka z hipopotamem. Manaty utraciły gen 64 miliony lat temu, po oddzieleniu się od wspólnego przodka ze słoniem. Niektóre foki miały funkcjonujący PON1 jeszcze 21 milionów lat temu, a prawdopodobnie działał on u nich jeszcze stosunkowo niedawno. Najważniejsze pytanie brzmi, dlaczego tak szybko gen PON1 zaczął u nich tracić swoje funkcje. Trudno powiedzieć, czy nie był już dłużej potrzebny czy też jego działanie przeszkadzało w przystosowaniu się do środowiska morskiego. Wiemy, że w tamtym czasie w środowisku wodnym nie występowały estry fosforanowe, więc możemy przypuszczać, że utrata PON1 była związana z jego odpowiedzią na ekstremalny stres oksydacyjny spowodowany długim czasem przebywania pod wodą i nagłym wynurzeniem się. Jeśli dowiemy się, dlaczego u zwierząt tych PON1 nie działa, możemy dowiedzieć się, jaki ma on wpływ na ludzkie zdrowie, a jednocześnie odkryć, jak pomóc zagrożonym gatunkom morskich ssaków, mówi Meyer. Naukowcy chcą teraz rozpocząć badania manatów żyjących u wybrzeży Florydy i sprawdzić ich zdrowie w czasie oraz krótko po tym, jak do wód trafia zwiększona ilość pestycydów. Manaty i delfiny butlonose są jak kanarki w kopalni. Stan ich zdrowia wskazuje na stan środowiska, które z kolei wpływa na zdrowie ludzi, wyjaśnia Clark. « powrót do artykułu
×
×
  • Dodaj nową pozycję...