Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' ciemna energia' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Prowadzony głęboko pod włoskimi Alpami eksperyment XENON1T mógł wykryć ciemną energię, twierdzą członkowie międzynarodowej grupy badawczej, na której czele stali uczeni z Cambridge University. W artykule opublikowanym na łamach Physical Review D uczeni z Wielkiej Brytanii, Włoch, Holandii, Francji i USA donoszą, że część z niewyjaśnionych sygnałów mogło zostać spowodowanych interakcją z ciemną energią, a nie ciemną materią dla której XENON1T został zaprojektowany. XENON1T znajduje się we włoskim Laboratorium Narodowym Gran Sasso położonym 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane. Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. Przed rokiem informowaliśmy, że „Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są", a kilka miesięcy później pojawiła się informacja o kilku interesujących hipotezach dotyczących tych sygnałów. Nikt wówczas nie przypuszczał, że rozwiązaniem zagadki może być ciemna energia, gdyż XENON1T nie został przygotowany do jej rejestrowania. Autorzy najnowszych badań stworzyli model fizyczny, który wyjaśnia część z tych niezwykłych sygnałów. Zgodnie z nim, mamy tu do czynienia z cząstkami ciemnej energii, które powstały w regionie Słońca o silnych polach magnetycznych. To, co jesteśmy w stanie obecnie dostrzec stanowi mniej niż 5% wszechświata. Cała reszta jest dla nas ciemna. Wszechświat składa się w 27% z ciemnej materii, a 68% stanowi ciemna energia. Pomimo tego, że obie te składowe są dla nas niewidoczne, znacznie więcej wiemy o ciemnej materii, gdyż jej obecność sugerowano już w latach 20. ubiegłego wieku. O tym, że musi istnieć też ciemna energia dowiedzieliśmy się dopiero w 1998 roku, wyjaśnia doktor Sunny Vagnozzi z Kavli Institute for Cosmology na Cambridge University. Wielkie eksperymenty, jak XENON1T zostały zaprojektowane tak, by bezpośrednio wykrywać ciemną materię, rejestrując zderzenia jej cząstek z cząstkami zwykłej materii. Jednak uchwycenie ciemnej energii jest jeszcze trudniejsze. Chcąc wykryć ciemną energię naukowcy poszukują dowodów jej oddziaływania grawitacyjnego na otoczenie. Wiemy, że w największej skali – całego wszechświata – ciemna energia odpycha obiekty od siebie, dlatego też wszechświat rozszerza się coraz szybciej. Przy tego typu złożonych badaniach często pojawiają się niewytłumaczalne sygnały, które po analizach zwykle okazują się różnego typu zakłóceniami. Gdy w XENON1T zarejestrowano w ubiegłym roku wspomniane już tajemnicze sygnały, pojawiło się kilka pomysłów na to, czym mogą one być. Najpopularniejsze wyjaśnienie brzmiało, że zarejestrowano aksjony, hipotetyczne cząstki tworzące ciemną materię, oraz że pochodziły one ze Słońca. Jednak analizy wykazały, że liczba aksjonów, które musiałyby dotrzeć do nas ze Słońca, by wywołać taki sygnał w XENON1T musiałaby być bardzo duża. Tak duża, że gdyby gwiazdy emitowały tyle aksjonów, to gwiazdy o masie większej od masy Słońca ewoluowałyby w inny sposób, niż ewoluują. Autorzy najnowszych badań przyjęli więc założenie, że tajemnicze sygnały wywołała ciemna energia. I stworzyli model, który pokazuje, co powinien zarejestrować XENON1T gdyby dotarła doń ciemna energia wygenerowana w tachoklinie, obszarze Słońca, w którym pola magnetyczne są wyjątkowo silne. Naukowcy byli zaskoczeni, gdy okazało się, że ich model pasuje do obserwacji. Uzyskane wyniki sugerują bowiem, że wykrywacze takie jak XENON1T mogą być też używane do poszukiwania ciemnej energii. Vagnozzi i jego koledzy zastrzegają jednak, że ich badania wciąż wymagają potwierdzenia. Musimy wiedzieć, że to nie jest jakieś zakłócenie. Jeśli jednak XENON1T coś zarejestrował, to w niedalekiej przyszłości powinniśmy zarejestrować podobne, ale znacznie silniejsze sygnały, mówi Luca Visinelli z Narodowych Laboratoriów Frascati we Włoszech. Uczony ma tutaj na myśli badania prowadzone przez znacznie większe i doskonalsze urządzenia. Takie jak LUX-ZEPLIN, XENONnT czy PandaX-xT, które już rozpoczęły pracę lub w najbliższym czasie ją rozpoczną. « powrót do artykułu
  2. Przed dwoma tygodniami rozpoczęto testowanie nowego potężnego narzędzia, którego zadaniem jest stworzenie mapy milionów galaktyk oraz dokonanie pomiarów ich ruchu. Robotyczny instrument o nazwie DESI pozwoli astronomom na określenie ilości ciemnej energii oraz zachodzących w niej zmian. Dark Energy Spectroscopic Instrument (DESI) został zainstalowany w teleskopie znajdującym się w Kitt Peak National Observatory w Arizonie. Jego instalowanie zajęło specjalistom aż 18 miesięcy. DESI oficjalnie rozpocznie pracę na początku przyszłego roku. W idealnych warunkach instrument będzie rejestrował nawet 5000 galaktyk w ciągu 20 minut. Naukowcy spodziewają się, że w ciągu 5 lat pracy DESI zarejestruje światło z 35 milionów galaktyk i 2,4 miliona kwazarów. Tak wysoka wydajność jest możliwa dzięki zastosowaniu robotyki. Wewnątrz instrumentu umieszczono 5000 światłowodów oraz urządzenia do precyzyjnego pozycjonowania każdego z nich. Urządzenia te są w stanie w ciągu kilku minut ustawić wszystkie światłowody w predefiniowanej pozycji. DESI będzie zbierał konkretne długości fali światła z poszczególnych galaktyk, a astronomowie na tej podstawie określą, jak szybko oddalają się one od nas. Możliwe będzie też dokonanie pomiarów odległości każdej z galaktyk do Ziemi względem innych galaktyk. Lokalizacja galaktyk oraz ich względne odległości posłużą do stworzenia trójwymiarowej mapy wszechświata obejmującej przestrzeń w promieniu do 11 miliardów lat świetlnych. Dzięki pomiarom na temat tempa ruchu galaktyk astronomowie będą mogli ocenić ilość ciemnej energii, a jako że DESI dostarczy indywidualnych danych dla milionów galaktyk, możliwe będzie określenie ilości ciemnej energii w konkretnym miejscu i konkretnym czasie. To zaś pozwoli stwierdzić czy, zgodnie z założeniami współczesnej kosmologii, ilość ciemnej energii we wszechświecie jest stała czy też w jakiś sposób zmienia się w czasie. « powrót do artykułu
  3. Jeśli to, co uznawaliśmy za czarne dziury jest w rzeczywistości obiektami nieposiadającymi osobliwości, wówczas przyspieszające rozszerzanie wszechświata jest naturalną konsekwencją Einsteinowskiej ogólnej teorii względności, mówi Kevin Croker z Uniwersytetu Hawajskiego. Croker i jego kolega opublikowali na łamach Astrophysical Journal artykuł, w którym stwierdzają, że niektóre obiekty uznawane obecnie za czarne dziury, mogą nie być czarnymi dziurami, ale obiektami pełnymi ciemnej energii. Kevin Croker i emerytowany profesor matematyki Joel Weiner nie zajmowali się badaniem czarnych dziur. Przyglądali się równaniom Friedmanna, które zostały przez ich twórcę wywiedzione z teorii Einsteina. Fizycy wykorzystują te równania do opisu rozszerzania się wszechświata, gdyż za ich pomocą łatwiej jest prowadzić obliczenia. Naukowcy zauważyli, że aby poprawnie zapisać równania Friedmanna, ultragęste izolowane obiekty we wszechświecie, takie jak gwiazdy neutronowe czy czarne dziury muszą być – z matematycznego punktu widzenia – traktowane jak cała reszta. Dotychczas kosmolodzy uważali, że w obliczeniach należy pomijać szczegóły dotyczące tych obiektów. Wykazaliśmy, że istnieje tylko jeden prawidłowy sposób na tworzenie tych równań. A jeśli zrobi się to w ten sposób, można dojść do bardzo interesujących wniosków, mówi Croker. Z obliczeń wynika, że cała ciemna energia, potrzebna do przyspieszania rozszerzania się wszechświata, może znajdować się w obiektach uznawanych obecnie za czarne dziury. Co więcej wykazali, że te alternatywy dla czarnych dziur – nazwane Generycznymi Obiektami Ciemnej Energii (GEODE – Generic Objects of Dark Energy) – pozwalają również wyjaśnić pewne cechy fal grawitacyjnych. Wyliczenia, dokonane przez Crokera i Weinera wykazały, że GEODE, ultragęste obiekty pełne ciemnej energii, ale niezawierające osobliwości, zyskują masę wyłącznie przez to, że wszechświat się rozszerza. Ich masa zwiększa się, nawet gdy w pobliżu nie ma materii, którą mogłyby wchłonąć. Tak, jak światło podróżujące przez rozszerzający się wszechświat traci energię, co widzimy w postaci przesunięcia w podczerwieni, tak i materia traci masę w miarę rozszerzania się wszechświata. Zwykle efekt ten jest zbyt słaby, by go zauważyć. Jednak w ultragęstych środowiskach, wewnątrz których panuje niezwykle wysokie ćiśnienie, mamy do czynienia z materiałem relatywistycznym, a tam efekt utraty masy przez materię jest zauważalny. Ciemna materia jest relatywistyczna i panujące wewnątrz niej ciśnienie działa inaczej niż na materię czy światło. Zatem obiekty zbudowane z ciemnej energii, jak GEODE, z czasem zyskują masę. Hipoteza dotycząca GEODE pojawiła się w latach 60. ubiegłego wieku, ale dopiero ostatnio opracowano metody matematyczne, pozwalające badać te obiekty. Dzięki pracy Crokera i Weinera wydaja się, że za ich pomocą w prosty sposób można wyjaśnić pewne zjawiska zaobserwowane podczas rejestracji fal grawitacyjnych pochodzących z połączenia dwóch czarnych dziur. Gdy LIGO po raz pierwszy wykrył fale grawitacyjne wyliczono, że pochodzą one z połączenia czarnych dziur o masach 29 i 36 mas Słońca. Tymczasem naukowcy spodziewali się innych mas. Jednak GEODE, w przeciwieństwie do czarnych dziur, zyskują z czasem masę. Uformowane w młodym wszechświecie GEODE mogły z czasem zyskać na masie i to właśnie one mogły się zderzyć, co zostało zaobserwowane przez LIGO. Wyjaśnienie takie jest znacznie prostsze niż przyjęcie, że mieliśmy do czynienia z czarnymi dziurami o takich, a nie innych masach. Nie wszyscy są przekonani do twierdzeń Crokera i Weinera. Profesor fizyki Vitor Cardoso z Instituto Superior Tecnico w Lizbonie mówi, że zaprezentowany opis GEODE jest sprzeczny z intuicją i trudny do przyjęcia. Dodaje przy tym: podoba mi się pomysł znalezienia alternatyw dla czarnych dziur. To zmusi nas to wzmocnienia teorii opisującej czarne dziury. Poza tym, jeśli nie będziemy takiej alternatywy szukali, to nigdy jej nie znajdziemy. Badania opisano w artykule Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism « powrót do artykułu
×
×
  • Dodaj nową pozycję...