Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' choroba psychiczna' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Naukowcy z Yale University sądzą, że możliwe byłoby wykorzystanie roślin do... badaniach chorób psychicznych u ludzi. I nie tylko tak sądzą, ale nawet poczynili pierwszy ważny krok w kierunku takich badań. Na łamach Cellular and Molecular Life Sciences opisali gen, który jest bardzo podobny u roślin oraz ssaków i który w obu grupach wpływa na zachowanie. Wiele lat temu zainteresowałem się ideą mówiącą, że w każdym żywym organizmie musi do pewnego stopnia istnieć jakaś homologia, jakieś podobieństwo w tym, czym są i co robią, mówi profesor medycyny porównawczej Tamas Horvath. Gdy z czasem zaczął badać zachowanie i mitochondria, przypomniał sobie o swoich dawnych zainteresowaniach. Pomyślał, że gdyby zmienić pewne geny mitochondriów u zwierząt i zobaczyć, jak wpłynęło to na zachowanie, a następnie dokonać podobnych zmian w roślinach i porównać ich zachowanie, to być może udałoby się lepiej zrozumieć ludzkie zachowanie na podstawie badań roślin. A jeśli byłoby to możliwe, to być może w kolejnym kroku udałoby się stworzyć np. roślinny model schizofrenii. Stworzenie takiego modelu oznaczałoby, że mielibyśmy alternatywną grupę organizmów żywych – nie tylko ssaki – na której można by badać podstawy ludzkiego zachowania, mówi Horvath, przypominając, że celem medycyny porównawczej jest właśnie badanie, jak modele tworzone na podstawie innych gatunków mogą być użyte do badania ludzi. Horvath i jego zespół zaczęli więc badać gen FMT (Friendly Mitochondria) w rzodkiewniku pospolitym oraz bardzo podobny gen myszy, CLUH (Clustered mitochondria homolog). Mitochondria regulują ważne funkcje życiowe, jak metabolizm, i są kluczowe dla zdrowia. Zarówno u roślin, jak i u ludzi, źle funkcjonujące mitochondria mogą wpłynąć na rozwój i pojawienie się licznych chorób. U ludzi mają wpływ na rozwój m.in. chorób neurodegeneracyjnych. Grupa Horvatha zbadała rośliny z prawidłowo funkcjonującym FMT, rośliny pozbawione FMT oraz rośliny z nadaktywnym FMT. Okazało się, że gen ten wpływa na wiele elementów rośliny, w tym na kiełkowanie, długość systemu korzeniowego, czas kwitnienia czy wzrost liści. Jednak nie tylko. Naukowcy przeanalizowali również dwie ważne reakcje badanych roślin. Pierwszą z nich była reakcja na obecność nadmiernej ilości soli. Zbyt dużo soli może zabić roślinę, więc rośliny rozwinęły zachowania pomagające jej unikać. Gdy w środowisku pojawia się nadmiar soli, rośliny zatrzymują kiełkowanie, opóźniają kwitnienie, zatrzymują rozrastanie się systemu korzeniowego. Okazało się, że FMT jest krytycznym elementem regulującym te zachowania. Drugi typ zachowania roślin, jaki został zbadany, to ich ruchy bazujące na rytmie dobowym. "Rośliny są niezwykle wrażliwe na rytm dobowy, gdyż światło jest krytycznym źródłem energii, wyjaśnia Horvath. W przypadku rzodkiewnika rytm dobowy decyduje o poruszaniu się liści za dnia i w nocy. W ciągu dnia liście są bardziej płaskie i bardziej wystawione na słońce. Nocą liście się unoszą. Badania wykazały, że FMT reguluje zarówno zakres, jak i tempo ruchu liści. Następnie uczeni, chcąc przełożyć swoje spostrzeżenia na świat zwierząt, badali cały szereg zachowań myszy, obserwując m.in. zwierzęta ze zredukowaną aktywnością CLUH. Okazało się, że myszy, u których CLUH było mniej aktywne, przebywały krótsze odcinki i poruszały się wolniej. Reakcja myszy była podobna do reakcji roślin. Doszło do zmiany tempa i ogólnej lokomocji. To bardzo proste porównanie, ale pokazuje, że mamy tutaj do czynienia z obecnym w mitochondriach mechanizmem, który odpowiada za podobne funkcje u zwierząt i roślin, wyjaśnia Horvath. Naukowcy mówią, że to ekscytujący pierwszy krok, gdyż rośliny takie jak rzodkiewnik mają bardzo wiele genów i procesów komórkowych, które są podobne do genów i procesów komórkowych u ssaków. Naszym długoterminowym celem jest stworzenie katalogu podobieństw pomiędzy roślinami a zwierzętami i wykorzystanie go do szukania odpowiedzi na pytania naukowe. Być może w przyszłości rośliny będą służyły jako organizmy modelowe w badaniach behawioralnych, stwierdza Horvath. « powrót do artykułu
  2. Leczenie wielu schorzeń neurologicznych i psychicznych, jak: depresja, padaczka, stwardnienie rozsiane czy objawy psychotyczne nie byłoby możliwe bez postępów w badaniach środków farmakologicznych, które są lub mogą być wykorzystywane w chorobach układu nerwowego. Od ponad stu lat naukowcy stosują coraz bardziej innowacyjne metody służące wynalezieniu skutecznych leków. Współczesne badania mogą umożliwić stworzenie nowych substancji, które będą wykazywały się zadowalającą skutecznością w terapii tych schorzeń. Eksperci o tajnikach psychofarmakologii Dziedzinami farmakologii skoncentrowanymi na prowadzeniu takich badań są psychofarmakologia i neurofarmakologia. Celem prac naukowców zajmujących się tymi dziedzinami jest również poszukiwanie podłoża patofizjologicznego chorób oraz nowych i obiecujących punktów uchwytu dla leków. Znaczącym obszarem zainteresowań, w szczególności psychofarmakologii, jest także badanie własności wszelkich środków o działaniu psychoaktywnym, w tym szerokiego wachlarza substancji uzależniających. Tajniki neuro- i psychofarmakologii przybliżają dr hab. Janusz Szyndler z Katedry i Zakładu Farmakologii Doświadczalnej i Klinicznej WUM; dr Natalia Chmielewska z Zakładu Neurochemii, Instytutu Psychiatrii i Neurologii w Warszawie oraz Katedry i Zakładu Farmakologii Doświadczalnej i Klinicznej WUM i dr hab. Adam Hamed z Pracowni Pamięci Przestrzennej, Instytutu Biologii Doświadczalnej im. M. Nenckiego PAN. Klucz do nowoczesnych terapii Współcześnie neurofarmakologia oraz psychofarmakologia ściśle współpracują z innymi dziedzinami medycyny, takimi jak: fizjologia, genetyka, immunologia, neurologia i psychiatria, w celu określenia dokładnego podłoża chorób układu nerwowego, ale też w celu stworzenia skutecznych metod terapii. Najnowocześniejsze substancje są owocem takiej interdyscyplinarnej współpracy. Jako przykład można przytoczyć nowe terapie stosowane w leczeniu rdzeniowego zaniku mięśni, stwardnienia rozsianego czy w zaburzeniach nastroju. Niemniej ciągle istnieje wiele obszarów wymagających ogromnego nakładu pracy. Od litu do pierwszych leków przeciwpadaczkowych Zidentyfikowanie na przełomie XIX i XX wieku przez Charlesa Sherringtona i Ramóna y Cajala synaps i receptorów jako miejsc działania neuroprzekaźników, było przełomowym wydarzeniem rozpoczynającym okres odkryć w psycho- i neurofarmakologii, chociaż na leki, które mogły być stosowane w powszechnej praktyce przyszło jeszcze czekać pół wieku. W roku 1920 po raz pierwszy w piśmiennictwie, w tytule publikacji farmakologa Davida Machta pracującego na Uniwersytecie Hopkinsa, pojawił się termin „psychofarmakologia”. Epokę nowoczesnej psychofarmakologii rozpoczęło zastosowanie litu do leczenia manii przez Johna F.J. Cade’a w 1949 r. Niewiele później, bo w roku 1952, pojawiła się chloropromazyna, która była pierwszym skutecznym lekiem hamującym objawy psychotyczne. Pod koniec lat 50. w leczeniu depresji rozpoczęto stosowanie imipraminy. Ze strony neurologicznej pierwsze leki przeciwpadaczkowe, takie jak fenytoina, której stosowanie w leczeniu padaczki rozpoczęto już w 1936 r., również stanowiły ogromne osiągnięcie. Warto zauważyć, że o ile pierwsze leki przeciwpsychotyczne zostały zastąpione przez nowsze pochodne, to fenytoina nadal stanowi ważny lek stosowany w leczeniu padaczki. „Dekada mózgu” i leki działające molekularnie Kolejnym istotnym okresem w rozwoju obu dziedzin farmakologii były lata 90. Ogłoszenie przez George’a W. Busha „dekady mózgu” spowodowało rozpoczęcie epoki psychoneurofarmakologii molekularnej. Postęp w technikach genetycznych umożliwił badania nad lekami działającymi molekularnie, w tym nad terapią genową, która stanowi pomost pomiędzy zdobyczami farmakologii i genetyki. Obecnie badania w neuro- i psychofarmakologii koncentrują się na wykorzystaniu zaawansowanych technik molekularnych, rozwoju medycyny personalizowanej, jak również badaniu substancji, których mechanizmy działania związane są z wpływem na ekspresję genów. Techniki genetyczne i narzędzia biologii molekularnej stopniowo wypierają z badań neuro- i psychofarmakologicznych metody klasyczne, chociaż jak dotąd nie wiąże się to z radykalnymi zmianami w efektywności leczenia chorób neurologicznych. Badania eksperymentalne W badaniach psycho- i neurofarmakologii eksperymentalnej w szerokim zakresie wykorzystuje się modele zwierzęce. Mimo iż krytykowane ze względu na nie dość dokładne odwzorowanie patologii stwierdzanych u ludzi, wydają się być podstawowym narzędziem badawczym, zwłaszcza na wstępnym etapie badań. Wiadomo także, że postęp w wielu dyscyplinach medycznych był możliwy jedynie ze względu na wykorzystanie do tego celu modeli zwierzęcych. Co więcej, niemal wszystkie badania w dziedzinie fizjologii i medycyny uhonorowane Nagrodą Nobla wykorzystywały modele zwierzęce, co dodatkowo potwierdza ich niebagatelne znaczenie. Należy równocześnie podkreślić, że wykorzystywanie zwierząt do badań zawsze podlega weryfikacji przez komisję bioetyczną, a wysoka jakość opieki nad zwierzętami zapewnia powtarzalność i wysoką wartość uzyskiwanych wyników. Innowacyjne techniki szansą na nowoczesne i skuteczne leki Klasyczne podejście do badań neuropsychofarmakologicznych w ostatniej dekadzie zostało skorygowane poprzez wprowadzanie nowych technik m.in. opto- oraz chemogenetycznych. Współczesne badania farmakologiczne obejmują zagadnienia neuronauk wraz ze szczegółową nieinwazyjną analizą behawioralną modulowaną selektywnie poprzez hamowanie bądź aktywację konkretnych obwodów neuronalnych. Dzięki metodom chemogenetycznym jesteśmy w stanie czasowo aktywować oraz hamować wybrane obwody neuronalne z niespotykaną do tej pory precyzją. Kolejną innowacyjną metodą ostatniej dekady jest optogenetyka, która może być narzędziem stosowanym w badaniach psycho- i neurofarmakologicznych. Metoda ta pozwala na wprowadzenie do neuronów w wybranej strukturze mózgu genów kodujących światłoczułe białka. Dzięki temu zabiegowi światłoczułe receptory umiejscawiane są w wybranej populacji neuronalnej. Technika ta otwiera ogromne możliwości dla badań psycho-neurofarmakologicznych, neurofizjologicznych oraz behawioralnych. Dotychczas udało się uzyskać wiele nowych danych dotyczących dysfunkcji struktur neuronalnych odpowiadających za uzależnienia, lęk czy pamięć. Badacze mają nadzieję, że dane te pozwolą na stworzenie nowych substancji, które będą wykazywały się zadowalającą skutecznością w terapii tych trudnych do leczenia schorzeń. Epigenetyka kolejnym kamieniem milowym W ostatnich latach bardzo duże zainteresowanie budzą zagadnienia związane z epigenetyką, której mechanizmy, jak się wydaje, mają niebagatelny udział w patogenezie chorób psychicznych i neurologicznych. Obecnie uważa się, że interwencje farmakologiczne wpływające na mechanizmy epigenetyczne mogą zmienić sposób leczenia padaczki, depresji czy PTSD. Wielu autorów skłania się do opinii, że epigenetyka stanowi kolejny kamień milowy w rozwoju terapii chorób neurologicznych i psychicznych. Coraz więcej danych wskazuje, że analiza mechanizmów epigenetycznych w chorobach to nie tylko perspektywa wyjaśnienia podłoża wielu schorzeń, zwłaszcza psychicznych, ale także możliwość interwencji na wczesnym etapie chorób, w podłożu których istotną rolę odgrywają czynniki genetyczne. « powrót do artykułu
  3. W ramach pionierskich badań prześledzono aktywność pojedynczych neuronów znajdujących się głęboko w mózgu, a dokonane odkrycia mogą wyjaśnić, skąd się bierze ludzka inteligencja i dlaczego jesteśmy podatni na choroby psychiczne. Autorami wyjątkowych badań są Rony Paz z izraelskiego Instytutu Weizmanna, który specjalizuje się w badaniu dynamiki neuronów zaangażowanych w procesy uczenia się u makaków oraz neurochirurg Itzhak Fried z Uniwersytetu Kalifornijskiego w Los Angeles. Dzięki badaniom pojedynczych neuronów naukowcy byli w stanie, po raz pierwszy w historii, odkryć różnice pomiędzy „oprogramowaniem” ludzkiego i małpiego mózgu. Okazało się, że ludzki mózg potrafi wykorzystać stabilność sygnałów, czyli poziom im synchronizacji pomiędzy neuronami, do bardziej efektywnego przetwarzania informacji. Na łamach Cell odkrywcy sugerują, że to właśnie ta umiejętność przyczynia się zarówno do ludzkiej inteligencji, jak i do powstawania chorób psychicznych. Badacze wykorzystali dane na temat aktywności pojedynczych neuronów, które zbierali od ludzi z epilepsją w czasie, gdy ci przechodzili zabiegi neurochirurgiczne. Przeprowadzenie takich badań jest tak trudne, że jedynie kilka klinik na świecie mogło wziąć w nich udział. Dla porównania zebrano podobne, istniejące już wcześniej dane od trzech małp oraz pozyskane je od dwóch kolejnych. Przez ostatnich kilka dziesięcioleci naukowcy odnotowali wiele mniejszych i większych różnic w budowie mózgu człowieka i naczelnych. Teraz przeprowadzono pierwsze badania pokazujące różnice w sygnałach przebiegających w mózgu. Istnieje wyraźna różnica w zachowaniu i psychologii pomiędzy ludźmi a innymi naczelnymi. Teraz zaobserwowaliśmy te różnice w biologii mózgu i są to niezwykle ważne badania, mówi Mark Harnett z MIT, który specjalizuje się w badaniu, w jaki sposób biofizyka neuronów wpływa na ich zdolności obliczeniowe. Rony Paz w swoich badaniach skupia się na ciele migdałowatym, przetwarzającym podstawowe sygnały potrzebne do przetrwania, jak konieczność ucieczki przed drapieżnikiem, oraz zakręcie obręczy, który jest zaangażowany w bardziej złożone zadania, jak uczenie się. Izraelski uczony chciał wiedzieć, czy neurony z obu wymienionych obszarów różnią się u ludzi i u małp. O pomoc poprosił Frieda, który jest twórcą techniki rejestrowania aktywności pojedynczych neuronów u ludzi z epilepsją nie reagujących na leczenie. Metoda Frida polega na wszczepieniu do mózgu pacjenta wielu miniaturowych elektrod. Pacjent pozostaje w szpitalu do czasu, aż dozna ataku epilepsji. Elektrody określają miejsce, które zapoczątkowało atak. Są one następnie usuwane, a obszar odpowiedzialny za epilepsje jest niszczony. Pacjenci w czasie pobytu w szpitalu często biorą udział w eksperymentach pozwalających na pogłębienie wiedzy o mózgu. Paz i Fried zebrali dane o niemal 750 neuronach z ciała migdałowatego i zakrętu obręczy z mózgów pięciu małp i siedmiu ludzi. W danych poszukiwali informacji o poziomie stabilności sygnałów rozumianym jako ich synchronizacja oraz o wydajności ich przetwarzania, rozumianych jako liczba różnych wzorców aktywności. Okazało się, że i u ludzi i u małp sygnały w ciele migdałowatym były bardziej stabilne niż w zakręcie obręczy. Jednak te w zakręcie obręczy były bardziej efektywne. U ludzi oba regiony były mniej stabilne i bardziej efektywne niż u małp. Tak więc wydaje się, że nasze mózgi poświęcają nieco stabilności na rzecz zwiększonej efektywności. Jak mówi Paz, takie odkrycie ma sens. Jeśli sygnał jest bardziej stabilny, jest on bardziej jednoznaczny i mniej podatny na błędy. Gdy widzę tygrysa, chcę, by wszystkie neurony w moim ciele migdałowatym dały mi sygnał do szybkiej ucieczki, mówi Paz. Jednak u wyżej zorganizowanych zwierząt, jak np. u naczelnych, w mózgu wyewoluowały bardziej elastyczne obszary, które dają możliwość pojawienia się większej liczby rozwiązań na widok zbliżającego się niebezpieczeństwa. U ludzi ta elastyczność poszła dalej niż u innych naczelnych. Jesteśmy dzięki temu bardziej inteligentni, ale i bardziej podatni na błędy w sygnałach pomiędzy neuronami, co wyjaśnia podatność ludzi na zaburzenia umysłowe. Co interesujące, jak zauważa Robert Knight z Uniwersytetu Kalifornijskiego w Berkeley, powyższe odkrycie zgadza się z już istniejącymi teoriami psychologicznymi, które mówią, że stopień synchronizacji aktywności neuronów w mózgu może być skorelowany z występowaniem psychoz i depresji. To bardzo ważne badania, gdyż większość eksperymentów neurologicznych jest prowadzonych na zwierzętach z założeniem, że podstawowe wzorce aktywności neuronów odnoszą się też do ludzi, mówi. Christopher Petkov z Newcastle University zauważa jednak, że w kolejnych badaniach konieczne jest potwierdzenie spostrzeżeń Paza i Frieda. Bezpośrednie porównanie danych pozyskanych od ludzi i małp jest trudne, gdyż trudno jest stwierdzić, czy oba badane gatunki znajdowały się podczas zbierania danych w tym samym stanie umysłu. Paz przyznaje, że może być to problem, a długi, liczony w godzinach, czas rejestrowania danych oznacza, iż prawdopodobnie pojawiło się wiele różnic w stanie umysłu ludzi i małp. Uczony mówi jednak, że już planuje kolejne eksperymenty, w czasie których małpy i ludzie będą wykonywali podobne zadania wprowadzające je w konkretny stan, jak na przykład w niepokój. Badania takie nie będą jednak proste. Jako, że elektrody umieszczane są u epileptyków tylko w tych obszarach, gdzie prawdopodobnie pojawiają się napady, to – jak zauważa Fried – w klinikach zdolnych do przeprowadzenia badań pojawia się w ciągu roku jedynie 10–15 odpowiednich pacjentów i trzeba ich namówić, by pozostali w szpitali i wzięli udział w nudnych eksperymentach. « powrót do artykułu
×
×
  • Dodaj nową pozycję...