Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' bakteria' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 34 wyników

  1. W Center for Infection and Immunity (CII) na Columbia University powstała pierwsza platforma diagnostyczna, która pozwala na jednoczesne wykrywanie wszystkich znanych ludzkich patogenów bakteryjnych oraz ich wirulencji i oporności na działanie antybiotyków. Po zatwierdzeniu do użytku klinicznego platforma BacCapSeq zapewni lekarzom potężne narzędzie do szybkiego i precyzyjnego analizowania próbki pod kątem wszystkich znanych patogenów, w tym takich, powodujących sepsę, która jest trzecią przyczyną śmierci w USA. Platforma ta jest 1000-krotnie bardziej czuła niż tradycyjne testy, poziom wiarygodności jest podobny do testów wyspecjalizowanych w poszukiwaniu jednej konkretnej bakterii, mówi główna autorka badań doktor Orchid M. Allicock. Na wynik testów stosowanych obecnie w przypadku sepsy, trzeba czekać nawet trzy dni, a nawet dłużej jeśli chcemy uzyskać informację o antybiotykooporności. W oczekiwaniu na wynik lekarze zwykle przepisują pacjentom antybiotyki o szerokim spektrum działania. Ta praktyka przyczynia się jednak do wzrostu antybiotykooporności. W przypadku BacCapSeq na wynik analogicznych badań, wraz z informację o antybiotykooporności, trzeba czekać niecałe 3 doby (70 godzin), jednak autorzy testu twierdzą, że tempo jego pracy będzie rosło wraz ze wzrostem wydajności komputerów. Test BacCapSeq zawiera 4,2 miliona próbek genetycznych, pozwalających na wykrycie wszystkich 307 patogenicznych bakterii, korzysta też z biomarkerów określających antybiotykooporność i wirulencję. Najbardziej zaawansowane z obecnie dostępnych testów pozwalają na jednoczesne wykrycie do 19 bakterii, a żaden z nich nie daje możliwości oceny wirulencji i antybiotykooporności. BacCapSeq to uzupełnienie VirCapSec, podobnego testu wykrywającego wszystkie infekcje wirusowe. CII pracuje obecnie nad testem na infekcje grzybicze. « powrót do artykułu
  2. Badacze z MIT wykazali, że dzięki kombinacji antybiotyków i probiotyków możliwe jest wytępienie dwóch szczepów lekoopornych bakterii, które często infekują rany. Aby to osiągnąć, zamknęli bakterie probiotyczne w ochronnej powłoce z kwasu alginowego, co uchroniło je przed zabiciem przez antybiotyki. Obecnie wiele bakterii zyskało oporność na antybiotyki, co jest poważnym problemem z punktu widzenia ludzkiego zdrowia. Myślimy, że jednym ze sposobów walki z nimi jest zamknięcie w kapsułach probiotyków i umożliwieniem im wykonywania ich pracy, mówi Ana Jaklenec z Koch Institute for Integrative Cancer Research na MIT. Jeśli przyszłe testy na zwierzętach i ludziach wykażą skuteczność tego podejścia, odpowiednie kombinacje probiotyków i antybiotyków mogą zostać zintegrowane ze środkami opatrunkowymi, gdzie pomogą leczyć chronicznie zakażone rany. Już wcześniej naukowcy próbowali leczyć chroniczne rany za pomocą bakterii probiotycznych i w przypadku pacjentów z oparzeniami można było mówić o pewnych sukcesach. Jednak zwykle bakterie probiotyczne nie są w stanie zwalczyć mikroorganizmów infekujących rany. Połączenie probiotyków z antybiotykami mogłoby dać lepsze wyniki, ale antybiotyki zabiją probiotyki. Naukowcy z MIT poradzili sobie z tym problemem, zamykając probiotyki w ochronnej powłoce. Wybrali kwas alginowy, ponieważ jest już on używany w opatrunkach, a jego zadaniem jest odciąganie wilgoci z rany. Ponadto zespół z MIT zauważył, że kwas ten wchodzi w skład biofilmu, za pomocą którego bakterie chronią się przed antybiotykami. Przeanalizowaliśmy skład biofilmów i odkryliśmy, że podczas infekcji bakteriami Pseudomonas kwas alginowy odgrywa ważną rolę, chroniąc bakterię przed antybiotykami. Dotychczas nikt nie wpadł na pomysł, by wykorzystać to do ochrony dobroczynnych bakterii przed antybiotykami, mówi główny autor badań, Zhihao Li. Na potrzeby badań wykorzystano komercyjnie dostępny środek Bio-K+, który zawiera trzy szczepy Lactobacillus. Wiadomo, że zabijają one metycylinoopornego gronkowca złocistego (MRSA). Nie jest jednak znany mechanizm, za pomocą którego są w stanie tego dokonać. Probiotyk został zamknięty z ochronnej powłoce z kwasu alginowego i połączony z tobramycyną, antybiotykiem, który zabija Pseudomonas aeruginosa, kolejną bakterię infekującą rany. Podczas testów laboratoryjnych połączony antybiotyk z probiotykiem zabijały wszystkie MRSA i Pseudomonas aeruginosa na szalce Petriego. Gdy podobne testy przeprowadzono bez zamykania probiotyków w powłoce ochronnej, ginęły one od antybiotyku, przez co MRSA przeżywały. Gdy użyjemy jednego z tych środków, albo probiotyku, albo antybiotyku, nie będzie on w stanie zabić wszystkich patogenów. To bardzo ważne w praktyce klinicznej, gdzie mamy do czynienia z ranami zakażonymi różnymi bakteriami, a antybiotyki nie są w stanie zabić ich wszystkich, dodaje Li. Dodatkową zaletą środków wykorzystanych podczas wspomnianych badań jest fakt, że zarówno probiotyki, jak i kwas alginowy są już dopuszczone do użytku na ludziach. « powrót do artykułu
  3. Rodzaj i przebieg przeziębienia zależą od... rodzaju bakterii zamieszkujących nos chorej osoby, stwierdzili naukowcy z University of Virginia. Na przykład osoby, w nosach których występuje dużo bakterii z rodzaju gronkowców (Staphylococcus) mają cięższe objawy przeziębienia niż osoby, o mniejszej liczbie gronkowca. Dzieje się tak nawet wówczas, gdy przeziębienie u obu rodzajów osób zostało wywołane przez ten sam szczep bakterii. Badacze stwierdzili, że bakterie w nosach badanych można przydzielić do sześciu różnych grup pod względem kompozycji. Każda z tych grup jest skorelowana z intensywnością przebiegu choroby. Koreluje ona też z ilością wirusów wywołujących przeziębienie. Spostrzeżenie takie zaskoczyło nawet ekspertów, którzy od dawna zajmują się przeziębieniami. Pierwszą niespodzianką było stwierdzenie, można tak podzielić kompozycje bakterii nosowych. Drugą, że ma to wpływ na odpowiedź organizmu na działanie wirusa oraz na intensywność zachorowania. Innymi słowy, mikrobiom bakteryjny wpływa na reakcję na wirusa i przebieg choroby, mówi doktor Ronald B. Turner. To nie bakterie z nosa wywołują chorobę. Jej przyczyną jest wirus. Na razie zauważono korelację pomiędzy mikrobiomem bakteryjnym, a przebiegiem choroby. Naukowcy nie są pewni, czy mikrobiom wpływa na jej przebieg. Mówią, że potrzebne są dalsze badania. My informujemy o związku. Jest jednak możliwe, że skład flory bakteryjnej w nosi nie jest powiązany z przebiegiem choroby. Może być tak, że skład ten zależy od jakichś cech gospodarza i to te cechy, a nie skład mikroflory bakteryjnej, decydują też o przebiegu przeziębienia, dodaje uczony. Myślę jednak, że istnieje jakiś rodzaj interakcji pomiędzy gospodarzem, jego środowiskiem, a patogenami i to ta interakcja wpływa na to, jak przechodzimy przeziębienie. W badaniach wzięło udział 152 ochotników. Najpierw zbadano ich mikrobiom z nosa, a następnie zarażono ich wirusem. Później ponownie zbadano mikrobiom. Turner i jego koledzy chcieli przede wszystkim sprawdzić, czy podawanie probiotyków może złagodzić objawy choroby lub zmienić mikrobiom nosa. Odpowiedź na oba pytania brzmi: nie. Okazało się, że wypity probiotyk nie tylko nie zmienił mikrobiomu bakterii w nosie, ale nie miał też zbyt dużego wpływu na mikrobiom jelit. Bardzo często wykrywamy probiotyk w jelitach. Nie u wszystkich ludzi, ale bardzo często. Tak naprawdę środki te nie wpływają znacząco na mikrobiom jelit, mówi Turner. Naukowcy nie wykluczają, że podanie probiotyku w spraju do nosa mogłoby mieć większy wpływ na tamtejszą florę bakteryjną. Jednak Turner, który od dziesięcioleci zajmuje się badaniem przeziębienia, uważa, że niczego by to nie zmieniło. Rzeczą, o którą warto zapytać, ale która wymaga osobnych badań, byłoby sprawdzenie czy można zmienić florę bakteryjną nosa za pomocą antybiotyku. I czy byłaby to zmiana na gorsze czy na lepsze, stwierdza Turner. « powrót do artykułu
  4. Naukowcy zwykle sądzą, że łączenie więcej niż dwóch leków w celu zwalczania bakterii nie jest wskazane. Rozpowszechniona teoria mówi, że połączenie więcej niż trzech leków nie da tak dużych korzyści, by takie działanie miało sens lub też, że interakcje pomiędzy lekami będą na tyle duże, że zniweczą wszelkie korzyści z połączenia. Tymczasem naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) znaleźli tysiące kombinacji czterech i pięciu antybiotyków, które po połączeniu są znacznie bardziej efektywne niż przewidują teorie. Odkrycie to może być ważnym krokiem w kierunku walki z bakteriami, szczególnie istotnym w czasach, gdy powszechnie rośnie antybiotykooporność. Tradycyjnie używa się jednego leku, może dwóch. My oferujemy bardzo obiecującą alternatywę. Nie powinniśmy ograniczać się do jednego czy dwóch antybiotyków. Sądzimy, że co najmniej kilkanaście z odkrytych przez nas połączeń będzie działało znacznie lepiej niż istniejące antybiotyki, mówi profesor ekologii i biologii ewolucyjnej Pamela Yeh z UCLA. Naukowcy, którzy pracowali z ośmioma antybiotykami, stworzyli wszystkie możliwe połączenia czterech i pięciu leków w różnych dawkach. Otrzymali 18 278 kombinacji, które testowali przeciwko E. coli. Wśród połączeń czterech leków było 1676 takich, które dały lepsze wyniki niż spodziewane, wśród połączeń 5 leków aż 6443 było bardziej efektywnych niż oczekiwane. Byłem całkowicie zaskoczony tym, jak bardzo wzrosła liczba skutecznych połączeń, gdy zwiększyliśmy liczbę lekarstw. Wielu specjalistów uważa, że wiedzą, w jaki sposób dochodzi do interakcji pomiędzy lekami. Jednak tak naprawdę nie wiedzą tego, mówi profesor Van Savage. Część z badanych połączeń była bardziej efektywna, gdyż wchodzące w ich skład leki w różny sposób atakują E. coli. Osiem wspomnianych antybiotyków wykorzystywało sześć różnych metod zwalczania bakterii. Niektóre leki atakują ścianę komórkową, inne DNA. To jak atakowanie zamku. Połączenie różnych metod może być bardziej skuteczne niż jeden sposób, dodaje uczony. W obliczu rosnącej antybiotykooporności i realnego zagrożenia, że sytuacja powróci do tej sprzed epoki antybiotyków, wykorzystanie skutecznych połączeń leków jest bardzo potrzebne. Te badania przyspieszą testy na ludziach, stwierdził Michael Kurilla, szef Division of Clinical Innovation w Narodowych Instytutach Zdrowia. Autorzy wspomnianych badań tworzą właśnie otwartoźródłowe oprogramowanie, które pozwoli innym grupom badaczy prowadzić podobne analizy i udostępniać wyniki. « powrót do artykułu
  5. Pewne cechy bakterii glebowych mogą zrewolucjonizować sposób, w jaki projektujemy leki. Badacze ze Scripps Research opublikowali w Nature Communications artykuł, w którym sugerują, że można tworzyć lepsze leki wzorując się na molekułach pozyskanego z bakterii kwasu tiokarboksylowego. Kwas ten przyciągną uwagę naukowców, gdyż rzadko występuje w naturze. Jest też podobny do pozyskiwanego laboratoryjnie kwasów karboksylowych. Z kolei kwasy karboksylowe już są wykorzystywane w lekach, gdyż można je kierować na konkretne cele biologiczne. Uczeni przyjrzeli się dwóm naturalnym produktom, plantesymycynie i plantencynie, które są intensywnie badanie jako potencjalnie użyteczne antybiotyki. Ku swojemu zdziwieniu okryli, że plantensymycyna i plantencyna, o których od dekady sądzono, iż są kwasami karboksylowymi, są w rzeczywistości wytwarzane przez bakterie jako kawasy tiokarboksylowe. Udało się też, po raz pierwszy, odkryć, które geny i które enzymy są wykorzystywane przez bakterie do tworzenia kwasów tiokarboksylowych. Naukowcy przeprowadzili więc testy, by sprawdzić, czy naturalne kwasy tiokarboksylowe mogą być przydatne do produkcji leków. Okazało się, że wiążą się one z celem lepiej niż odpowiadające im kwasy karboksylowe. To pozwala przypuszczać, że wykorzystanie kwasów tiokarboksylowych da lepsze efekty terapeutyczne niż używanie kwasów karboksylowych. Co więcej, okazało się, że kwasy tiokarboksylowe nie są tak rzadkie, jak sądzono. Po analizie genetycznych baz danych uczeni stwierdzili, że wiele gatunków bakterii posiada geny potrzebne do produkcji tych kwasów. « powrót do artykułu
  6. Gniazda szympansów są czystsze niż... ludzkie łóżka. Taki wniosek płynie z badań, podczas których sprawdzano gniazda pod kątem mikrobiologicznym oraz występujących w nich pasożytów. Wiemy, że ludzkie domy mają własny ekosystem, a w naszych łóżkach znajdują się liczne gatunki mikroorganizmów. Na przykład około 35% bakterii w ludzkich łóżkach to bakterie pochodzące z naszych ciał, w tym bakterie kałowe, skórne oraz te z jamy ustnej, mówi główna autorka najnowszych badań, Megan Thoemmes, doktorantka na North Carolina State University. Chcieliśmy dowiedzieć się, jak czystość naszych łóżek ma się do czystości łóżek szympansów, które zwierzęta codziennie sobie przygotowują, dodaje. Naukowcy pobrali próbki z 41 szympansich gniazd w Tanzanzanii i zbadali je pod kątem mikrobiologicznym. W przypadku 15 gniazd użyto też odkurzacza do pobrania próbek znajdujących się tam owadów. Badania wykazały, że – jak się można było spodziewać – pod względem mikrobiologicznym gniazda znacząco różnią się od łóżek. Występuje w nich większa różnorodność mikroorganizmów, które w dużej mierze są odzwierciedleniem ekosystemu drzew, na których małpy zakładają gniazda. Tutaj jednak różnice się nie kończą. Szympansie gniazda zawierały znacznie mniej bakterii kałowych, skórnych i z jamy ustnej, niż ludzkie łóżka. Zaskoczyło nas to, że w gniazdach te bakterie niemal nie występowały, mówi Thoemmes. Spodziewaliśmy się też, że znajdziemy duża liczbę pasożytujących stawonogów. Ku naszemu zaskoczeniu we wszystkich gniazdach znaleźliśmy cztery pasożyty. Nie cztery gatunki pasożytów, a cztery sztuki, dziwi się Thoemmes. Te badania pokazują, jaką rolę w otaczającym nas środowisku odgrywają struktury stworzone przez człowieka. W niektórych przypadkach nasze wysiłki zmierzające do stworzenia czystszego otoczenia mogą przynosić wręcz przeciwny skutek, dodaje uczona. « powrót do artykułu
  7. Wiele myszy z Nowego Jorku jest nosicielami nieznanych wcześniej wirusów oraz bakterii zdolnych do wywołania poważnych chorób u ludzi. Niektóre z tych bakterii są oporne na działanie antybiotyków. Trwające rok badania prowadził profesor epidemiologii W. Ian Lipkin z Columbia University i jego koledzy. Ich wyniki zostały opublikowany w piśmie mBio, wydawanym przez Amerykańskie Towarzystwo Mikrobiologii. Na potrzeby jednego z artykułów analizowali zawartość bakterii w mysich odchodach. Korzystają z testów genetycznych naukowcy zidentyfikowali 235 rodzajów i 149 gatunków bakterii, w tym Clostridium difficile, Escherichia coli, Shigella czy Salmonella. U części z nich znaleziono geny powiązane z opornością na wiele popularnych antybiotyków. Drugi z artykułów skupiał się na obecności wirusów w mysich odchodach. Tutaj naukowcy zidentyfikowali 36 gatunków wirusów, w tym 6 dotychczas nieznanych. Żaden z nich nie infekuje prawdopodobnie w tym momencie ludzi, jednak ich sekwencje genetyczne były podobne do wirusów infekujących psy, kury czy świnie. To zaś oznacza, że przynajmniej część ze wspomnianych wirusów może dokonywać infekcji pomiędzy gatunkami. Mieszkańcy miast zwykle bardziej obawiają się szczurów. Myszami należy bardziej się martwić, ponieważ żyją one w budynkach i mogą zanieczyścić ich środowisko, przekonuje Lipkin. Profesor Mark Viney, biolog z University of Bristol uważa, że podobne wyniki co w Nowym Jorku uzyskano by w miastach na całym świecie. Inaczej jednak sytuacja może wyglądać poza miastami. Tam bowiem zagęszczenie ludzi jest mniejsze, a myszy mają częstszy kontakt z dziką zwierzyną i zwierzętami hodowlanymi. Oczywiście nie możemy być tego pewni, dopóki nie przeprowadzimy odpowiednich badań. W ciągu ostatnich lat coraz bardziej zdajemy sobie sprawę z faktu, że wszystkie zwierzęta są pełne wirusów i bakterii. To normalny stan i dotyczy również ludzi. Zdecydowana większość tych wirusów i bakterii jest nieszkodliwa, mówi Viney. Zdaniem naukowca, miejskie myszy mogą stykać się z antybiotykoopornymi bakteriami wędrując np. przez systemy kanalizacyjne. Czy mogą być one źródłem zarażeń wśród ludzi? Kto wie? Moim zdaniem największym źródłem infekcji wśród ludzi są inni ludzie, stwierdza. Naukowcy zgadzają się co do tego, że warto przeprowadzić badania, których celem będzie sprawdzenie, czy jakieś współczesne epidemie bakterie wśród ludzi nie zostały zapoczątkowane przez kontakt z myszami. « powrót do artykułu
  8. Ostatnio świat obiegła wiadomość o pierwszym przypadku lekoopornej rzeżączki. Jednak problem antybiotykooporności nie jest nowy, a eksperci ostrzegają przed nim od lat. W samym tylko ubiegłym roku amerykańskie CDC (Centers for Disease Control and Prevention – Centra Zapobiegania i Kontroli Chorób) odnotowały ponad 220 przypadków zarażeń tzw. koszmarnymi bakteriami. Mikroorganizmy te odznaczają się wysoką antybiotykoopornością i posiadają geny zapewniające im tę oporność. CDC od wielu lat ostrzega przed takimi bakteriami. W 2016 roku powołano do życia ogólnokrajową sieć laboratoriów, których zadaniem jest pomoc szpitalom w szybkiej diagnostyce i identyfikacji koszmarnych bakterii. Okazuje się, że aż 25% próbek, które szpitale przysłały do laboratoriów, zawiera specjalne geny, które pozwalają bakteriom na dzielenie się antybiotykoopornością z innymi mikroorganizmami. W 10% przypadków pacjenci szpitali zarażają innych pacjentów, lekarzy czy pielęgniarki, którzy po infekcji mogą rozprzestrzeniać niebezpieczne bakterie nawet, jeśli sami nie zachorują. Koszmarne bakterie są szczególnie niebezpieczne dla osób starszych oraz cierpiących na choroby chroniczne. Doktor Anne Schuchat, zastępca dyrektora CDC, mówi, że umiera aż połowa zarażonych. Najbardziej jednak przerażające są nie same bakterie, ale „niezwykłe geny”, które zapewniają im antybiotykooporność, stwierdza doktor Amesh Adalja z Uniwersytetu Johnsa Hopkinsa. Jak donosi CDC każdego roku bakteriami, które wykazują jakiś stopień antybiotykooporności, zaraża się 2 miliony Amerykanów, a 23 000 z nich umiera. Problem antybiotykooporności nie jest nowy. Przed czterema laty badania wykazały, że Ernest Cable, brytyjski żołnierz, który w 1915 roku zmarł na czerwonkę, został zabity przez bakterię, która była oporna na penicylinę. Samą penicylinę wynaleziono 13 lat po śmierci Cable'a. W Wielkiej Brytanii w 2013 roku pojawiła się propozycja, by antybiotykooporność uznać za równie groźny problem co terroryzm czy wielkie erupcje wulkaniczne. Przed pięciu laty informowaliśmy, że przez używanie antybiotyków w produkcji żywności czeka nas ogólnoświatowy kryzys zdrowotny. « powrót do artykułu
  9. Naukowcy z Uniwersytetu Johnsa Hopkinsa rozszyfrowali, w jaki sposób działa białko YiiP, które zapobiega śmiertelnemu nagromadzeniu cynku wewnątrz bakterii. Zrozumienie ruchów YiiP pozwoli zaprojektować leki modyfikujące zachowanie 8 ludzkich białek ZnT - przypominają one YiiP i odgrywają ważną rolę w wydzielaniu hormonów oraz sygnalizacji między neuronami. Warto przypomnieć, że pewne mutacje ZnT8 powiązano ze zwiększoną podatnością na cukrzycę typu 2. Mutacje, które uniemożliwiają funkcjonowanie tej proteiny, mają zaś, jak się wydaje, działanie ochronne. Cynk jest niezbędny do życia [bierze np. udział w aktywacji genów, natomiast wysokie jego stężenia występują w pakietach insuliny produkowanych w komórkach beta wysp trzustkowych]. By dostać się i wydostać z komórki, gdzie wykonuje swoje zadanie, potrzebuje białek transportujących. Przy nieprawidłowym działaniu transportera stężenie cynku może osiągnąć toksyczny poziom. To studium pokazuje nam, jak działają białka usuwające ten pierwiastek - opowiada dr Dax Fu. YiiP jest częściowo osadzone w błonie komórkowej E. coli. We wcześniejszym badaniu zespół Fu zmapował atomową strukturę YiiP i odkrył, że w jego centrum znajduje się kieszeń wiążąca cynk. Amerykanin podkreśla jednak, że tajemnicą pozostawało, w jaki sposób pojedyncza kieszeń może transportować cynk z jednej strony błony na drugą. Wiedząc, że za każdym razem, gdy na zewnątrz wydostaje się kation cynku, do środka komórki wnika proton, ekipa podejrzewała, że istnieje ukryty kanał, który pozwala na wymianę jonów. Testując tę hipotezę i sprawdzając, jakie wewnętrzne elementy YiiP tworzą kanał, badacze z Uniwersytety Johnsa Hopkinsa nawiązali współpracę ze specjalistami z Brookhaven National Laboratory, którzy oświetlali zanurzone w wodzie białko promieniami X. Woda rozpadła się na atomy wodoru i rodniki hydroksylowe, a gdy ukryty kanał się otwierał, rodniki wiązały się z odsłoniętymi fragmentami białka. Dodatkowo YiiP pocięto enzymami na części i przeprowadzono analizę. Koniec końców autorzy artykułu z Nature ustalili, że na zewnątrz błony cytoplazmatycznej znajduje się dużo protonów. Jako że w jej wnętrzu jest ich mniej, powstaje gradient stężenia. Protony dążą do jego wyrównania, dlatego kiedy centralna kieszeń transportera jest otwarta na zewnątrz, zaczynają się z nią wiązać. Gdy protony przemieszczają się z miejsca wysokiego stężenia do stężenia niższego, generują siłę jak spadająca woda. Białko wykorzystuje ją do zmiany swojego kształtu, odcinając dostęp do środowiska zewnętrznego i otwierając się na wnętrze. Tam proton kontynuuje swoje spadanie, oddzielając się od kieszeni. Po uwolnieniu protonu kieszeń może się związać z cynkiem. Powtórne wiązanie znowu zmienia kształt YiiP, odcinając dostęp ze środka i otwierając drogę z zewnątrz. « powrót do artykułu
×
×
  • Dodaj nową pozycję...