Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' atmosfera' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 30 wyników

  1. Jak twierdzi Richard Betts z Met Office Hadley Centre, w bieżącym roku średnia koncentracja dwutlenku węgla w atmosferze wzrośnie o 2,8 części na milion i wyniesie 411 ppm. Poprzedni symboliczny próg, 400 ppm, przekroczyliśmy zaledwie 6 lat temu. Jeszcze przed rewolucją przemysłową koncentracja CO2 w atmosferze wynosiła około 280 ppm. Przed stu laty osiągnęła około 300 ppm, a pod koniec lat 80. ubiegłego wieku sięgnęła 350 ppm. Specjaliści szacują, że ostatni raz w atmosferze było powyżej 400 ppm CO2 przed około 4 milionami lat. Co gorsza, gwałtownie zwiększa się tempo przyrostu. Jeszcze w latach 50. ubiegłego wieku koncentracja tego gazu cieplarnianego rosła w tempie mniejszym niż 1 ppm/rok. Obecnie jest znacznie powyżej 2 ppm/rok. O ile jednak długoterminowy trend wzrostowy jest jasny, to trzeba zauważyć, że zachodzą duże wahania rok do roku. Zależą one od tego, w jaki sposób pogoda wpływa na rośliny i ich zdolność do pochłaniania CO2 oraz jego uwalniania, gdy się palą lub rozkładają. Na przykład w latach, gdy mamy do czynienia z El Niño mogą mieć miejsce rozległe susze i pożary, a wówczas dochodzi do uwolnienia dodatkowych ilości dwutlenku węgla. Rekordowym rokiem pod względem wzrostu koncentracji CO2 był rok 2016, kiedy to mieliśmy do czynienia z silnym El Niño i wzrostem CO2 o 3,4 ppm. Prognozy Bettsa dotyczą średniomiesięcznych pomiarów wykonywanych na Mauna Loa na Hawajach. Naukowiec przewiduje, że w maju tamtejsze urządzenia zanotują 415 ppm, a we wrześniu wartość ta spadnie do 408 ppm. Richard Betts od kilku lat rozpoczął projekt, w ramach którego z wyprzedzeniem usiłuje przewidzieć wzrost koncentracji dwutlenku węgla w atmosferze. Sprawdza w ten sposób, na ile współczesna nauka rozumie czynniki wpływające na to zjawisko. W ubiegłym roku prognozował, że średni całoroczny wzrost wyniesie 2,3 ppm±0,6 ppm. rzeczywisty wzrost wyniósł 2ppm. Rzeczywisty wzrost zmieścił się w założonych widełkach, ale był nieco poniżej średniej prognozy, mówi Betts. « powrót do artykułu
  2. Globalne ocieplenie przyspiesza i jest to bardzo zła wiadomość dla ludzkości. Mamy znacznie mniej czasu, by powstrzymać wzrost globalnych temperatur na poziomie 1,5 stopnia Celsjusza powyżej średniej z epoki sprzed rewolucji przemysłowej. Różnica w ociepleniu pomiędzy 1,5 a 2 stopnie jest ogromna. Jeśli bowiem globalne temperatury wzrosną o 2 stopnie Celsjusza problemy z dostępem do wody pitnej będzie miało dwukrotnie więcej ludzi, niż przy wzroście o 1,5 stopnia Celsjusza. Warto zauważyć, że problem nie dotyczy wyłącznie Afryki czy Azji. Na przykład Polska znajduje się dopiero na 118. miejscu na świecie pod względem odnawialnych zasobów wody pitnej na mieszkańca. Mamy jej wielokrotnie mniej niż Kongo, Australia, Kirgizja czy Namibia. Dodatkowe 0,5 stopnia Celsjusza globalnego ocieplenie oznacza,  że ponad 1,5 miliarda ludzi będzie narażonych na ekstremalne fale upałów, a dodatkowe setki milionów zetkną się z takimi chorobami jak malaria. Profesor matematyki Yangyang Xu z Rensselaer Polytechnic Institute, profesor oceanografii i nauk o atmosferze Veerabhadran Ramanathan oraz profesor relacji międzynarodowych David G. Victor z Uniwersytetu Kalifornijskiego w San Diego ostrzegają, że w najnowszym raporcie IPCC nie uwzględniono niezwykle ważnego zjawiska. Uczeni ostrzegają, że rosnąca emisja gazów cieplarnianych, malejące zanieczyszczenie atmosfery oraz naturalne cykle klimatyczne powodują, że przez kolejnych 20 lat globalne ocieplenie będzie przyspieszało. Zdaniem uczonych granicę 1,5 stopnia Celsjusza ocieplenia możemy osiągnąć już w 2030 roku, a nie, jak twierdzi IPCC, w roku 2040. Naukowcy wymieniają trzy czynniki dowodzące prawdziwości ich stwierdzeń. Po pierwsze, wciąż rośnie emisja gazów cieplarnianych. W 2017 roku emisja samego dwutlenku węgla wyniosła 37 miliardów ton. Jeśli nic się nie zmieni, to przez najbliższych 25 lat średnie temperatury będą rosły w tempie 0,25–0,32 stopnia Celsjusza na dekadę. Tymczasem w raporcie IPCC przyjęto wzrost 0,2 stopnia Celsjusza, jaki miał miejce od roku 2000. Po drugie, wysiłki na rzecz oczyszczania atmosfery dają lepsze wyniki, niż przewidywało IPCC i większość modeli klimatycznych. Na przykład w latach 2014–2016 Chiny zmniejszyły emisję dwutlenku siarki ze swoich elektrowni o 7–14 procent. Tymczasem większość modeli klimatycznych prognozowało wzrost zanieczyszczeń. Czystsza atmosfera jest lepsza dla ludzkiego zdrowia i dla roślin uprawnych. Jednak związki siarki, azotu i inne związki obecne w atmosferze odbijają promieniowanie słoneczne. Ta tarcza z zanieczyszczeń mogła powodować, że temperatura na Ziemi była niższa nawet o 0,7 stopnia Celsjusza. Trzeci w końcu czynnik dotyczy naturalnych cykli w atmosferze. Zdaniem naukowców dużo wskazuje na to, że dekadowa oscylacja pacyficzna, czyli okresowe wielodekadowe występowanie ujemniej i dodatniej anomalii temperaturowej, wchodzi w fazę anomalii dodatniej. Cykl ten wpływa na temperatury na równikowych obszarach Pacyfiku i w Ameryce Pólnocnej. Ponadto od 2004 roku osłaba się atlantycka południkowa cyrkulacja wymienna (AMOC) przez co cieplejsze wody powierzchniowe słabiej mieszają się z głębszymi wodami. Więcej więc ciepła pozostanie w atmosferze. Te trzy zjawiska wzmacniają się wzajemnie, przez co Xu, Ramanathan i Victor przewidują, że już około 2030 roku doświadczymy wzrostu średnich temperatur o 1,5 stopnia Celsjusza, a wzrost o 2 stopnie nastąpi do 2045 roku. Proces ten może jeszcze bardziej przyspieszyć, jeśli ludzkość będzie szybciej usuwała zanieczyszczenia z atmosfery. « powrót do artykułu
  3. Niewidoczna dla gołego oka warstwa składników biologicznych znajdujących się na powierzchni oceanów zmniejsza tempo przepływu dwutlenku węgla pomiędzy atmosferą a oceanami. Związki te – surfaktanty – są produkowane przez plankton oraz bakterie i tworzą na powierzchni wody oleistą powłokę. Naukowcy z Uniwersytetów w Newcastle, Exeter i Uniwersytetu Heriot-Watt opublikowali na łamach Nature Geoscience wyniki badań, które, jak mówią, mają olbrzymie znaczenie dla przewidywania przyszłych zmian klimatycznych. Obecnie oceany pochłaniają około 25% całej antropogenicznej emisji dwutlenku węgla. Są więc największymi pochłaniaczami tej substancji. Wymiana gazów pomiędzy atmosferą a oceanem jest kontrolowana przez turbulencje na powierzchni oceanów, a główną przyczyną tych turbulencji są fale generowane przez wiatr. Im większe turbulencje, tym większa wymiana gazów. Dotychczas specjaliści mieli problemy z oceną wpływu wspomnianej warstwy na wymianę gazów. Dopiero teraz udało się opracować odpowiedni system, dzięki któremu naukowcy stwierdzili, że surfaktanty na powierzchni oceanów mogą zmniejszać wymianę CO2 nawet o 50 procent. Najnowsze badania, bazujące na wcześniejszych osiągnięciach nauki, wskazują, że wbrew temu co się wydawało, naturalne surfaktanty na dużych powierzchniach oceanów mogą redukować wpływ silnych wiatrów. Zmniejszenie pochłaniania dwutlenku węgla przez surfaktanty oznacza, że jest on wolniej usuwany z atmosfery, a to ma znaczenie dla przewidywania przyszłego klimatu, mówi biolog morski profesor Rob Upstill-Goddard z Newcastle University. Odkrycie to jest niezwykle ważne, gdyż wraz ze wzrostem temperatur, zwiększa się ilość surfaktantów. Im wyższe będą temperatury, tym większa warstwa surfaktantów i tym mniejsze zdolności oceanów do pochłaniania gazów atmosferycznych, dodaje doktor Ryan Pereira z Heriot-Watt University. W 13 zbadanych przez nas miejscach na Oceanie Atlantyckim odkryliśmy, że biologiczne surfaktanty zmniejszają wzmacniane przez wiatry tempo wymiany gazów. Wykonaliśmy unikatowe pomiary za pomocą specjalnie wybudowanego zbiornika, który pozwalał mierzyć wyłącznie wpływ surfaktantów na wymianę gazów, stwierdza Pereira. Badania były prowadzone na różnych szerokościach geograficznych, od regionów subpolarnych po tropikalne. « powrót do artykułu
  4. W atmosferze egzoplanety po raz pierwszy odkryto hel. Znaleziono go za pomocą Teleskopu Hubble'a w górnych warstwach atmosfery superNeptuna WASP-107b znajdującego się w odległości 200 lat świetlnych od Ziemi w Gwiazdozbiorze Panny. Sama planeta została odkryta w 2017 roku. Sygnał helu jest tak silny, że naukowcy sądzą, iż atmosfera planety rozciąga się na dziesiątki tysięcy kilometrów. Hel to, po wodorze, najbardziej rozpowszechniony pierwiastek we wszechświecie. Dlatego też uważano, że będzie on jednym z najłatwiejszych do zauważenia gazów w atmosferach dużych egzoplanet. Dopiero jednak teraz, po zastosowaniu nowej techniki, po raz pierwszy odnotowano jego obecność. Dotychczas górne warstwy atmosfery egzoplanet badano w paśmie ultrafioletu. Tym razem wykorzystano podczerwień. Odkryty przez nas hel rozciąga się daleko w przestrzeni kosmicznej, tworząc chmurę otaczającą planetę. Jeśli mniejsze egzoplanety o rozmiarach Ziemi są otoczone podobnymi chmurami, to już w najbliższej przyszłości będziemy mogli je badać, cieszy się Tom Evans z University of Exeter. Chcemy używać tej techniki podczas pracy z Teleskopem Jamesa Webba. Dzięki temu dowiemy się, jaki rodzaj planet jest otoczony dużą ilością wodoru i helu oraz jak długo gazy te utrzymują się w atmosferze. Dzięki pracy z podczerwienią będziemy mogli zajrzeć głębiej w kosmos niż dzięki ultrafioletowi, mówi Jessica Spake z University of Exeter, która stała na czele międzynarodowego zespołu badawczego. WASP-107b to planeta wielkości Jowisza, ale ma zaledwie 12% jego masy. Jej czas obiegu wokół gwiazdy macierzystej wynosi zaledwie 6 dni. Mimo tak niewielkiej odległości ma ona jedną z najchłodniejszych atmosfer wśród odkrytych egzoplanet. Jej temperatura to 500 stopni Celsjusza. « powrót do artykułu
  5. Sprawdzają się przewidywania naukowców, który prognozują, że już w roku 2016 średnia roczna koncentracja CO2 przekroczy 400 części na milion (ppm). W ubiegłym roku, w nocy z 7 na 8 maja, po raz pierwszy zanotowano, że średnia godzinowa koncentracja dwutlenku węgla przekroczyła 400 ppm. Tak dużo CO2 nie było w atmosferze od 800 000 – 15 000 000 lat. W bieżącym roku możemy zapomnieć już o średniej godzinowej i znacznie wydłużyć skalę czasową. Czerwiec był trzecim z kolei miesiącem, w którym średnia miesięczna koncentracja była wyższa niż 400 części na milion. Granica 400 ppm została wyznaczona symbolicznie. Ma nam jednak uświadomić, jak wiele węgla wprowadziliśmy do atmosfery. Z badań rdzeni lodowych wynika, że w epoce preindustrialnej średnia koncentracja dwutlenku węgla w atmosferze wynosiła 280 części na milion. W roku 1958, gdy Charles Keeling rozpoczynał pomiary na Mauna Loa w powietrzu znajdowało się 316 ppm. Wraz ze wzrostem stężenia CO2 rośnie też średnia temperatura globu. Naukowcy nie są zgodni co do tego, jak bardzo możemy ogrzać planetę bez narażania siebie i środowiska naturalnego na zbytnie niebezpieczeństwo. Zgadzają się zaś co do tego, że już teraz należy podjąć radykalne kroki w celu redukcji emisji gazów cieplarnianych. Paliwa niezawierające węgla muszą szybko stać się naszym podstawowym źródłem energii - mówi Pieter Tans z Narodowej Administracji Oceanicznej i Atmosferycznej. Kwiecień 2014 roku był pierwszym, w którym przekroczono średnią 400 ppm dla całego miesiąca. Od maja, w związku z rozpoczęciem się najintensywniejszego okresu fotosyntezy na półkuli północnej, rozpoczął się powolny spadek koncentracji CO2, która w szczytowym momencie osiągnęła 402 ppm. Jednak przez cały maj i czerwiec średnia dzienna, a zatem i średnia miesięczna, nie spadły poniżej 400 części CO2 na milion. Eksperci uważają, że w trzecim tygodniu lipca koncentracja dwutlenku węgla spadnie poniżej 400 ppm. Do ponownego wzrostu dojdzie zimą i wzrost ten utrzyma się do maja. Rośliny nie są jednak w stanie pochłonąć całego antropogenicznego dwutlenku węgla i wraz z każdym sezonem pozostawiają go w atmosferze coraz więcej. Dlatego też Pieter Tans przypuszcza, że w przyszłym roku pierwszym miesiącem, dla którego średnia koncentracja tego gazu przekroczy 400 ppm będzie już luty, a tak wysoki poziom CO2 utrzyma się do końca lipca, czyli przez sześć pełnych miesięcy. Od roku 2016 poziom 400 ppm będzie stale przekroczony. Dopóki ludzie będą emitowali CO2 ze spalanego paliwa, dopóty poziom tego gazu w oceanach i atmosferze będzie się zwiększał - mówi Tans. « powrót do artykułu
×
×
  • Dodaj nową pozycję...