Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' asteroida' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 53 wyników

  1. Dzięki teleskopowi ALMA (Atacama Large Milimeter/Submilimeter Array) udało się lepiej określić skład asteroidy Psyche. W sierpniu przyszłego roku ma wystartować misja, która dotrze do Psyche w 2026 roku. Przed kilkoma miesiącami NASA rozpoczęła końcowy montaż pojazdu, który poleci na spotkanie z asteroidą. Odkryta w 1852 roku Psyche to asteroida typu M, co oznacza, że jej spektrum najbardziej przypomina spektrum meteorytów żelaznych. Jako, że ma ona ponad 200 kilometrów średnicy, oznacza to, że jest największą znaną nam asteroidą żelazną. Psyche krąży wokół Słońca w głównym pasie asteroid, a jej odległość od Ziemi waha się między 180 a 329 milionów kilometrów. Ze względu na jej niewielkie rozmiary i dużą odległość, dość trudno jest badać ją z Ziemi. Dotychczas udawało się uzyskiwać jej obraz w postaci pojedynczego piksela. Jednak profesor Katherinie de Kleer i jej kolegom z Caltechu to nie wystarczało. Naukowcy połączyli dane z 66 anten wchodzących w skład ALMA. Dzięki wielokrotnym obserwacjom powierzchni Psyche byli w stanie uzyskać obraz złożony z 50 pikseli i zbadać inercję cieplną Psyche. Inaczej mówiąc, określili jak bardzo powierzchnia Psyche rozgrzewa się, gdy jest oświetlana przez Słońce i jak bardzo się chłodzi, gdy oświetlany dotychczas fragment odwraca się od Słońca. Okazało się, że Psyche kryje kilka tajemnic. Po pierwsze, niektóre obszary asteroidy mają inną temperaturę, niż pozostałe, co wskazuje, że powierzchnia nie jest jednorodna. Okazało się też, że Psyche charakteryzuje się relatywnie większą inercją cieplną niż inne asteroidy, ale jednocześnie wypromieniowuje około 60% mniej ciepła, niż można byłoby się spodziewać po obiekcie z tak dużą inercją. Naukowcy wysunęli hipotezę, że dzieje się tak, gdyż powierzchnia Psyche w co najmniej 30% jest metaliczna. Problem jednak w tym, że odbite od niej światło nie jest spolaryzowane, a tak by się działo, gdyby odbijało się od gładkiej lub stałej powierzchni metalicznej. Dlatego też naukowcy sądzą, że powierzchnia pokryta jest metalicznymi ziarnami, które rozpraszają światło. Jeśli rzeczywiście Psyche składa się głównie z metali, może to oznaczać, że jest jądrem protoplanety, która utraciła znaczną część swojej masy w wyniku kolizji i innym obiektem. Ewentualnie asteroida mogła powstać w innym – bliższym Słońcu – miejscu Układu Słonecznego niż to, gdzie obecnie się znajduje. Na ostateczne odpowiedzi co do natury Psyche będziemy musieli jeszcze kilka lat poczekać. Misja Psyche wystartuje w sierpniu 2022 roku. W maju 2023 pojazd zbliży się do Marsa, by skorzystać z jego asysty grawitacyjnej, a na początku 2026 wejdzie na orbitę Psyche i pozostanie tam przez 21 miesięcy. « powrót do artykułu
  2. Wystrzelona w 2016 roku misja OSIRIS-REx opuści dzisiaj asteroidę Bennu i rozpocznie powrót do domu. Sonda znajduje się na orbicie Bennu od 2018 roku, a przed sześcioma miesiącami pobrała z niej próbki. Jak wówczas informowaliśmy, OSIRIS-REx padła ofiarą własnego sukcesu – materiału pobrała tak dużo, że nie można było zamknąć pojemnika i cenne próbki uciekały w przestrzeń kosmiczną. Obecnie OSIRIS-REx znajduje się po przeciwnej stronie Słońca niż Ziemia. To najlepszy moment na odpalenie głównych silników i lot w kierunku Ziemi. Sonda nie będzie lądowała. Zrzuci pojemnik z próbkami, który 24 września 2023 roku wyląduje na pustyni w Utah, 80 kilometrów na zachód od Salt Lake City. Dotychczas OSIRIS-REx ma na swoim koncie same sukcesy. Bez przeszkód dotarł do niewielkiej – 500-metrowej – asteroidy, wykonał jej dokładną mapę, na podstawie której wybrano miejsce lądowania, sond dotknęła asteroidy w odległości zaledwie 1 metra od planowanego miejsc. I pobrała próbki. Dopiero wówczas pojawił się pewien problem, gdyż próbek było zbyt dużo. NASA planowała pobrać 60 gramów, co i tak jest rekordową ilością pobraną z asteroidy. Tymczasem pobrano znacznie więcej. Nie wiadomo dokładnie ile, gdyż trzeba było odwołać manewr pozwalający określić wagę próbek. Być może jednak zebrano aż 300 gramów materiału z Bennu. Powrót sondy rozpocznie się od uruchomienia silników, które będą działały przez 7 minut. To nada sondzie prędkość 950 km/h względem Słońca. Jeśli nie zdarzy się nic nieprzewidzianego, to potwierdzenie o uruchomieniu silników powinno nadejść ok. 22:16 czasu polskiego. Jeśli silniki nie zostaną uruchomione, będzie jeszcze kilka okazji do powtórzenia manewru. OSIRIS-REx będzie wracał po wysoce eliptycznej orbicie. Jej zajęcie zajmie mu sporo czasu. Dla obserwatora z boku będzie to wyglądało niemal tak, jakby sondę wystrzelono do góry, by Ziemia mogła pod nią podlecieć. Najpierw, ze względów bezpieczeństwa, OSIRIS-REx zbliży się do Ziemi na odległość 10 000 kilometrów. Następnie we wrześniu 2022 roku uruchomi silniki i podleci na odległość 2500 km. Później zbliży się jeszcze bardziej. Gdy będzie odpowiednio blisko, odłączy się od niego pojemnik z próbkami. Trafi on w atmosferę z prędkością 12,2 km/s, a gdy zostanie przez nią odpowiednio spowolniony, rozwinie się spadochron. Podjęty pojemnik zostanie otwarty w specjalnym laboratorium w Johnson Space Center w Teksasie. Część zebranych próbek zostanie udostępniona innym krajom, a część zostanie zapieczętowana, by w przyszłości naukowcy dysponujący lepszymi narzędziami i większą wiedzą również mogli je badać. Tymczasem sonda OSIRIS-REx, po uwolnieniu kapsuły z próbkami uruchomi silniki i poleci w stronę wewnętrznych obszarów Układu Słonecznego. NASA nie wyklucza, że jeśli nada będzie sprawna i będą pieniądze na jej obsługę, to dostanie ona kolejne zadanie – spotkanie z jakimś innym obiektem w przestrzeni kosmicznej. W końcu zużyje całe paliwo, jej elektronika zostania zniszczona przez promieniowanie kosmiczne i na zawsze stanie się kosmicznym odpadkiem. « powrót do artykułu
  3. Do Jet Propulsion Laboratory dostarczono główny element pojazdu kosmicznego Psyche. Tym samym NASA rozpoczęła końcowy montaż pojazdu, który poleci na spotkanie z asteroidą. Składanie i testowanie całości potrwa przez około rok, a wiosną 2022 roku pojazd trafi na Przylądek Canaveral, skąd w sierpniu zostanie wystrzelony w kierunku głównego pasa asteroid. Wspomniany element, Solar Electric Propulsion (SEP) Chassis został zbudowany przez Maxar Technologies. Ma on rozmiary półciężarówki, a jego masa to ponad 80% masy całego pojazdu. Najbardziej rzucającym się w oczy elementem SEP jest duża antena, wystająca z obudowy chroniącej delikatne instrumenty naukowe. Patrzenie, jak całość wjeżdża to hangaru JPL było jednym z najbardziej przejmujących przeżyć w naszej 10-letniej pracy, mówi Lindy Elkins-Tanton z Arizona State University, która kieruje częścią naukową misji Psyche. Celem misji jest zbadanie bogatej w metale asteroidy Psyche, która krąży wokół Słońca w głównym pasie asteroid znajdującym się pomiędzy Marsem a Jowiszem. Naukowcy sądzą, że asteroida, której szerokość wynosi 226 kilometrów, jest zbudowana głównie z żelaza i niklu, a w przeszłości mogła tworzyć jądro wczesnej planety. Jej szczegółowe zbadanie może rzucić wiele światła na formowanie się Ziemi i innych planet. Dostarczony właśnie element jest już w dużej mierze gotowy. Wewnątrz SEP Chassis znajdują się system napędowy, grzewczy, nawigacyjny i sterowniczy. Firma Maxar dostarczy też duże panele słoneczne, które będą zasilały Psyche. Ostatni etap prac nad Psyche ruszył 16 marca, gdy inżynierowie dokonali przeglądu dostarczonych do tej pory podsystemów, komputera pokładowego, systemu komunikacyjnego i systemu dystrybucji energii. Upewnili się, że wszystko będzie razem działało. Teraz, gdy dotarła SEP Chassis, rozpoczęła się główna faza prac nad składaniem i testowaniem całości. W przyszłym miesiącu do JPL mają dotrzeć trzy brakujące instrumenty naukowe. Magnetometr będzie badał ewentualne pole magnetyczne asteroidy, spektrometr przeanalizuje neutrony i promienie gamma emitowane z powierzchni asteroidy, a multispektralny aparat pokaże, jak wygląda powierzchnia Psyche. Pojazd zostanie też wyposażony w instrument demonstracyjny, który posłuży do przetestowania szybkiej komunikacji laserowej. Jeśli test się powiedzie, przyszłe misje NASA będą mogły dostarczać więcej informacji niż obecnie. Gdy już pojazd Psyche zostanie złożony w całości, inżynierowie przetransportują go do wielkiej komory próżniowej, gdzie będzie poddawany testom w warunkach podobnych do panujących w przestrzeni kosmicznej. Misja wystartuje w sierpniu 2022 roku. W maju 2023 pojazd zbliży się do Marsa, by skorzystać z jego asysty grawitacyjnej, a na początku 2026 roku wejdzie na orbitę Psyche,na której pozostanie przez 21 miesięcy.   « powrót do artykułu
  4. Po raz drugi ludzkość przywiozła na Ziemię próbki asteroidy. I po raz drugi uczyniła to Japońska Agencja Eksploracji Przestrzeni Kosmicznej (JAXA). W Woomera Prohibited Area, obszarze położonym o 500 kilometrów na północny zachód od australijskiej Adelajdy, wylądowała niewielka kapsuła z próbkami asteroidy Ryugu. Próbki zostały pobrane przez misję Hayabusa2 (Sokół wędrowny), która od czerwca 2018 do listopada 2019 roku badała 900-metrową asteroidę. Poprzedniczką Hayabusa2 była misja Hayabusa, która w 2010 roku przywiozła na naszą planetę fragmenty asteroidy Itokawa. O ile jednak Hayabusa przywiozła mniej niż 1 miligram próbek, to Hayabusa2 zebrała ponad 100 miligramów. Ponadto badała ona zupełnie innego asteroidę – prymitywny obiekt typu C, bogaty w wodę i minerały zawierające węgiel. Materiały, z których powstała Ziemia, jej oceany i życie były obecne w pierwotniej chmurze, z której powstał nasz Układ Słoneczny. Na wczesnych etapach rozwoju Układu materiały te miały ze sobą kontakt i zachodziły między nimi reakcje chemiczne w ramach tego samego środowiska macierzystego. Interakcje te zostały do dzisiaj zachowane w prymitywnych ciałach niebieskich (asteroidach typu C), więc przywiezienie próbek tych obiektów rzuca światło na pochodzenie i ewolucję Układu Słonecznego oraz podstawowe składniki życia, czytamy w oświadczeniu JAXA. Przywiezienie próbek na Ziemię pozwoli na ich ich szczegółowe zbadanie. Żadna sonda nie będzie w stanie badać znalezionych w przestrzeni kosmicznej materiałów tak, jak mogą to zrobić najlepiej wyposażone laboratoria na świecie. Olbrzymie znaczenie ma tutaj też czystość próbek. Dysponujemy wieloma szczątkami asteroid, które spadły na Ziemię, ale zostały one zmienione podczas podróży przez atmosferę i w czasie, gdy leżały na powierzchni nim je znaleziono. Hayabusa2 została wystrzelona w grudniu 2014 roku. Z asteroidą Ryugu spotkała się pod koniec czerwca 2018 roku. Badała go przez ponad rok i dwukrotnie pobierała próbki – raz z powierzchni, a raz z wnętrza asteroidy. Były one osobno przechowywane, dzięki czemu naukowcy będą mogli porównać materiał z dwóch różnych środowisk. W końcu Hayabusa2 przyleciała w pobliże Ziemi i wysłała do nas pojemnik z próbkami. Jednak to nie koniec jej misji. JAXA zatwierdziła bowiem jej rozszerzenie. Obecnie sonda leci w kierunku asteroidy (98943) 2001 CC21, którą minie w 2026 roku, a w roku 2031 spotka się z asteroidą 1998 KY26. Dostarczone na Ziemię próbki trafiły do należącego do JAXA Centrum Przechowywania Próbek Pozaziemskich. Zostało ono wybudowane w 2008 roku specjalnie po to, by przechowywać i badać materiały przywiezione podczas misji kosmicznych. Część próbek z Ryugu trafi do laboratoriów na całym świecie. Agencje kosmiczne coraz częściej realizują projekty związane z dostarczaniem na Ziemię próbek. W ciągu najbliższych 10 dni trafią do nas próbki z Księżyca zebrane przez chińską misję Chang'e 5. W kolei we wrześniu 2023 roku dostarczone zostaną próbki z amerykańskiej misji OSIRIS-REX, która badała asteroidę Bennu. Na razie z Bennu zebrano tak dużo próbek, że pojawił się problem z zamknięciem pojemnika. Misje OSIRIS-REx i Hayabusa2 ściśle ze sobą współpracowały w ciągu ostatnich lat. NASA i JAXA wymienią się też próbkami. Trzeba też pamiętać o wysłanym na Marsa łaziku Perserverance. Ma on wylądować na Czerwonej Planecie w lutym przyszłego roku i zebrać próbki, które zostaną w przyszłości dostarczone na Ziemię. Misja ich zabrania z Marsa i dostarczenia na Ziemię prawdopodobnie zostanie zorganizowana wspólnie przez NASA i Europejską Agencję Kosmiczną, a próbki mogą trafić na Ziemię w 2031 roku. Z kolei JAXA już pracuje nad misją Martian Moons Exploration (MMX), w ramach której chce przywieźć na Ziemię próbki Fobosa, księżyca Marsa. MMX ma wystartować w 2024 roku. « powrót do artykułu
  5. Sonda OSIRIS-REx pobrała tak dużo próbek z asteroidy Bennu, że zgromadzony materiał uniemożliwia zamknięcie pojemnika i próbki uciekają w przestrzeń kosmiczną. Główny naukowiec misji, Dante Lauretta poinformował, że do pojemnika trafiło znacznie więcej materiału, niż się spodziewano. Próbnik, znajdujący się na końcu robotycznego ramienia, które dotknęło asteroidy, zagłębił się w jej powierzchnię bardziej niż przewidywano i z taką siłą, że zassał materiał, który zgromadził się również na krawędziach, uniemożliwiając zamknięcie. Naukowcy oceniają, że próbnik wdarł się na 48 centymetrów wgłąb Bennu. Padliśmy ofiarą własnego sukcesu, mówi Lauretta. Naukowiec poinformował, że kontrola misji nie może zrobić nic, by oczyścić próbnik i zapobiec dalszemu wydostawaniu się próbek. Jedyne, co pozostaje, to jak najszybciej przenieść próbki do kontenera, w którym mają wrócić na Ziemię. Przypomnijmy, że OSIRIS-REx to pierwsza misja NASA, której celem jest pobranie próbek bezpośrednio z asteroidy. Zgodnie z planem sonda miała z pomocą robotycznego ramienia dotknąć asteroidy, wystrzelić w kierunku jego powierzchni sprężony azot, a wzbity w ten sposób materiał miał trafić do specjalnego pojemnika, stamtąd zaś do kontenera, w którym zostanie wysłany na Ziemię. Zakładano, że zebrane zostanie co najmniej 60 gramów materiału, a weryfikacja, czy rzeczywiście udało się go pozyskać, miała odbyć się dwuetapowo. Najpierw za pomocą kamery kontrola misji miała zobaczyć, czy materiał jest w pojemniku. Następnie OSIRIS-REx miał wykonać obrót wokół własnej osi, co pozwoliłoby na określenie wagi zebranego materiału. Teraz wiadomo, w pojemniku są setki gramów próbek. I pojawił się problem, bo pojemnik się nie zamyka, a próbki z niego wylatują. W związku z tym zdecydowano, że materiał zostanie przeniesiony do kapsuły, w której trafi na Ziemię, już we wtorek. Czyli znacznie wcześniej niż zakładał plan misji. Najważniejszy jest teraz czas, mówi Thomas Zurbuchen, dyrektor NASA ds. misji naukowych. Misja OSIRIS-REx to pierwsza misja NASA, w ramach której pobrane z asteroidy próbki mają zostać przywiezione na Ziemię. Jako cel wybrano asteroidę Bennu, gdyż składa się on z materiałów bogatych w węgiel i naukowcy sądzą, że znajduje się tam najstarszy materiał, z którego powstał Układ Słoneczny. Jego zdobycie i przeanalizowanie pozwoli lepiej zrozumieć jak powstał Układ Słoneczny i życie na Ziemi. Samo dotknięcie asteroidy przez robotyczne ramię sondy było dużym sukcesem. Operację udało się wykonać z dokładnością do 1 metra. Jednak gdy dwa dni później naukowcy przyjrzeli się zdjęciom z sondy ze zdumieniem zobaczyli chmurę materiału z Bennu krążącą wokół sondy i od niej odlatującą. Lauretta mówi, że po zablokowaniu robotycznego ramienia sytuację udało się ustabilizować, jednak nie wiadomo, jak wiele materiału zostało utracone. Niezależnie od tego, ile materiału udało się zebrać, OSIRIS-REx pozostanie w pobliżu Bennu aż do marca. Marzec to – biorąc pod uwagę względną pozycję Ziemi i Bennu – najbliższy możliwy termin, w którym sonda może rozpocząć powrót. Próbki trafią na Ziemię w 2023 roku. W związku z niemożnością zamknięcia próbnika nie będziemy wiedzieli, ile materiału udało się zebrać. Manewr obrotu wokół własnej osi został odwołany w obawie przed utratą tego, co zebrano. Musimy poczekać, aż próbki wrócą na Ziemię. Dopiero wtedy się przekonamy, ile mamy. Jak się domyślacie, jest to dla nas trudne. Dobra wiadomość jest taka, że mamy bardzo dużo materiału, mówi Lauretta. Pierwszymi, którym udało się przywieźć na Ziemię próbki z asteroidy, są Japończycy. Wystrzelona w 2003 rok sonda Hayabusa pobrała z asteroidy Itokawa mniej niż 1 gram materiału, który trafił na Ziemię w 2010 roku. Druga podobna misja właśnie się kończy. Na 6 grudnia bieżącego roku zaplanowano powrót próbnika z sondy Hayabusa2. Wystrzelono ją w 2014 roku, by pobrała próbki z asteroidy Ryugu. Na Ziemię wróci 100 miligramów próbek. « powrót do artykułu
  6. Sonda OSIRIS-REx dotknęła asteroidy Bennu. Na przysłanych przez nią zdjęciach widać, jak zbliża się do powierzchni asteroidy, dotyka jej wzbijając chmurę odłamków, a następnie odlatuje. Wstępne dane wskazują, że OSIRIS-REx dotknął Bennu w odległości 1 metra od wyznaczonego miejsca, co już samo w sobie jest dużym sukcesem. Urządzenie miało kontakt z asteroidą przez około 6 sekund. Sekundę po tym, jak głowica robotycznego ramienia TAGSAM (Touch-And-Go Sample Acquisition Mechanism) dotknęła skały, w kierunku Bennu został wystrzelony strumień sprężonego azotu, który spowodował pojawienie się jeszcze większej chmury odłamków. To właśnie zebranie próbek asteroidy jest celem misji OSIRIS-REx. Główny etap ich zbierania trwał przez pierwsze 3 sekundy. Na razie nie wiadomo, czy i ile próbek udało się zebrać. Jedną z metod weryfikacji będą zdjęcia robotycznego ramienia. Ponadto za dwa dni sonda ma przeprowadzić manewr polegający na obrocie wokół własnej osi, co ma pozwolić na określenie wagi zebranych próbek. Celem misji jest zebranie co najmniej 60 gramów materiału i dostarczenie go na Ziemię. Jeśli okaże się, że próbek jest zbyt mało, sonda ponownie spróbuje je pobrać. W takim wypadku OSIRIS-REx – nie wcześniej niż w styczniu 2021 – wyląduje w miejscu zapasowym nazwanym Osprey i wykorzysta tam dwa pozostałe pojemniki ze sprężonym azotem. Z przesłanych dotychczas zdjęć wynika, że sonda jest w dobrej kondycji. W momencie zbliżania się do Bennu miała prędkość 10 cm/s, oddalała się zaś z prędkością 40 cm/s. Sekwencja zdjęć rozpoczyna się w odległości około 25 metrów nad powierzchnią asteroidy, a ostatnia fotografia została wykonana na wysokości około 13 metrów, w 35 sekund po dotknięciu powierzchni Bennu.   « powrót do artykułu
  7. NASA zaprezentowała całościową mapę powierzchni asteroidy Bennu. To kolaż zdjęć zgromadzonych w ramach misji OSIRIS-REx między 7 marca a 19 kwietnia 2019 r. By uzyskać mozaikę, wykorzystano aż 2155 zdjęć wykonanych przez PolyCam. Naukowcy z NASA chwalą się, że udało się uzyskać największą rozdzielczość (5 cm na piksel), z jaką kiedykolwiek całościowo zmapowano Bennu. OSIRIS-REx wykonywał ujęcia z odległości od 3,1 do 5 km od powierzchni asteroidy. Dzięki szczegółowemu widokowi Bennu NASA mogła wybrać miejsca pobrania próbek: główne, czyli Nightingale w kraterze w północnej części asteroidy, oraz zapasowe - Osprey. Mapę-mozaikę można ściągnąć w różnych rozmiarach w dwóch wersjach: z koordynatami i bez. « powrót do artykułu
  8. Za cztery dni w pobliżu Ziemi pojawi się asteroida 2011 ES4. Może przelecieć bardzo blisko naszej planety. Znacznie bliżej niż odległość pomiędzy Księżycem a Ziemią. Obecnie jej przelot przewidywany jest na 1 września. Wtedy to może się ona znaleźć w odległości od 0,32 do 0,19 odległości Księżyca. Może zatem minąć Ziemię w odległości zaledwie ok. 120–72 tysięcy kilometrów. Wielkość obiektu to 22–49 metrów. 2011 ES już wielokrotnie zbliżała się do Ziemi. Po raz pierwszy wykryto ją w 2011 roku, gdy znajdowała się w odległości około 5 milionów kilometrów od planety. Przez cztery dni prowadzono jej obserwacje i na tej podstawie określono ówczesną oraz przeszłe i przyszłe jej orbity. Z przeprowadzonych obliczeń wynika, że od 1987 roku asteroida nigdy nie była tak blisko Ziemi, jak ma się znaleźć obecnie. Wiemy, że 2011 ES okrąża Słońce w ciągu około 415 dni. Jej peryhelium to 0,83 j.a., a aphelium wynosi 1,35 j.a. Przez większość zbliżania się do Ziemi asteroida będzie znajdowała się blisko Słońca, więc będzie niewidoczna. Sytuacja poprawi się w ostatnich dniach, więc niewykluczone że już można ją obserwować na nocnym niebie. Niepewność co do czasu przelotu i orbity asteroidy jest na tyle duża, że nie można wykluczyć, że już niezauważenie minęła ona Ziemię i to w znacznie większej odległości, niż przewidywano. « powrót do artykułu
  9. Trajektoria asteroidy, która przed 66 milionami lat spadła na Ziemię i doprowadziła do zagłady dinozaurów, była dokładnie taka, jaka powinna być, by spowodować jak najwięcej zniszczeń. Nowa analiza krateru Chicxulub połączona z licznymi symulacjami komputerowymi wykazała, że prędkość i kąt uderzenia asteroidy znajdowały się w najbardziej śmiercionośnym dla Ziemi zakresie. Gdy asteroida uderzyła w Ziemię, wybiła olbrzymi kater, do której następnie zapadła się część materiału przemieszczona podczas uderzenia. Uderzenie skruszyło i ugięło skorupę ziemską, która następnie wyprostowała się, tworząc równinę w centrum krateru. Równina ta jest nachylona w kierunku, z którego nadeszło uderzenie, a kąt jej nachylenia jest zależny od kąta uderzenia asteroidy. Stąd też, na podstawie danych o budowie krateru, osadach, jego części centralnej i otaczających go wyniesieniach można wyciągnąć wiele wniosków na temat asteroidy, jej prędkości i kąta, pod jakim spadła na Ziemię. Naukowcy z Imperial College London przeprowadzili setki symulacji komputerowych, by sprawdzić, jak powinien wyglądać krater po uderzeniu asteroidy nadlatującej z różną prędkością i pod różnym kątem. Znaleźli w końcu taką konfigurację, która najlepiej odpowiada rzeczywistemu wyglądowi krateru Chicxulub. Okazało się, że asteroida, która przyniosła zagładę dinozaurom, poruszała się w tempie około 20 km/s i uderzyła w Ziemię pod kątem około 60 stopni. Większość zniszczeń zostało spowodowane przez odparowanie skał, z których materiał trafił do atmosfery, zablokował promienie słoneczne i na planecie zapanowała atomowa zima. Jak mówi Gareth Collins z ICL, symulacje wykazały, że kąt 60 stopni jest idealny, by wyrzucić w powietrze jak najwięcej materiału. Jeśli asteroida uderzyłaby pionowo z góry, zmiażdżyłaby więcej skał, jednak mniej materiału trafiłoby do atmosfery. Jeśli zaś uderzyłaby pod mniejszym kątem niż 60 stopni, to nie odparowałaby tak wielkiej ilości skał. To było uderzenie idealne, dodaje Collins. To był bardzo zły dzień dla dinozaurów. Im zaś więcej szczególnych warunków musiało być spełnionych, tym mniejsze prawdopodobieństwo, że do takiego zdarzenia dojdzie ponownie, stwierdza uczony. « powrót do artykułu
  10. W kwietniu ubiegłego roku japońska sonda Hayabusa 2 wystrzeliła w kierunku asteroidy Ryugu miedziany pocisk. Uderzenie odsłoniło wnętrze asteroidy. Wyrzucony podczas uderzenia materiał opadł na powierzchnię asteroidy. Trzy miesiące później w miejscu opadnięcia materiału wylądowała Hayabusa 2 i wystrzeliła drugi pocisk, z tantalu. Jego celem było wzbicie chmury pyłu, który miał trafić do specjalnego pojemnika. Hayabusa 2 wraca obecnie na Ziemię. Ma wylądować z próbkami w grudniu bieżącego roku. W tej chwili nie wiemy, czy udało się pobrać próbki, jednak znamy wyniki szczegółowych obserwacji krateru, który został wybity przez pierwszy z wystrzelonych pocisków. Krater miał 14,5 metra średnicy i 2,3 metry głębokości. Po raz pierwszy byliśmy w stanie obserwować krater utworzony w środowisku mikrograwitacji, mówi Masahiko Arakawa z Uniwersytetu w Kobe. Dzięki tym obserwacjom wiemy, ile lat liczy sobie Ryugu. Dotychczasowe szacunki znacznie się od siebie różniły. Wiek asteroidy oceniano na 9 lub 160 milionów lat. Japończycy donieśli, że po powierzchnią struktura asteroidy bardziej przypomina piasek niż skałę. To zaś oznacza, że Ryugu ma zaledwie 9 milionów lat. Asteroidy takie jak Ryugu powstają, gdy dojdzie do zderzenia dwóch większych obiektów, a następnie ma miejsce ponowna akumulacja materiału rozrzuconego w wyniku zderzenia. Zwykle z takiego zderzenia zostaje utworzonych wiele obiektów. Niewykluczone, że w przyszłości zaobserwujemy innych członków „rodziny” Ryugu. Może to być tym łatwiejsze, że skoro do zderzenia doszło niedawno, to inne asteroidy z niego pochodzące powinny znajdować się w pobliżu. « powrót do artykułu
  11. Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie. Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3. Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi. Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca. 2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety. Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku. Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości. « powrót do artykułu
  12. Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2. Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną. Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety. Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi. Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem. Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji. Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart. Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi. Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy? « powrót do artykułu
  13. Parker Solar Probe (PSP), sonda, która dotknęła Słońca, dokonała kolejnego odkrycia. Tym razem potwierdziła hipotezy dotyczące źródła Geminidów, roju meteorytów, który pojawia się na grudniowym niebie. To niezwykły rój, jeden z kilku, które nie pochodzą z komety. Część astronomów od dawna podejrzewała, że Geminidy pochodzą z asteroidy Faeton który pojawia się w okolicach Słońca mniej więcej w tym samym czasie. Rozwiązanie było prawdopodobne, jednak nie pewne, gdyż nie było wiadomo, jaki mógłby być mechanizm podążania szczątków za asteroidą. Pojawiła się hipoteza, że Geminidy powstały wskutek jakiego gwałtownego procesu. Teraz hipotezę wiążącą Geminidy z Faetonem potwierdziła PSP. Właśnie poinformowano, że w październiku 2018 roku Parker Solar Probe zaobserwowała strumień pyłu o szerokości 100 000 i długości 20 milionów kilometrów rozciągający się za Faetonem. Pył ten znajdował się na przewidywanej orbicie Geminidów. Roje meteorytów obserwujemy zwykle z Ziemi, dlatego sfotografowanie roju z kosmosu dostarcza wielu nowych informacji. Specjaliści, znając teraz masę i rozkład pyłu tworzącego Geminidy będą mogli odkryć, w jaki sposób powstał rój z asteroidy. Informację o odkryciu dokonanym przez PSP podano podczas spotkania Amerykańskiej Unii Geofizycznej, na kilka dni przed szczytem roju Geminidów, który zwykle przypada na 13–14 grudnia. « powrót do artykułu
  14. Po roku analiz NASA wybrała miejsce pobrania próbek z asteroidy Bennu. Próbki te zostaną przywiezione na Ziemię w ramach misji OSIRIS-REx. To pierwsza tego typu misja zorganizowana przez NASA. Próbki zostaną pobrane z miejsca o nazwie Nightingale, znajdujące się w kraterze w północnej części asteroidy. Wybrano je spośród czterech miejsc, które z jednej strony mogą dostarczyć bardzo dobrych próbek, a z drugiej są umiejscowione tak, że cała operacja będzie jak najmniej ryzykowna dla OSIRIS-REx. Po szczegółowym rozważeniu wszystkich czterech miejsc wybraliśmy to, które zawiera najwięcej dobrego materiału, który można będzie bezpiecznie pobrać. Nightingale w największym stopniu spełnia te warunki, mówi Dante Lauretta, główny naukowiec misji. Nightingale położone jest w północnym kraterze o szerokości 140 metrów. Jego powierzchnia jest dość gładka. Jako, że miejsce znajduje się w północnej części Bennu, panują tam niższe temperatury i materiał jest lepiej zachowany niż w innych częściach. Ponadto wszystko wskazuje, że krater powstał stosunkowo niedawno, więc materiał, który można pobrać, nie był zbyt długo wystawiony na działanie czynników zewnętrznych. Operacja pobrania próbek będzie trudniejsza, niż pierwotnie zakładano. Według pierwotnych planów OSIRIS-REx miał wylądować na obszarze o średnicy 50 metrów. Nightingale ma średnicę jedynie 16 metrów, jest to zatem obszar niemal 10-krotnie mniejszy. To zaś oznacza, że pojazd musi bardzo precyzyjnie osiąść na asteroidzie. Ponadto na wschodnim krańcu Nightingale znajduje się olbrzymi głaz, który może stanowić niebezpieczeństwo podczas startu z powierzchni asteroidy. OSIRIS-REx został wyposażony w autonomiczny system, który ocenia, czy lądowanie jest możliwe i sam potrafi je przerwać, jeśli miałoby się okazać zbyt ryzykowne. Musimy bowiem pamiętać, że sam pojazd może wzniecić pył z powierzchni asteroidy, co zmieni podłoże i może się okazać, że nie warto ryzykować. Gdyby nie udało się pobrać próbek z Nightingale OSIRIS-REx spróbuje wylądować w zapasowym miejscu o nazwie Osprey. Bennu to poważne wyzwanie ze względu na bardzo nierówne podłoże. Wykorzystaliśmy więc dokładniejszą, ale bardziej skomplikowaną,, technikę optycznej nawigacji. Wyposażyliśmy OSIRIS-REx w możliwość samodzielnej oceny ryzyka związanego z lądowaniem i podjęcia decyzji, mówi Rich Burns, jeden z menedżerów projektu. W styczniu OSIRIS-REx rozpocznie serię przelotów nad Nightingale i Osprey. Będzie zbierał dodatkowe dane i przyglądał się obszarom ewentualnego lądowania. Próba zebrania próbek zostanie podjęta w sierpniu. W 2021 roku pojazd pożegna się z Bennu i poleci w kierunku Ziemi. Ma wylądować we wrześniu 2023 roku. Pierwszą w historii misją, podczas której ludzkość pobrała próbki z asteroidy, była japońska Hayabusa, która wróciła na Ziemię w 2010 roku z materiałem z asteroidy Itokawa. Ponadto dokładnie przed miesiącem, 13 listopada, japońska Hayabusa 2 opuściła okolice asteroidy Ryugu i wraca z próbkami na Ziemię. Ma tutaj dotrzeć pod koniec 2020 roku.   « powrót do artykułu
  15. Japońska sonda Hayabusa2 wraca na Ziemię. To ostatni etap 6-letniej misji, w ramach której sonda stała się pierwszym wysłanym przez człowieka pojazdem, który zebrał próbki spod powierzchni asteroidy. Japońska agencja kosmiczna JAXA poinformowała, że dnia 13 listopada o godzinie 10:05 czasu japońskiego (2:05 czasu polskiego) Hayabusa2 delikatnie uruchomiła silniki i zaczęła oddalać się od asteroidy z prędkością mniejszą niż 10 cm/s. Za niecały miesiąc, 10 grudnia, sond uruchomi silniki jonowe i rozpocznie podróż w kierunku Ziemi. Ma tutaj dotrzeć pod koniec 2020 roku. Hayabusa2 została wystrzelona w drugiej połowie 2014 roku, a na asteroidę Ryugu trafiła w czerwcu 2018 roku. To pierwsza misja, w ramach której lądowniki trafiły na powierzchnię asteroidy, pierwsza, która pobrała próbki z niewidocznej z Ziemi strony asteroidy oraz pierwsza, która pobrała próbki spod powierzchni. Ryugu ma bardzo ciemny kolor, prawdopodobnie ze względu na wysoką zawartość węgla. Hayabusa2 odkryła, że asteroida ma niezwykle małą gęstość, sugeruje, że jest złożona z małych luźno połączonych skał. Jej powierzchnia jest bardziej kamienista niż wcześniej badanych asteroid. Dotychczasowe badania wskazują, że Ryugu powstała w wyniku kolizji dwóch większych obiektów. Obecnie ludzkość bada też asterodię Bennu. Na jego orbicie od niemal roku znajduje się pojazd OSIRIS-REx. Jego zadaniem również jest pobranie próbek. Misja ma wylądować na Ziemi w 2023 roku. « powrót do artykułu
  16. Przed dwoma laty w atmosferze pojawił się fragment wielkiej asteroidy. Niewielki meteoryt spłonął w ziemskiej atmosferze 28 kwietnia 2017 roku nad Kioto. Dane zebrane przez sieć SonotaCo pozwoliły stwierdzić, że w momencie wejścia w atmosferę okruch ważył około 29 gramów i miał średnice około 3 centymetrów. Teraz grupa naukowców z Narodowego Obserwatorium Astronomicznego Japonii, Wydziału Fizyki Uniwersytetu w Kioto oraz Nippon Meteor Society określiła, skąd fragment pochodził. Na podstawie badań trajektorii lotu uczeni stwierdzili [PDF], że okruch to fragment obiektu 2003 YT1. To podwójna asteroida, w skład której wchodzi większy obiekt o średnicy około 2 kilometrów, wokół którego krąży obiekt o średnicy 210 metrów. Ocenia się, że istnieje 6-procentowe ryzyko, iż w ciągu najbliższych 10 milionów lat asteroida zderzy się z Ziemią. Zdaniem Japończyków układ podwójny powstał w wyniku efektu YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack). Polega on na zmianie prędkości asteroidy pod wpływem promieniowania słonecznego. Jedna strona asteroidy jest ogrzewana przez Słońce, staje się cieplejsza od drugiej, promieniowanie cieplne z tej strony jest silniejsze, powstaje różnica w ciśnieniu promieniowania, która prowadzi do zmiany prędkości obrotowej. Przyspieszenie może być tak duże, że prowadzi do rozerwania asteroidy. Naukowcy z Kraju Kwitnącej Wiśni zbadali potencjalne mechanizmy produkcji odłamków z tej asteroidy, w tym utratę stabilności pod wpływem obrotu, uderzenia, fotojonizację, sublimację lodu, pękania pod wpływem temperatury i inne. Wykazali, że pod wpływem siły odśrodkowej z asteroidy mogą uwalniać się fragmenty o wielkości liczonej w milimetrach i centymetrach. Podobnej wielkości fragmenty mogą pojawić się w wyniku zderzeń z mikrometeorytami o średnicy około 1 mm. Inne mechanizmy nie zapewniają powstania tak dużych odłamków jak ten, który spłoną w atmosferze Ziemi. Asteroida 2003 YT1 została odkryta przed 16 lat i obecnie uważa się, że nie stanowi ona ryzyka dla naszej planety. Sama asteroida nie przelatywała w pobliżu Ziemi w roku 2017, dlatego też początkowo nie było wiadomo, skąd pochodził fragment, który spłonął nad Kioto. Jego trajektorię udało się jednak z dużą precyzją wyliczyć dzięki globalnej sieci śledzenia meteorytów. 2003 YT1 jest zaliczana do Grupy Apolla. To ponad 10 000 planetoid bliskich Ziemi, które przecinają orbitę naszej planety. Czas obiegu 2003 YT1 wokół Słońca wynosi 427 dni, a odległość od naszej gwiazdy waha się od 0,8 do 1,4 j.a. Następnej bliskiej wizyty tej asteroidy możemy się spodziewać 3 listopada 2023 roku, kiedy znajdzie się ona w odległości niecałych 9 000 000 kilometrów od Ziemi, z kolei w kwietniu 2073 roku asteroida podleci do Ziemi na odległość 1,7 miliona km. « powrót do artykułu
  17. Gdy asteroida, która przyniosła zagładę dinozaurom, uderzyła w Ziemię, doszło do olbrzymich pożarów, pojawiły się wielkie tsunami, a uderzenie wyrzuciło do atmosfery olbrzymie ilości siarki, która na długo zablokowała dostęp promieni słonecznych, spowodowała ochłodzenie, co ostatecznie zabiło dinozaury. To scenariusz znany, ale hipotetyczny. Teraz został on potwierdzony przez naukowców University of Texas, którzy zbadali setki metrów skał, jakie w ciągu 24 godzin wypełniły krater uderzeniowy. Te dowody to m.in.kawałki węgla drzewnego, skały naniesione przez przepływ wsteczny tsunami oraz brak siarki. To zapis wypadków, który odczytujemy bezpośrednio z miejsca uderzenia. Sam świadek opowiada nam o tym wydarzeniu, mówi profesor Sean Gulick z Instytutu Geofizyki University of Texas. Gulick stał na czele misji 2016 International Ocean Discovery Program, w ramach którego przeprowadzono wiercenia w miejscu, w którym asteroida uderzyła w naszą planetę w pobliżu Jukatanu. Większość materiału, który wypełnił krater uderzeniowy w ciągu kilku godzin po katastrofie pochodziła albo z miejsca uderzenia, albo też została naniesiona przez wody Zatoki Meksykańskiej, które w wyniku uderzenia gwałtownie się cofnęły, a następnie zalały krater. W ciągu zaledwie doby krater został wypełniony warstwą materiału grubą na około 130 metrów. To jeden z najszybciej przebiegających procesów osadzania w historii geologii. Osady te zaczęły gromadzić się w ciągu minut i godzin po uderzeniu, stanowią więc szczegółowy zapis wydarzenia, które doprowadziło do wyginięcia 75% organizmów żywych na Ziemi. Gulick mówi, że po krótkotrwałym regionalnym piekle nastąpiła długotrwała planetarna zima. Dinozaury najpierw zostały upieczone, a później zamrożone. Nie wszystkie zginęły tego dnia, ale wiele poniosło śmierć, stwierdza uczony. Zdaniem specjalistów energia uderzenia była 10 miliardów razy większa, niż energia bomb atomowych zrzuconych na Japonię. Była tak olbrzymia, że tysiące kilometrów dalej zapaliły się rośliny, a potężne tsunami dotarło na tereny dzisiejszego stanu Illinois. Teraz wewnątrz krateru znaleziono węgiel drzewny oraz chemiczny biomarker grzybów, co wskazuje, że powracające po tsunami wody naniosły wypalone resztki z całej okolicy. To był doniosły dzień w historii życia, a tutaj mamy dobrą dokumentację z samego centrum wydarzeń, mówi profesor Jay Melosh z Purdue University. Dla naukowców równie ważne jak to, co znaleźli, jest to, czego nie znaleźli. Obszar otaczający krater uderzeniowy jest pełny skał bogatych w siarkę. Jednak siarki nie ma w rdzeniu wydobytym z krateru. Odkrycie to potwierdza teorię mówiącą, że w wyniku uderzenia doszło do odparowania skał, olbrzymie ilości siarki trafiły do atmosfery i wywołały globalne ochłodzenie. Naukowcy szacują, że do atmosfery mogło trafić co najmniej 325 miliardów ton siarki. Aby zdać sobie sprawę, co to oznaczało dla klimatu, trzeba wiedzieć, że jest to o cztery rzędy wielkości więcej, niż ilość siarki, która trafiła do atmosfery w 1883 roku podczas erupcji wulkanu Krakatau. Erupcja ta spowodowała, że średnie temperatury na Ziemi na pięć lat obniżyły się o około 1,2 stopnia Celsjusza. Upadek asteroidy wywołał zniszczenia na skalę regionalną. Tym, co zabiło dinozaury i wiele innych roślin oraz zwierząt były zmiany klimatu. Prawdziwym zabójcą było to, co stało się w atmosferze. Jedynym sposobem na doprowadzenie na masowego wymierania są bowiem zmiany atmosferyczne, mówi Gulick. « powrót do artykułu
  18. Japońska sonda Hayabusa2 przeprowadziła drugie udane lądowanie na asteroidzie Ryugu i – prawdopodobnie – jako pierwszy w historii pojazd wysłany przez człowieka, pobrała próbki z wnętrza asteroidy. Wcześniej wnętrze to zostało odsłonięte przez pocisk wystrzelony z sondy. Dotychczas jedynym pozaziemskim obiektem, z którego udało się pobrać próbki spod powierzchni, był Księżyc. Menedżer projektu, Yuich Tsuda, ogłosił, że wszystko przebiegło idealnie. Oświadczył, że gdyby przebieg misji ocenić w skali do 100 punktów, to Hayabusa2 uzyskałaby ich 1000. Sonda została wystrzelona w grudniu 2014 roku i dotarła do asteroidy w czerwcu 2018. Od tamtej pory prowadziła obserwacje i wysłała kilka lądowników. W lutym sama wylądowała i pobrała próbki z powierzchni. W kwietniu w kierunku Ryugu wysłany został niewielki pojazd, który eksplodował, oraz nieeksplodujący miedziany pocisk o masie 2 kilogramów, który wybił w asteroidzie dziurę. Przeprowadzone obserwacje wykazały, że wyrzucony materiał osiadł na asteroidzie około 20 metrów od otworu. Miejsce jego opadnięcia na powierzchnię wyznaczono jako miejsce drugiego lądowania Hayabusy2. Gdy sonda dotknęła powierzchni w wyznaczonym miejscu, wystrzeliła niewielki pocisk z tantalu, który wzbił chmurę pyłu i fragmentów skał, które prawdopodobnie trafiły do odpowiedniego zbiornika. Sonda następnie opuściła asteroidę. O tym, czy Hayabusa 2 rzeczywiście pobrała próbki z wnętrza asteroidy dowiemy się dopiero w grudniu 2020 roku, kiedy powróci ona na Ziemię. Wszystko jednak wskazuje na to, że misja się powiodła i naukowcy będą mogli porównać próbki z powierzchni i spod niej. Przez kilka najbliższych lat japońska JAXA będzie jedyną agencją kosmiczną, która pobrała tego typu próbki. Prowadzona przez NASA misja OSIRIS-REx ma pobrać próbki z asteroidy Bennu i powrócić z nimi na Ziemię w 2023 roku. « powrót do artykułu
  19. Pod największym kraterem uderzeniowym w Układzie Słonecznym, księżycowym basenem Biegun Południowy-Aitken, odkryto tajemniczą masę. Zdaniem naukowców z Baylor University może tam się znajdować metal z asteroidy, która uderzyła w Księżyc i utworzyła wspomniany basen. Wyobraźmy sobie złoże metalu pięciokrotnie większe niż Hawai'i [największa wyspa Hawajów – red.]. To mniej więcej masa, jaką odkryliśmy, mówi profesor Peter B. James. Sam krater ma kształt owalu, w najszerszym miejscu liczy sobie 2000 kilometrów i jest głęboki na kilkanaście kilometrów. Nie widać go z Ziemi, gdy znajduje się po drugiej stronie Srebrnego Globu. Gdy połączyliśmy dane dotyczące księżycowej topografii z danymi z satelity Lunar Reconnaissance Orbiter, odkryliśmy, że setki kilometrów pod basenem Biegun Południowy-Aitken znaujduje się niespodziewanie wielka masa. Jedno z możliwych wyjaśnień brzmi, że jest to metal z aasteroidy, która uderzyła w Księżyc, wyjaśnia James. Niezależnie od tego, co to za materiał i skąd pochodzi, jest to tak dużo, że powoduje obniżenie powierzchni Księżyca o niemal kilometr. Symulacje komputerowe wykazały, że możliwe jest uwięzienie w ten sposób materiału z asteroidy. Inna rozważana możliwość to koncentracja gęstych tlenków związana z ostatnią fazą krystalizacji księżycowego oceanu magmy. Basen Biegun Południowy-Aitken liczy sobie około 4 miliardów lat. Niewykluczone, że w przeszłości w Układzie Słonecznym istniały jeszcze większe kratery uderzeniowe, jednak obecnie  nie ma po nich żadnych śladów. « powrót do artykułu
  20. Niektóre asteroidy są bardzo gęste, składają się z żelaza i niklu. Naukowcy sądzą, że są one pozostałościami po jądrach dużych ciał niebieskich, które rozpadły się w wyniku kolizji. Są niezwykle stare, przez miliardy lat mogły być ukryte tysiące kilometrów pod powierzchnią planet. Ich zbadanie może przynieść olbrzymią ilość nowych informacji na temat wszechświata i Układu Słonecznego. Dlatego też NASA planuje misję na tego typu asteroidę. Jej celem będzie Psyche, największa metaliczna asteroida krążąca wokół Słońca. Misja ma wystartować nie wcześniej niż w 2022 roku, a jej celem będzie dotarcie na orbitę i dokładne zbadanie 226-kilometrowego obiektu. Na miejscu sonda może trafić na niezwykle egzotyczne zjawisko, krajobraz ukształtowany przez ferrowulkanizm, czyli erupcje płynnego żelaza, do których dochodziło, gdy stygł odłupany od planety fragment jądra. Ekspertom jeszcze nigdy nie udało się zaobserwować ferrowulkanizmu. Zdobycie dowodów na to, że rzeczywiście miał on miejsce na Psyche może na nowo napisać historię jąder planetarnych i odpowiedzieć na wiele pytań z dziedziny geofizyki. Lindy Elkins-Tanton, główna badaczka misji Psyche, mówi, że wraz z zespołem zamierza poszukać tam dowodów na ferrowulkanizm i ma nadzieję, że dokonają niezwykłego odkrycia. Psyche była prawdopodobnie w przeszłości otoczona krzemowym skalistym płaszczem, osłaniającym metaliczne jądro. Jednak nigdy nie stała się częścią planety. "Wczesny Układ Słoneczny był jak tor ze zderzającymi się samochodami", mówi Matthew Genge, eksperd od meteorytów z Imperial College London. Przez miliony lat w proto-Psyche mogła uderzać olbrzymia liczba mniejszych obiektów, w które w końcu pozbawiły ją skalistej otoczki, odsłaniając żelazno-niklową Psyche. Jacob Adams z Uniwersytetu Kalifornijskiego w Santa Cruz, i jego promotor Francis Nimmo, stworzyli serię matematycznych modeli, które brały pod uwagę uproszczony model metalicznego asteroidy i sprawdzały, co się dzieje, gdy taki asteroid stygnie od zewnątrz. Po utracie otaczających go warstw taki asteroida będzie stopniowo zamarzał i kurczył się, przez co na powierzchni pojawią się pęknięcia. Znajdujące się głębiej płynne żelazo będzie przez te pęknięcia uciekało. Symulowane asteroidy były mniej więcej wielkości Psyche, zatem być może uda się taki scenariusz zweryfikować podczas badań tej asteroidy. To, w jaki sposób planety stygną, może całkowicie zmienić ich historię. Ziemia, w 4,5 miliarda lat po swoim powstaniu, ma wciąż gorące, stopniowo stygnące jądro. Dotychczas ono nie wystygło, gdyż jest chronione przez grube kolejne warstwy naszej planety. Inaczej miała się sprawa z Merkurym. Jego niewielkie rozmiary i jądro stosunkowo większe względem planety niż ziemskie, spowodowały, że jądro planety wystygło i się skurczyło. W ramach tego procesu doszło do skurczenia zewnętrznych warstw planety i całej jej powierzchni, co zamknęło szczeliny, przez które w przeszłości wypływała magma. Psyche sama w sobie jest niezwykle interesująca. Dotychczasowe badania wskazują, że w połowie składa się ona z żelaza. ALbo więc jest niezwykle porowata, albo coś innego znacząco zmieniło jej strukturę. Ostatnio zaprezentowane wyliczenia sugerują, że mogą tam istnieć kominy wulkaniczne, a niewielką gęstość asteroidy można wyjaśnić, jeśli wciąż posiada ona skalisty płaszcz, a wewnątrz wciąż zachodzą procesy ferrowulkaniczne. Niewykluczone, że w jądrze znajduje się radioaktywne aluminium-26, które podtrzymuje aktywność wulkaniczną. Celem misji Psyche będzie zbadanie wieku asteroidy oraz względnego wieku jej poszczególnych regionów, sprawdzenie, czy składa się ona z tych samych pierwiastków, których spodziewamy się w jądrze Ziemi, zbadanie, czy Psyche formowała się w obecności większej czy mniejszej ilości tlenu niż ziemskie jądro oraz wykonanie mapy asteroidy. Misja Psyche zostanie wyposażona w cztery instrumenty – aparat fotograficzny wykonujący zdjęcia w różnych zakresach fali, spektrometr neutronowy i rentgenowski, magnetometr oraz urządzenie do pomiarów grawitacji. Ponadto sonda zostanie wyposażona w nowoczesny laserowy system kompunikacji (Deep Space Optical Communication – DSOC), a specjaliści z Jet Propulsion Laboratory przeprowadzą testy tego systemu. Jeśli się on sprawdzi, możemy zyskać znacznie bardziej wydajny sposób przesyłania danych pomiędzy Ziemią a obiektami pracującymi w przestrzeni kosmicznej. Obecny plan misji zakłada, że Psyche zostanie wystrzelona w 2022 roku, w roku 2023 skorzysta z asysty grawitacyjnej Marsa, na orbitę asteroidy dotrze w roku 2026 i pozostanie na niej przez 21 miesięcy. Przygotowania do misji idą najwyraźniej lepiej niż się spodziewano. Jeszcze dwa lata temu informowaliśmy, że Psyche ma wystartować w 2023 roku. « powrót do artykułu
  21. Japońska sonda Hayabusa 2 przybyła na orbitę asteroidy Ryugu w czerwcu 2018 roku. Dotychczas wysłała na nią trzy lądowniki i pobrała próbkę materiału z powierzchni. Wykonała też liczne pomiary i zdjęcia asteroidy. Wczoraj, podczas Lunar and Planetary Science Conference w Teksasie, zaprezentowane pierwsze wyniki badań. Kształt asteroidy sugeruje, że w przeszłości obracała się ona dwukrotnie szybciej niż obecnie, kończąc pełen obrót w czasie krótszym niż 4 godziny. Prawdopodobnie z czasem spowalniało ją światło słoneczne. Powierzchnia Rygu jest dość jednolita, niezwykle ciemna, odbija mniej niż 2% padającego nań światła. Porównanie z kolorem meteorytów znalezionych na Ziemi, które zostały podgrzane w czasie przejścia przez atmosferę, wskazują, że kolory się zgadzają, co sugeruje, iż w przeszłości Ryugu została podgrzana. Prawdopodobnie podczas oddzielenia się od większego obiektu, z którego pochodzi. To wszystko może wyjaśniać, dlaczego Rygu zawiera niezwykle mało wody, mniej niż asteroida Bennu, badana przez sondę OSIRIS-REx. Biorąc pod uwagę miejsce, w którym Ryugu powstała, jest nieprawdopodobne, by była tak sucha od samego początku. Obiekt, z którego pochodzi Ryugu zawierał wodę i tracił ją stopniowo wskutek ogrzewania przez rozpad pierwiastków radioaktywnych, uważają naukowcy. Gdyby utrata wody zaszła np. w wyniku uderzenia w inny obiekt, to nie byłaby ona tak równomierna, jak widać to na Ryugu. Niektórzy mogą być zawiedzeni tym, że Ryugu jest tak homogeniczna, mówi Seiji Sugita z Uniwersytetu Tokijskiego. Jednak, jak zauważa, to również zaleta, gdyż próbka pobrana w dowolnym miejscu asteroidy będzie reprezentatywna dla całości. Naukowcy od dawna sądzą, że asteroidy takie jak Ryugu przyniosły wodę na Ziemię. Jeśli okaże się, że wiele z nich jest równie pozbawionych wody jak Ryugu, trzeba będzie zweryfikować dotychczasowe teorie. « powrót do artykułu
  22. Japońska Agencja Eksploracji Kosmosu (JAXA) poinformowała, że sonda Hayabusa2 pomyślnie wylądowała na asteroidzie Ryugu, skąd ma pobrać próbki. Analiza danych z Hayabusa2 potwierdza, że sekwencja operacji, w tym wystrzelenie pocisku w asteroidę, przebiegła pomyślnie. Pojazd Hayabusa2 znajduje się w stanie, jaki był oczekiwany, czytamy na stronach JAXA. Najpierw Hayabusa2 zbliżyła się do asteroidy i wystrzeliła w jej kierunku pocisk, następnie na sekundę dotknęła powierzchni asteroidy, pobrała próbki i oddaliła się na bezpieczną odległość. Sonda ma na pokładzie kilka pocisków, więc będzie mogła pobierać próbki wielokrotnie. W marcu lub kwietniu sonda wyśle na asteroidę ładunek wybuchowy Small Carry-on Impactor, który ma wybić krater. Pozowli on na zbadanie głębszych warstw asteroidy. Ryugu to asteroida klasy C, zawierający węgiel. To najbardziej rozpowszechniony typ asteroid. Ich skład jest podobny do chondrytów węglistych, meteorytów znajdowanych na Ziemi. Jednak, jako że meteoryty takie mogły po upadku zostać zanieczyszczone ziemskim materiałem, naukowcy postanowili zbadać asteroidę. Jeśli potwierdzi się, że jej skład jest taki sam jak meteorytów, będzie to dowodem, iż związki organiczne i woda mogły trafić na naszą planetę za pośrednictwem komet i meteorytów. Hayabusa2 ma wrócić na Ziemię w przyszłym roku i przywieźć około 100 miligramów próbek. Wcześniej jednak spróbuje umieścić na powierzchni Ryugu trzy łaziki i europejski lądownik MASCOT. « powrót do artykułu
  23. Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych. OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą. Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała. Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center. Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy. Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki. Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji. Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu. Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów. « powrót do artykułu
  24. Misja OSIRIS-REx dotarła do asteroidy Bennu. Obecnie pojazd znajduje się w odległości 19 kilometrów od asteroidy, a 31 grudnia wejdzie na jej orbitę. Dotychczas żaden pojazd wysłany przez człowieka nie krążył na orbicie tak małego obiektu. Celem OSIRIS-REx jest pobranie próbek z asteroidy i przywiezienie ich na Ziemię. Obecnie szacuje się, że Bennu ma nieco ponad 500 metrów średnicy. Na początku przyszłego tygodnia w Waszyngtonie odbędzie się panel naukowy, podczas którego zostaną przekazane najnowsze informacje dotyczące Bennu. Dzisiejszą wiedzę na temat tej asteroidy będzie można skorygować o dane napływające z OSIRIS-REx. Asteroida znajduje się obecnie w odległości około 122 milionów kilometrów od Ziemi. Plan misji zakłada, że OSIRIS-REx będzie towarzyszył asteroidzie przez około rok, następnie pobierze z niej próbki i w 2023 roku powróci z nimi na Ziemię. Naukowcy z niecierpliwością czekają na możliwość badania bogatych w węgiel asteroid, takich jak Bennu. Obiekt liczy sobie tyle lat, co Układ Słoneczny, jest zatem dla specjalistów specyficzną kapsułą czasową. Tymczasem japońska sonda Hayabusa2 już od czerwca towarzyszy asteroidzie Ryugu o średnicy około 1 kilometra. To druga, po Hayabusa, japońska misja na asteroidę. Pierwsza wróciła w 2010 roku z próbkami pobranymi z asteroidy Itokawa. To asteroida typu S, składająca się głównie z krzemianów. Ryugu i Bennu to asteroidy typu C, ich głównym składnikiem jest węgiel. To najbardziej rozpowszechniony w Układzie Słonecznym typ asteroid. Misje na Ryugu i Bennu wydają się podobne, jednak różnią się sposobem przeprowadzenia. Hayabusa2 umieściła na powierzchni Ryugu dwa mikrołaziki oraz urządzenie MASCOT. Ponadto wystrzeliła w kierunku asteroidy specjalny pocisk, który pozwolił na pobranie próbek z wnętrza asteroidy. Hayabusa2 trzykrotnie pobierze próbki z Ryugu, za każdym razem uzyskując od 100 miligramów do 10 gramów materiału. Inaczej będzie działał OSIRIS-REx. Amerykański pojazd za pomocą specjalnego 3-metrowego ramienia wessie materiał z powierzchni Bennu. Ma go być od 60 gramów do nawet 2 kilogramów. Później od pojazdu oddzieli się pojemnik z próbkami, który w 2021 roku skieruje się w stronę Ziemi. Dwa lata później ma on wylądować na spadochronie w stanie Utah. Zarówno asteroida Bennu jak i Ryugu są uważane za obiekty stwarzające zagrożenie dla Ziemi. To oznacza, że w przyszłości mogą spaść na naszą planetę. Specjaliści obliczają, że Bennu może uderzyć w Ziemię już za 150 lat. Im więcej będziemy wiedzieć o asteroidach, tym lepiej przygotujemy się na ewentualne niebezpieczeństwa z nimi związane. « powrót do artykułu
  25. Na asteroidzie odległej od Ziemi o 300 milionów kilometrów, wylądował właśnie MASCOT, francusko-niemiecki Mobile Asteroid Surface Scout, przywieziony tam przez japoński pojazd Hayabusa2. Celem misji jest zbadanie początków Układu Słonecznego. MASCOT waży 10 kilogramów, ma kształt sześcianu i jest wypełniony licznymi czujnikami. Urządzenie może wykonywać zdjęcia w różnych długościach fali światła, badać minerały za pomocą mikroskopu, mierzyć pole magnetyczne oraz temperaturę powierzchni asteroidy. MASCOT trafił na asteroidę Ryugu 10 dni po tym, jak wylądowały tam dwa mikrołaziki Minerva-II. Są one pierwszymi mobilnymi urządzeniami umieszczonymi przez ludzkość na asteroidzie. Łaziki wykorzystują słabą grawitację Ryugu do wykonywania skoków po jej powierzchni. Jeden taki skok może mieć długość 15 metrów, a MINERVA-II będą znajdowały się nad powierzchnią Ryugu przez 15 minut. Taki sposób poruszania się służy badaniu powierzchni asteroidy za pomocą kamer i czujników. MASCOT, w przeciwieństwie do łazików, będzie nieruchomy. W czasie swojej misji wykona on pojedynczy skok. Później będzie mógł się tylko obracać. Urządzenie pozostanie na asteroidzie przez wiele miesięcy, jednak jego czas pracy na bateriach wynosi 16 godzin. MASCOT zbierze w tym czasie dostępne dane i prześle je na Hayabusę2, a następnie zamilknie. To jednak nie wszystko. Jeszcze przed końcem miesiąca Hayabusa2 wyśle w kierunku asteroidy specjalne urządzenie, które eksploduje nad jej powierzchnią, wysyłając w stronę Ryugu dwukilogramowy mosiężny pocisk. Ma on wybić krater w asteroidzie. Wówczas Hayabusa2 obniży się i za pomocą automatycznego ramienia pobierze próbki z krateru. W ten sposób zdobędziemy surowy materiał, który nie był wystawiony na działanie promieniowania. Częścią misji urządzenia MASCOT jest znalezienie odpowiedniego miejsca, w którym ma zostać wybity krater. Misja Hayabusa2 została wystrzelona w grudniu 2014 roku. W 2020 roku wróci ona na Ziemię z zebranymi próbkami. « powrót do artykułu
×
×
  • Dodaj nową pozycję...