Search the Community
Showing results for tags ' aerozol'.
Found 3 results
-
Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U. Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać. Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne. Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów. Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów. Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć. Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis. Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów. « powrót do artykułu
-
Profesor Sonia Kreidenweis i jej grupa badawcza z Colorado State University znalazła region o najczystszym powietrzu na Ziemi. Uczeni zidentyfikowali dziewiczy region, który nie został zmieniony działalnością człowieka. Choć trudno to sobie wyobrazić, uczeni stwierdzili, że graniczna warstwa powietrza nad Oceanem Południowym jest wolna od aerozoli emitowanych przez człowieka. Naukowcy, którzy postanowili poszukać jak najbardziej czystego powietrza na Ziemi, podejrzewali, że powietrze znajdujące się w odległych regionach Oceanu Południowego może być najmniej narażone na wpływ czynników antropogenicznych. Wykorzystaliśmy bakterie znajdujące się w powietrzu nad Oceanem Południowym w formie narzędzia diagnostycznego dzięki któremu zbadaliśmy kluczowe właściwości dolnych warstw atmosfery. Okazało się, na przykład, że aerozole kontrolujące właściwości chmur nad Oceanem Południowym są silnie powiązane z procesami biologicznymi w oceanie, a Antarktyka wydaje się izolowana od rozprzestrzeniających się na południe mikroorganizmów i składników odżywczych pochodzących z kontynentów. To wskazuje, że Ocean Południowy jest jednym z nielicznych regionów, które tylko w minimalnym stopniu zostały dotknięte działalnością człowieka, mówi współautor badań, Thomas Hill. W ramach badań naukowcy pobrali próbki powietrza z warstwy granicznej, która ma bezpośredni kontakt z oceanem. Próbki pobierano podczas podróży statkiem badawczym RV Investigator, który płynął z Tasmanii do granicy antarktycznych lodów. Jun Uetake, główny autor badań, dokonywał analizy genetycznej mikroorganizmów znalezionych w powietrzu. Atmosfera pełna jest takich mikroorganizmów, które wiatr przenosi na setki i tysiące kilometrów. Sekwencjonowanie DNA, badania trajektorii wiatru i śledzenie źródła wykazały, że mikroorganizmy pochodzą z oceanu. Naukowiec zauważył też znaczne różnice w składzie bakteryjnym pomiędzy różnymi szerokościami geograficznymi, co wskazywało, że aerozole z dużych mas lądowych, tam, gdzie ma miejsce ludzka aktywność, nie docierają do Antarktyki. Wyniki tych badań stoją w wyraźnej sprzeczności z tym, co zauważyli inni naukowcy badający powietrze nad oceanami na Półkuli Północnej i w regionach subtropikalnych. Tam zawsze stwierdzano, że większość mikroorganizmów pochodzi z lądów. Powietrze nad Oceanem Południowym było tak czyste, że Uetake miał niewiele materiału DNA do badań. « powrót do artykułu
-
- Ocean Południowy
- Antarktyka
-
(and 2 more)
Tagged with:
-
Naukowcy z amerykańskiego Laboratorium Wirusologii Narodowego Instytutu Alergii i Chorób Zakaźnych, Uniwersytetu Kalifornijskiego w Los Angeles, Uniwersytetu Princeton, Centrów Zapobiegania i Kontroli Chorób (CDC) oraz Narodowych Instytutów Zdrowia, określili czas przetrwania koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach. Z ich badań wynika, że jest on podobny, co czas przetrwania SARS-CoV-1, który wywołał epidemię SARS przed kilkunastu laty. Ogólnie rzecz biorąc, stabilność SARS-CoV-2 i SARS-CoV-1 jest bardzo podobna. Stwierdziliśmy, że aktywny wirus może być obecny w aerozolach do 3 godzin po aerozolizacji, do 4 godzin na miedzi, do 24 godzin na kartonie i do 2-3 dni na plastiku i stali nierdzewnej. Oba wirusy wykazywały podobny okres półtrwania w aerozolach, gdzie mediana wynosiła około 2,7 godziny. Oba wykazują dość długi czas przetrwania na stali nierdzewnej i polipropylenie w porównaniu z miedzią i kartonem. Mediana okresu półtrwania SARS-CoV-2 wynosi 13 godzin na stali i 16 godzin na polipropylenie. Wyniki naszych badań wskazują, że droga transmisji przez aerozole i powierzchnie jest możliwa, gdyż wirus pozostaje aktywny w aerozolach przez wiele godzin, a na powierzchniach przez wiele dni – czytamy w artykule Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 [PDF] Naukowcy zauważają, że stabilność wirusa w aerozolach i na powierzchniach ma bezpośredni wpływ na ryzyko zarażenia. Obie te drogi zarażenia odegrały główną rolę podczas dwóch poprzednich epidemii koronawirusów, SARS i MERS, z tym, że w przypadku SARS prawdopodobnie główną drogą zarażenia były aerozole. Przeprowadzone właśnie szczegółowe analizy aktywności najnowszego koronawirusa wykazały, że w ciągu trzech godzin po aerozolizacji liczba zdolnych do zarażania wirusów spada z 103,5 do 102,7. Najnowszy koronawirus jest zaś najbardziej stabilny na polipropylenie, gdzie po 72 godzinach liczba aktywnych wirusów spadła z 103,7 do 100,6, oraz na stali nierdzewnej, gdzie do takiego samego spadku dochodzi w ciągu 48 godzin. Z kolei po nałożeniu wirusa na powierzchnię miedzianą obecności aktywnych wirusów nie wykrywano po 4 godzinach, a po nałożeniu na karton wirusów nie stwierdzono tam po 24 godzinach. Uczeni stwierdzili, że nie ma statystycznie istotnej różnicy pomiędzy okresem przetrwania SARS-CoV-2 i SARS-CoV-1 na różnych powierzchniach i w aerozolach. Skoro tak, to do wyjaśnienia pozostaje zagadka, dlaczego obecny koronawirus (SARS-CoV-2) wywołał epidemię na znacznie większą skalę. Wiele różnych czynników może wchodzić tutaj w grę. Prawdopodobnie najnowszym koronawirusem możemy zarazić się od osób niewykazujących objawów, co ogranicza skuteczność kwarantanny. Mogą istnieć też różnice w ilości wirusów potrzebnych do wywołania zakażenia. Inne możliwe czynniki to stabilność wirusa w śluzie i jego odporność na takie czynniki jak temperatura i wilgotność. Autorzy obecnych badań właśnie zaczynają eksperymenty, które pozwolą określić, jak SARS-CoV-2 radzi sobie w różnych warunkach atmosferycznych i różnych środowiskach, takich jak w wydzielinie z nosa, ślinie czy kale. « powrót do artykułu