Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Ziemia' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 60 wyników

  1. NASA kończy przygotowania do startu DART, pierwszej w historii misji, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami. Zatankowany pojazd czeka na połączenie z rakietą nośną. Celem misji jest asteroida Dimorphos, a jej początek zaplanowano na 23 listopada. Dimorphos to niewielka asteroida o średnicy ok. 150 metrów, krążąca wokół większej nazwanej Didymos (ok. 800 m.). Zbliżą się one do Ziemi w roku 2022, a następnie w roku 2024. Pojazd DART (Double Asteroid Redirection Test) ma roku rozbić się o powierzchnię Dimorphosa, minimalnie zmieniając orbitę asteroidy. W chwili uderzenia DART będzie pędził z prędkością 21 500 km/h. Ani Dimorphos ani Didymos nie zagrażają Ziemi. DART ma udowodnić, że jest w stanie samodzielnie zbliżyć się do asteroidy i w nią uderzyć. Następnie naukowcy, używając naziemnych teleskopów, zbadają wpływ kolizji na obie asteroidy. Pozwoli to na poprawienie modeli opracowywanych na potrzeby przyszłych technologii obrony planety. DART będzie pierwszym testem tzw. impaktora kinetycznego. To technika polegająca na celowym rozbiciu pojazdu o asteroidę, by zmienić jej trajektorię. Sądzimy, że obecnie jest to najbardziej zaawansowana technologicznie metoda obrony Ziemi. Dzięki niej poprawimy modele komputerowe dotyczące wpływu impaktora kinetycznego na asteroidę. Przyda się nam to w przyszłości, gdy Ziemi naprawdę będzie coś zagrażało, mówi Lindley Johnson, pierwszy w historii Planetary Defense Officer. Pojazd DART wyposażono w wiele prototypowych technologii, w tym opracowywany na potrzeby przyszłych misji w głębokich częściach kosmosu silnik jonowy NEXT-C czy udoskonaloną antenę do komunikacji z Ziemią. Jedynym instrumentem naukowym, jaki znalazł się na pokładzie DART jest kamera nawigacyjna DRACO. Taka sama kamera jest od niedawna używana na Międzynarodowej Stacji Kosmicznej, a DART jest pierwszą misją, który użyje jej do nawigacji. Również i DRACO będzie wykorzystywana w przyszłych misjach. Na DART zainstalowano też rozwijalne panele słoneczne, a na jego pokładzie znalazł się miniaturowy 14-kilogramowy włoski satelita LICIACube. Mały satelita oddzieli się od DART na 10 dni przed jego uderzeniem w Dimorphosa. Zadaniem LICIACube jest obserwowanie za pomocą dwóch kamer skutków uderzenia w asteroidę. Trzy minuty po kolizji mały satelita przeleci za Dimorphosa, rejestrując zarówno materiał wyrzucony w wyniku zderzenie, jak i krater utworzony na powierzchni asteroidy oraz te części obu asteroid, które od strony DAT nie będą widoczne. Pojazd DART został już zatankowany 50 kilogramami hydrazyny oraz 60 kilogramami ksenonu dla silnika NEXT-C. Jutro rozpocznie się proces instalowania DART na rakiecie Falcon 9 firmy Space X. Na dzień przed startem rakieta z DART-em wyjedzie z hangaru i zostanie przetransportowana na stanowisko. Start odbędzie się z Vandenberg Space Force Base w Kalifornii. Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy.   « powrót do artykułu
  2. Popularnym motywem filmów katastroficznych jest zagrożenie Ziemi ze strony asteroidy. Wizją taką zajmują się nie tylko filmowcy, ale też naukowcy i agencje kosmiczne, prowadzące programy ochrony planety przed zagrożeniami. O tym, na ile realny to problem, przekonaliśmy się dobitnie, gdy przed 8 laty nad Czelabińskiem rozpadł się meteoryt. Naukowcy wciąż zastanawiają się, co zrobić, gdyby asteroida leciała w kierunku Ziemi. Autorzy najnowszych badań twierdzą, że rozbicie go nie byłoby takim złym pomysłem, jak się dotychczas wydawało. Nieproszonych gości z kosmosu możemy z grubsza podzielić na dwie kategorie. Wielkie obiekty, których upadek mógłby zagrozić istnieniu cywilizacji czy nawet naszego gatunku, oraz obiekty mniejsze, zdolne np. do zniszczenia miasta. Te wielkie znamy niemal wszystkie, są one obserwowane, ich trajektorie zostały zbadane i eksperci zapewniają, że w ciągu najbliższych 100 lat żaden z nich nam nie zagraża. A nawet gdyby zagrażał, to współczesna technologia pozwoli na zauważenie takiego obiektu na kilkadziesiąt lat przed uderzeniem w Ziemię, pozostanie zatem sporo czasu na opracowanie i wdrożenie systemu obrony. Najczęściej rozważanym scenariuszem jest zmiana trajektorii takiego obiektu, czy to poprzez pomalowanie go farbą zmieniającą sposób, w jaki będzie rozgrzewał się od Słońca, czy dołączenie do niego urządzenia, stopniowo spychającego go z kursu czy to rozbicie o jego powierzchnię pojazdu lub materiału wybuchowego. Rozbijanie samej asteroidy jest natomiast bardzo ryzykowne, gdyż na Ziemię mógłby spaść cały deszcz odłamków, a więc powierzchnia zniszczeń będzie znacznie większa. Ponadto trajektorii takich fragmentów nie da się przewidzieć. Znacznie gorzej wygląda sytuacja w przypadku mniejszych obiektów. Większości z nich nie znamy, a jeśli będziemy mieli szczęście i zauważymy taki obiekt przed wejściem w atmosferę Ziemi, to będzie to na dni lub tygodnie przed upadkiem. Patrick K. King z Uniwersytetu Johnsa Hopkinsa i Lawrence Livermore National Laboratory (LLNL) oraz jego koledzy z LLNL – Megan Syal, David Dearborn, Robert Managan, J. Owen i Cody Raskin – poinformowali na łamach Acta Astronautica o wynikach symulacji zniszczenia niewielkiego obiektu kosmicznego za pomocą broni atomowej. King i jego zespół uważają, że użycie broni atomowej byłoby dobrą strategią obrony przed niewielkim późno wykrytym obiektem zagrażającym Ziemi. Na zmianę trajektorii takich późno wykrytych obiektów nie będzie bowiem czasu. W swoich obliczeniach naukowcy skupili się na zbadaniu, w jaki sposób asteroidy o różnych orbitach i różnych prędkościach zachowają się po rozbiciu. Przyjęto przy tym, że zagraża nam asteroida o kształcie podobnym do Bennu i średnicy 100 metrów, czyli ok. 1/5 średnicy Bennu. Analizy przeprowadzono dla pięciu różnych orbit asteroidy, która na dwa miesiące przed przewidywanym uderzeniem w Ziemię zostałaby trafiona 1-megatonową głowicą atomową. Z obliczeń wynika, że w takim przypadku udałoby się co najmniej 1000-krotnie zmniejszyć masę materiału, który spadnie na planetę. Innymi słowy, 99,9% masy minie planetę. Inaczej wyglądałaby sytuacja, w przypadku większej asteroidy. W jej wypadku eksplozja nie spowodowałaby tak dużego rozproszenia materiału, ale i tak aż 99% jej masy ominęłaby Ziemię. Jednak pod warunkiem, że asteroidę zniszczono by na 6 miesięcy przed uderzeniem w planetę. Jeśli chcemy ocenić skutki takiego postępowania, to musimy modelować orbity wszystkich fragmentów powstałych w wyniku rozbicia asteroidy. To daleko trudniejsze niż modelowanie orbity pojedynczego obiektu, stopniowo spychanego z kursu, mówi King. Musimy jednak poradzić sobie z tymi obliczeniami, jeśli chcemy oszacować szanse powodzenia strategii polegającej na rozbiciu asteroidy. Naukowcy podkreślają, że najważniejszym efektem ich pracy jest wykazanie, iż użycie broni atomowej do rozbicia asteroidy to bardzo efektywna metoda obrony na ostatnią chwilę. Skupiliśmy się na obronie ostatniej szansy, czyli na sytuacji, gdy rozbijamy asteroidę na krótko przed jej uderzeniem. W sytuacjach zaś, gdy mamy dużo czasu – dziesiątki lat – znacznie lepiej użyć takiego ładunku do zepchnięcia asteroidy z kursu, stwierdza King. Jeśli zauważymy niebezpieczny obiekt zmierzający w kierunku Ziemi i będzie zbyt późno, by zmienić jego kurs, najlepszym obecnie rozwiązaniem jest rozbić go tak, by większość fragmentów ominęła Ziemię. Tutaj jednak problem się komplikuje. Jeśli rozbijemy asteroidę na kawałki, powstanie chmura odłamków, z których każdy będzie miał własną orbitę wokół Słońca, a ponadto wchodzą tutaj w grę też oddziaływania grawitacyjne zarówno pomiędzy nimi jak i pomiędzy nimi a planetami. Taka chmura będzie miała tendencję do rozciągania się na zakrzywiony strumień rozciągający się wzdłuż oryginalnej trajektorii asteroidy. Od tego, jak szybko się ona rozproszy zależy, jak wiele fragmentów spadnie na Ziemię, dodaje J. Owen. Jak już informowaliśmy, na rok 2024 NASA planuje test kosmicznego impaktora. Skądinąd jednak wiadomo, że rozbijanie asteroid to niełatwe zadanie i obrona przed nimi może być trudniejsza niż się wydaje. « powrót do artykułu
  3. Łazik Perseverance przesłał na Ziemię dane z pierwszego podejścia do zebrania próbek marsjańskiego gruntu, które w przyszłości mają zostać przywiezione na Ziemię. Z uzyskanych informacji wynika, że do pojemnika nie trafił żaden fragment skały z Marsa. Perseverance wyposażono w 43 tytanowe tuby na próbki. Łazik ma umieścić w nich fragmenty skał oraz regolitu (luźnej zwietrzałej skały i pyłu). Pojemniki pozostaną na powierzchni Czerwonej Planety w oczekiwaniu na misję, która zabierze je na Ziemię. To nie jest to, czego się spodziewaliśmy, ale z pionierskimi działaniami zawsze związane jest ryzyko. Wierzę, że pracują nad tym odpowiedni ludzie i podczas przyszłych prób uzyskamy pożądane rezultaty, mówi Thomas Zurbuchen, kierujący Dyrektoriatem Misji Naukowych NASA. Wszystko wskazuje na to, że samo wiercenie i pobieranie próbek przebiegało prawidłowo. Cały proces pobierania próbek jest w pełni autonomiczny. Jednym z kroków, wykonywanych po umieszczeniu próbek w pojemniku, jest określenie objętości pobranego materiału. Nie zarejestrowaliśmy odpowiedniego oporu, który zostałby zmierzony, gdyby materiał trafił do pojemnika, informuje Jesica Samuels z Jet Propulsion Laboratory. Obecnie specjaliści próbują określić, co się stało. Przyjrzą się dokładnie wywierconemu otworowi. Na razie sądzimy, że przyczyną jest fakt, iż skała nie zareagowała na wiercenie tak, jak się tego spodziewaliśmy. Problem techniczny z Sampling and Caching System jest mniej prawdopodobny. W ciągu najbliższych kilku dni będziemy szczegółowo analizowali dane, przeprowadzimy dodatkowe prace diagnostyczne, by lepiej zrozumieć, co się stało, dodaje Jennifer Trosper. To nie pierwszy raz, gdy NASA napotyka na trudności z badaniem marsjańskich próbek. Podczas misji Phoenix w 2008 roku pobrany materiał był tak lepki, że dopiero po wielu próbach udało się go przenieść do pokładowych instrumentów badawczych. Z kolei gdy Curiosity wiercił w skałach okazało się, że są one twardsze i bardziej kruche niż się spodziewano. Przed kilkoma zaś miesiącami informowaliśmy, że operatorzy misji InSight zrezygnowali z użycia polsko-niemieckiego „kreta”, czyli próbnika termicznego, który miał zostać zagłębiony w gruncie, by mierzyć przepływ energii termicznej. „Kret” napotkał na zbyt duże tarcie i nie zanurzył się w grunt wystarczająco głęboko. « powrót do artykułu
  4. W ciągu ostatnich 60 lat ludzie przekształcili aż 43 miliony kilometrów kwadratowych Ziemi. To 4-krotnie więcej niż sądzono. To powierzchnia równa Afryce i Europie razem, którą H. sapiens przeobraził np. zamieniając lasy w pola uprawne czy sawanny w pastwiska. Wyniki badań, obejmujących lata 1960–2020 ukazały się właśnie w Nature Communications. Sposób wykorzystywania terenu odgrywa ważną rolę w zapobieganiu zmianiom klimatycznym, utrzymaniu bioróżnorodności czy produkcji żywności. Dlatego też pełne zrozumienie dynamiki zachodzących procesów jest niezbędne do opracowania strategii wykorzystania terenu, mówi główna autorka badań, Karina Winkler z holenderskiego Wageningen University & Research. Od 1960 roku pokrywa leśna na Ziemi skurczyła się o około 1 milion kilometrów kwadratowych. Zniknęły więc lasy o powierzchni trzykrotnie większej niż powierzchnia Polski. Jednocześnie mniej więcej o tyle samo wzrosła powierzchnia pól uprawnych i pastwisk. Bardzo wyraźnie widać tutaj różnice regionalne. Na północy, w Europie, Rosji, Ameryce Północnej i Azji Wschodniej, powierzchnia lasów zwiększyła się w ciągu ostatnich 60 lat. Na południu zaś doszło do znacznego zmniejszenia obszarów leśnych. Zmniejsza się też ilość pól uprawnych na północy, a rośnie na południu. Pola te produkują żywność właśnie dla mieszkańców północy. Lasy tropikalne Amazonii są wycinane po to, by hodować bydło, uprawiać trzcinę cukrową i soję. w Azji Południowo-Wschodniej lasy te są zamieniane w uprawy palmy olejowej, a w Nigerii i Kamerunie giną, by w ich miejsce uprawiać kakao, mówi Winkler. Produkty te trafiają potem głównie na rynki północy. Dodatkowym problemem są rosnące ceny ropy naftowej, które powodują, że opłaca się wycinać lasy pod uprawy roślin, z których produkuje się biopaliwa. Naukowcy zauważyli też dwa okresy szybkich przekształceń powierzchni Ziemi. Pierwszy był napędzany zieloną rewolucją z lat 60. i 70. ubiegłego wieku. Następnie doszło do szybkiej ekspansji zglobalizowanego rynku. Trwał to do roku 2005. Po tym okresie tempo przekształcania terenów spadło. W czasie recesji z 2008 roku zmniejszył się światowy popyt na różnego rodzaju dobra, piszą autorzy badań. Wyjaśnili też, dlaczego dotychczas uczeni znacząco się mylili w szacunkach dotyczących przekształceń powierzchni planety. Autorzy wcześniejszych badań dysponowali bowiem fragmentarycznymi danymi, musieli dokonywać wielu założeń, pomiary satelitarne były mało dokładne i nie pozwalały na wychwycenie wielu rodzajów przekształceń terenu. Autorzy najnowszych badań mieli zaś do dyspozycji długoterminowe dane zbierane przez FAO, byli w stanie odróżnić znacznie więcej form wykorzystywania terenu niż było to możliwe wcześniej, dysponowali też zdjęciami satelitarnymi o rozdzielczości 1 kilometra kwadratowego. Dzięki temu odkryli m.in. że około 17% powierzchni lądów co najmniej raz od 1960 roku zmieniło swoje przeznaczenie. Powierzchnia Ziemi liczy 510 milionów kilometrów kwadratowych, z czego 361 milionów km2 stanowią oceany. Pozostaje 149 milionów km2, w tym 15 milionów stale pokrytych lodem. « powrót do artykułu
  5. Kontynentalna skorupa ziemska mogła pojawić się nawet 500 milionów lat wcześniej niż dotychczas przypuszczano. Określenie daty jej powstania jest o tyle istotne, że lepiej pomaga zrozumieć warunki, w jakich na naszej planecie pojawiło się życie. Wietrzenie skorupy kontynentalnej dostarcza do oceanów wielu składników odżywczych, które mogły pomóc w utrzymaniu i rozwoju prymitywnego życia. Dlatego tak ważnym jest odpowiedź na pytanie, kiedy pojawiły się kontynenty. Aby na nie odpowiedzieć Desiree Roerdink z Uniwersytetu w Bergen i jej zespół zbadali próbki skał z 6 miejsc w Australii, RPA i Indiach. W próbkach znajdował się baryt, minerał z grupy siarczanów, który może powstawać w pobliżu kominów hydrotermalnych. Baryt się nie zmienia. Jego skład chemiczny nosi ślady środowiska, w jakim powstawał, stwierdziła Roerdink prezentując wyniki swoich badań w czasie spotkania Europejskiej Unii Nauk Geologicznych. Naukowcy wykorzystali stosunek izotopów strontu, by obliczyć, kiedy rozpoczęło się wietrzenie badanych przez nich skał. Na tej podstawie stwierdzili, że po raz pierwszy proces taki miał miejsce około 3,7 miliarda lat temu. Ziemia powstała przed około 4,5 miliardami lat. Z czasem jej zewnętrzna część ostygła na tyle, że powstała sztywna skorupa pokryta globalnym oceanem. Przed około 4 miliardami lat rozpoczął się archaik, epoka geologiczna, w której pojawiło się życie. Mamy silne dowody na to, że co najmniej 3,5 miliarda lat temu na Ziemi istniały mikroorganizmy. Dokładnie jednak nie wiemy, kiedy życie się pojawiło. Aaron Satkoski z University of Texas mówi, że badania grupy Roerdink pokazują, iż życie mogło pojawić się najpierw na lądzie. Badania te pozwalają nam stwierdzić, kiedy istniały lądy, które mogły pomóc w powstaniu życia, stwierdza uczony. « powrót do artykułu
  6. Odkryto najbliższą Ziemi czarną dziurę. Obiektowi nadano nazwę „Jednorożec” nie tylko dlatego, że znajduje się w Gwiazdozbiorze Jednorożca, ale również dlatego, że ta czarna dziura ma wyjątkowe właściwości. Co więcej, Jednorożec ma towarzysza, czerwonego olbrzyma, który zbliża się do końca swojego żywota. Nasze Słońce również stanie się w przyszłości czerwonym olbrzymem. Czarna dziura znajduje się w odległości zaledwie 1500 lat świetlnych od Ziemi. Ma też niezwykle małą masę, jest zaledwie 3-krotnie bardziej masywna niż Słońce. Ten system jest tak dziwny, że musieliśmy nazwać go Jednorożcem, mówi doktorant Tharindu Jayasinghe, którego zespól badał Jednorożca. Odkrycia dokonano podczas analizy danych z All Sky Automated Survey i Transiting Exopanet Survey Satellite. Jayasinghe i jego koledzy zauważyli coś niezwykłego – czerwonego olbrzyma, który okresowo zmienia jasność, co sugerowało, iż jest przez coś przyciągany i zmienia kształt. Uczeni przeprowadzili więc badania i doszli do wniosku, że tym, co wpływa na kształt gwiazdy jest prawdopodobnie czarna dziura o masie zaledwie 3 mas Słońca. Dla porównania, czarna dziura znajdująca się w centrum Drogi Mlecznej ma masę około 4,3 miliona ma Słońca. Tak, jak Księżyc deformuje ziemskie oceany, które przybliżają i oddalają się od niego, wywołując pływy, tak czarna dziura przyciąga gwiazdę, powodując, że wzdłuż jednej osi jest ona dłuższa niż wzdłuż drugiej, wyjaśnia Todd Thompson, dziekan Wydziału Astronomii na Ohio State University. Najprostszym wyjaśnieniem jest w tym przypadku istnienie czarnej dziury i jest tutaj najbardziej prawdopodobnym. « powrót do artykułu
  7. Po raz pierwszy w górnych warstwach ziemskiej atmosfery zaobserwowano kosmiczny huragan wraz z elektronowym deszczem. Odkrywcy tego zjawiska mówią, że biorąc pod uwagę warunki odnośnie plazmy i pól magnetycznych, wymaganych do pojawienia się tego zjawiska, takie burze powinny być codziennością na Ziemi. W niższych warstwach atmosfery mamy do czynienia ze znanymi wszystkim huraganami. Formują się one nad zbiornikami wodnymi o wysokiej temperaturze. Gdy ogrzane przez nie wilgotne powietrze unosi się do góry, tworzy się obszar niskiego ciśnienia, który zasysa otaczające go powietrze, tworząc silne wiatry i powodując pojawienie się chmur, co prowadzi do dużych opadów. W wyniku działania siły Coriolisa powietrze wewnątrz huraganu porusza się po okręgu. Huragany wykryto również w dolnych warstwach atmosfery Marsa, Jowisz i Saturna, a powierzchni Słońca zaobserwowano tzw. „słoneczne tornada”. Dotychczas jednak nie obserwowano wirujących mas w górnej atmosferze planet. Wspomniany na początku kosmiczny huragan został zarejestrowany nad Biegunem Północnym przez cztery satelity działające w ramach US Defense Meteorological Satellite Program. Zauważono go w jonosferze, kilkaset kilometrów nad powierzchnią Ziemi. Huragan miał miejsce w sierpniu 2014 roku, ale odkryto go dopiero teraz, podczas retrospektywnej analizy danych prowadzonej pod kierunkiem naukowców z chińskiego Uniwersytetu Shandong. Dzięki narzędziom do trójwymiarowego modelowania magnetosfery uczeni stworzyli model 3D tego zjawiska. Okazało się, że był to tunel o szerokości 1000 kilometrów, który został stworzony przez wirującą plazmę. Obracała się ona w kierunku przeciwnym do ruchu wskazówek zegara, składała się z wielu spiralnych ramion i cichego centrum. Burza trwała przez około 8 godzin i stopniowo zanikła. Dotychczas w ogóle nie byliśmy pewni, czy kosmiczne huragany plazmowe w ogóle istnieją. Dokonanie tej obserwacji to coś niesamowitego. Burze tropikalne związane są z istnieniem olbrzymiej ilości energii, więc takie huragany kosmiczne muszą powstawać w wyniku szybkiego transferu dużych ilości energii wiatru słonecznego i naładowanych cząstek w górnych warstwach atmosfery Ziemi, mówi współautor badań, Mike Lockwood z University of Reading. Naukowcy sądzą, że kosmiczny huragan powstaje w wyniku interakcji pomiędzy wiatrem słonecznym a ziemskim polem magnetycznym. Zwracają uwagę na fakt, że zarejestrowany huragan miał miejsce podczas niskiej aktywności Słońca i niskiej aktywności geomagnetycznej, gdy międzyplanetarne pola magnetyczne były zwrócone na północ. To zaś sugeruje, że tego typu huragany mogą być częstym zjawiskiem w atmosferze Ziemi i innych planet. John Coxon, fizyk z University of Southampton, który nie brał udziału w opisywanych tutaj badaniach, przypomina, że naziemne radary są w stanie mierzyć prędkość plazmy. Interesującym byłoby sprawdzenie, czy takie radary są w stanie zarejestrować duży wir, o jakim donoszą autorzy badań, a jeśli nie, to dlaczego, mówi Coxon. Od pewnego czasu wiemy, że interesujące magnetyczne interakcje, takie jak opisane w tych badaniach, mają miejsce, gdy międzyplanetarne pola magnetyczne są zwrócone na północ. Jednak zwykle nikt się tym nie zajmuje, bo jest to uważane za mało ważne, stwierdza Maria-Theresia Walach z Lancaster University. Badania te to bardzo ładny przykład interakcji pomiędzy wiatrem słonecznym, magnetosferą, a jonosferą. O ile sam kosmiczny huragan nie ma większego wpływu na powierzchnię naszej planety, to deszcz elektronów może potencjalnie zakłócić działanie satelitów GPS czy radarów. « powrót do artykułu
  8. Dzięki Very Large Telescope astronomom udało się odkryć i zbadać najbardziej odległe źródło emisji radiowej z dżetami. Źródłem tym jest kwazar położony w odległości 13 miliardów lat świetlnych od Ziemi. Odkrycie pozwoli na lepsze zrozumienie wczesnego wszechświata. Kwazary to bardzo jasne obiekty znajdujące się w centrach niektórych galaktyk. Są one zasilane przez supermasywne czarne dziury. Promieniowanie kwazara powstaje w dysku akrecyjnym otaczającą czarną dziurę. Gaz i pył opadające na dysk rozgrzewają się, emitując olbrzymie ilości promieniowania. Nowo odkryli kwazar, P172+18 [PDF], powstał, istniał, gdy wszechświat miał zaledwie 780 milionów lat. Znamy bardziej odległe kwazary, ale przy żadnym z nich nie zauważono dotychczas dżetów. Kwazar zasilany jest przez czarną dziurę o masie około 300 milionów razy większej od masy Słońca. Pochłania ona materię bardzo szybko. To jedna z najszybciej przybierających na masie czarnych dziur, mówi współautorka badań Chiara Mazzucchelli. Specjaliści sądzą, że istnieje związek pomiędzy szybkim pochłanianiem materii przez czarną dziurę, a potężnymi dżetami z kwazarów. Niewykluczone, że dżety zaburzają przepływ gazu w pobliżu czarnej dziury powodując, że szybciej opada on na dysk akrecyjny. Badanie kwazarów z dżetami może więc wiele powiedzieć na temat szybkiego pojawienia się supermasywnych czarnych dziur we wczesnym wszechświecie. Drugi z autorów badań, Eduardo Bañados z Instytutu Astronomii im. Maxa Plancka mówi, że wkrótce uda się znaleźć więcej podobnych kwazarów, niewykluczone, że jeszcze dalej położonych. « powrót do artykułu
  9. Bogata w tlen atmosfera utrzyma się na Ziemi jeszcze przez około miliard lat, twierdzi para naukowców z Toho University i NASA Nexus for Exoplanet Systems Science. Na łamach Nature Geoscience Kazumi Ozaki i Christopher Reinhard opisali wyniki swoich symulacji dotyczących przyszłości naszej planety. Wiemy, że z czasem tracące masę Słońce zacznie się powiększać, pochłonie Merkurego i Wenus, a jego zewnętrzne warstwy sięgną Ziemi. Jednak życie na naszej planecie przestanie istnieć na długo przed tym. Ozaki i Reinhard twierdzą, że za około 1 miliard lat Słońce stanie się się bardziej gorące niż obecnie. Będzie emitowało więcej energii przez co na Ziemi dojdzie do spadku zawartości dwutlenku węgla w atmosferze, który będzie absorbował tę energię i się rozpadał. Spalona zostanie też warstwa ozonowa. Spadek poziomu CO2 zaszkodzi roślinom, które będą przez to wytwarzały mniej tlenu. Po około 10 000 lat takiego procesu poziom dwutlenku węgla w atmosferze będzie tak niski, że życie roślinne przestanie istnieć. Bez produkujących tlen roślin nie przetrwają zaś zwierzęta i inne formy życia. Symulacja wykazała, że dojdzie również do wzrostu poziomu metanu, co dodatkowo zaszkodzi organizmom żywym potrzebującym tlenu. Zatem za około miliard lat na Ziemi pozostaną jedynie organizmy beztlenowe. Nasza planeta zacznie przypominać samą siebie z okresu przed pojawieniem się roślin i zwierząt. Jeśli Ozaki i Reinhard mają rację, to kres życia na Ziemi, a przynajmniej życia bardziej złożonego niż organizmy beztlenowe, nastąpi szybciej niż dotychczas zakładano. Przeprowadzone przez nich badania mogą pomóc w poszukiwaniu życia na innych planetach. « powrót do artykułu
  10. Mars jest drugą, po Ziemi, planetą w przypadku której stwierdzono istnienie oscylacji swobodnej Chandlera i zmierzono to zjawisko. Dokonał tego zespół z Jet Propulsion Laboratory, California Institute of Technology oraz Belgijskiego Obserwatorium Królewskiego. Oscylacja swobodna Chandlera to odchylenie osi obrotu Ziemi względem sztywnej skorupy ziemskiej. W przypadku Ziemi okres oscylacji swobodnej Chandlera wynosi około 433 dni, podczas których oś obrotu ziemi na Biegunie Północnym przemieszcza się po nieregularnym okręgu o średnicy około 8–10 metrów. Istnienie takiego efektu przewidział już Euler w 1765 roku, a pod koniec XIX wieku jego istnienie potwierdził astronom Seth Carlo Chandler. Oscylacja swoboda Chandlera to przykład ruchu, któremu podlega swobodnie wirujące ciało nie będące kulą. O ile jednak zmierzenie tego ruchu było możliwe w przypadku Ziemi, to dotychczas nie możemy go mierzyć w odniesieniu do innych planet. Wymaga to bowiem wieloletnich precyzyjnych pomiarów. Właśnie udało się ich dokonać dla Marsa. Amerykańsko-belgijski zespół naukowy wykorzystał w swojej pracy dane zebrane w ciągu 18 lat przez Mars Reconnaissance Orbiter, Mars Global Surveyor i Mars Odyssey. Wpływ grawitacyjny Marsa, jakie planeta wywiera na satelity, pozwolił stwierdzić istnienie oscylacji swobodnej Chandlera. W przypadku Czerwonej Planety jest ona jednak znacznie mniejsza niż na Ziemi. Odchylenie osi wynosi bowiem ok. 10 cm, a jego okres to 200 dni. Co interesujące, z obliczeń wynika, że oscylacja Chandlera powinna po jakimś czasie zaniknąć. Zarówno w przypadku Ziemi jak i Marsa istnieje ono dłużej niż powinno. To zaś wskazuje, że na oscylację ma wpływ czynnik, którego nauka jeszcze nie odkryła. Znalezienie tego czynnika powinno być łatwiejsze w przypadku Marsa, niż Ziemi, gdyż Czerwona Planeta ma znacznie mniej złożoną geografię, atmosferę i strukturę wewnętrzną. To pokazuje, jak ważnym osiągnięciem jest dokonany właśnie pomiar oscylacji Chandlera dla Marsa. « powrót do artykułu
  11. Astronomowie korzystający z Very Long Baseline Array (VLBA) dokonali pierwszego w historii bezpośredniego geometrycznego pomiaru odległości do magnetara znajdującego się w Drodze Mlecznej. Pomiar ten pomoże stwierdzić, czy magnetary są źródłem tajemniczych szybkich błysków radiowych (FRB). Magnetary to odmiana gwiazd neutronowych. Te bardzo gęste obiekty charakteryzują się niezwykle silnym polem magnetycznym. Pole magnetyczne typowego magnetara może być bilion razy silniejsze niż pole magnetyczne Ziemi. Wiadomo też, że magnetary emitują silne impulsy promieniowania rentgenowskiego i gamma, przez co od pewnego czasu podejrzewa się, że to właśnie one mogą być źródłami FRB. Odkryty w 2003 roku magnetar XTE J1810-197 jest jednym z zaledwie sześciu takich obiektów, o których wiadomo, że emitują impulsy w paśmie radiowym. Emisję taką notowano w latach 2003–2008, później magnetar ucichł, a w grudniu 2018 roku znowu zaczął emitować sygnał. Grupa naukowców wykorzystała VLBA do obserwacji XTE J1810-197 najpierw od stycznia do listopada 2019, a później w marcu i kwietniu bieżącego roku. Dzięki temu możliwe było obserwowanie obiektu z dwóch przeciwległych stron orbity Ziemi wokół Słońca. To zaś pozwoliło na zarejestrowanie paralaksy, czyli niewielkiej pozornej zmiany położenia obiektu względem tła. Po raz pierwszy udało się wykorzystać paralaksę do pomiaru odległości od magnetara. Okazało się, że to jeden z najbliższych magnetarów. Znajduje się w odległości około 8100 lat świetlnych dzięki czemu jest świetnym obiektem dla przyszłych badań, mówi Hao Ding, student z australijskiego Swinburne University of Technology. Niedawno, 28 kwietnia, inny magnetar – SGR 1935+2154 – wyemitował najsilniejszy sygnał radiowy, jaki kiedykolwiek zarejestrowano w Drodze Mlecznej. Co prawda nie był on tak silny jak FRB pochodzące z innych galaktyk, jednak wydarzenie to tym bardziej sugeruje, że magnetary mogą być źródłem FRB. Większość znanych nam FRB pochodzi spoza Drogi Mlecznej. To niezwykle silne, trwające milisekundy sygnały o nieznanym źródle. Są na tyle niezwykłe, że muszą powstawać w bardzo ekstremalnych środowiskach. Takich jak np. magnetary. Dzięki dokładnemu poznaniu odległości do magnetara, możemy precyzyjnie obliczyć siłę sygnału radiowego, który emituje. Jeśli pojawi się coś podobnego do FRB pochodzącego XTE J1810-197, będziemy wiedzieli, jak silny to był impuls. FRB bardzo różnią się intensywnością, więc badania magnetara XTE J1810-197 pozwolą nam stwierdzić, czy jego emisja jest zbliżona do zakresu FRB, wyjaśnia Adam Deller ze Swinburne. « powrót do artykułu
  12. Do jutra ludzkość zużyje tyle zasobów, ile Ziemia wyprodukuje do końca bieżącego roku. Earth Overshoot Day, to dzień, w którym w danym roku ludzie zużywają całość zasobów, jakie planeta jest w stanie w tym roku zastąpić. Od lat 70. ubiegłego wieku dzień ten zwykle następuje coraz wcześniej. Tym razem, z powodu pandemii, Earth Overshoot Day nastąpił później niż w roku ubiegłym. Organizacja Global Footprint Network, która wylicza, kiedy nastąpi Earth Overshoot Day stwierdziła, że w bieżącym roku nastąpi on 22 sierpnia. W ubiegłym roku przypadł on na 29 lipca. To zaś oznacza, że ludzkość zużyła o 9,3% zasobów mniej, niż w roku ubiegłym. Jednak, jak mówi prezydent Global Footprint Network Mathis Wackernagel, nie mamy czego świętować. Taki stan rzeczy osiągnęliśmy nie dlatego, że tak zaplanowaliśmy, ale dlatego, iż wydarzyła się katastrofa. Earth Overshoot Day jest wyliczany z uwzględnieniem całego ludzkiego zapotrzebowania na żywność, energię, domy i drogi. Na tej podstawie specjaliści wyliczają, że obecnie ludzkość zużywa o 60% więcej zasobów, niż Ziemia jest w stanie odnowić. To jest tak, jak z pieniędzmi. Możemy wydawać więcej, niż mamy, ale nie może to trwać wiecznie, mówi Wackemagel. Przedstawiciele Global Footprint Network mówią, że pandemia pokazała, iż ludzkość jest w stanie w krótkim czasie zmienić swoje zwyczaje dotyczące konsumpcji. To bezprecedensowa okazja, by zastanowić się nad naszą przyszłością. Jak zauważył szef WWF International, pandemia pokazała, jak bardzo marnotrawny, niszczący i niemożliwy do utrzymania jest nasz stosunek do natury. Wezwał do podjęcia działań, które spowodują, że rozwój gospodarczy nie będzie wiązał się z degradacją środowiska. Możemy się rozwijać, ale nie kosztem planety, gdyż wiemy, że kryzys planety oznacza kryzys społeczeństwa, a zatem i kryzys gospodarczy. « powrót do artykułu
  13. Za cztery dni w pobliżu Ziemi pojawi się asteroida 2011 ES4. Może przelecieć bardzo blisko naszej planety. Znacznie bliżej niż odległość pomiędzy Księżycem a Ziemią. Obecnie jej przelot przewidywany jest na 1 września. Wtedy to może się ona znaleźć w odległości od 0,32 do 0,19 odległości Księżyca. Może zatem minąć Ziemię w odległości zaledwie ok. 120–72 tysięcy kilometrów. Wielkość obiektu to 22–49 metrów. 2011 ES już wielokrotnie zbliżała się do Ziemi. Po raz pierwszy wykryto ją w 2011 roku, gdy znajdowała się w odległości około 5 milionów kilometrów od planety. Przez cztery dni prowadzono jej obserwacje i na tej podstawie określono ówczesną oraz przeszłe i przyszłe jej orbity. Z przeprowadzonych obliczeń wynika, że od 1987 roku asteroida nigdy nie była tak blisko Ziemi, jak ma się znaleźć obecnie. Wiemy, że 2011 ES okrąża Słońce w ciągu około 415 dni. Jej peryhelium to 0,83 j.a., a aphelium wynosi 1,35 j.a. Przez większość zbliżania się do Ziemi asteroida będzie znajdowała się blisko Słońca, więc będzie niewidoczna. Sytuacja poprawi się w ostatnich dniach, więc niewykluczone że już można ją obserwować na nocnym niebie. Niepewność co do czasu przelotu i orbity asteroidy jest na tyle duża, że nie można wykluczyć, że już niezauważenie minęła ona Ziemię i to w znacznie większej odległości, niż przewidywano. « powrót do artykułu
  14. Japońscy naukowcy odtworzyli w laboratorium ekstremalne warunki panujące w zewnętrznej części jądra Ziemi. Zespół kierowany przez Yasuhiro Kuwayamę z Uniwersytetu Tokijskiego wykorzystał wysoce wyspecjalizowane imadło diamentowe, do osiągnięcia olbrzymiego ciśnienia i temperatury, dzięki którym można było badać to, co dzieje się w jądrze Ziemi. Eksperymenty pozwolą nam na zdobycie wiedzy na temat składu jądra i procesów w nim przebiegających. To, co obecnie wiemy z o jądrze Ziemi, które rozpoczyna się 3000 kilometrów pod powierzchnią planety, pochodzi z obserwacji fal sejsmicznych, które przeszły przez jądro. Właściwości jądra badamy też na podstawie teoretycznych obliczeń i modeli komputerowych oraz poddając materiały ekstremalnym temperaturom i ciśnieniu. Dotychczas dowiedzieliśmy się, że jądro składa się z dwóch części. Wewnętrznego, stałego, składającego się głownie z żelaza i niklu, oraz zewnętrznego, w którym dominuje płynne żelazo. Olbrzymim osiągnięciem Kuwayamy jest fakt, że jego technika pozwala na, teoretycznie, nieskończenie długie prowadzenie eksperymentów. Dotychczas potrafiliśmy uzyskać warunki panujące w ziemskim jądrze jedynie na kilka mikrosekund. Japończycy wykorzystali specjalne imadło diamentowe, w którym poddali próbkę płynnego żelaza ciśnieniu 116 GPa, a następnie ogrzali ją za pomocą lasera do temperatury 4350 kelwinów. O ile temperatura taka prawdopodobnie rzeczywiście panuje w jądrze, to ciśnienie 116 GPa jest nieco niższe niż spodziewane w górnej części zewnętrznego jądra. Próbka była badana w synchrotronie Spring-8 przede wszystkim za pomocą technik rozpraszania rentgenowskiego. Po porównaniu wyników eksperymentów z danymi obserwacyjnymi Kuwayama i jego zespół porównali właściwości termodynamiczne swojej próbki żelaza z tym, co wiemy o jądrze zewnętrznym. Doszli do wniosku, że musi być ono o 7,5% mniej gęste niż ciekłe żelazo. To oznacza, że znajduje się w nim wysoka domieszka innych, niezidentyfikowanych dotychczas pierwiastków. Materiał w jądrze zewnętrznym płynie o 4% łatwiej niż ciekłe żelazo. Ze szczegółami można zapoznać się na łamach Physical Review Letters. « powrót do artykułu
  15. Naukowcy z laboratorium ENIGMA (Evolution of Nanomachinest In Geospheres and Microbial Ancestors) na Rutgers University sądzą, że odtworzyli kształt pierwszej molekuły będącej wspólnym przodkiem współczesnych enzymów, które dały początek życiu na Ziemi. Życie to proces elektryczny. Obwód elektryczny jest katalizowany przez niewielki zestaw protein, które działają jak złożone nanomaszyny, czytamy na stronie laboratorium. ENIGMA jest współfinansowane przez NASA w ramach Astrobiology Program. Sądzimy, że życie powstało z bardzo małych klocków i pojawiło się zestaw Lego, z którego powstały komórki i bardziej złożone organizmy, jak my, mówi główny autor badań, biofizyk Paul G. Falkowski. Naukowcy wykonali analizę porównawczą trójwymiarowych struktur białek, by sprawdzić, czy można na tej podstawie wysnuć wnioski, co do kształtu ich wspólnego przodka. Szczególnie skupili się na podobieństwach pomiędzy kształtami, jakie w trzech wymiarach przyjmują łańcuchy aminokwasów. Poszukiwali prostego topologicznego modelu, który powiedziałby, jak wyglądały pierwsze proteiny, zanim stały się bardziej złożone i zróżnicowane. Odkryliśmy, że dwa powtarzające się wzorce zwijania są kluczowe dla pojawienia się metabolizmu. Prawdopodobnie te metody zawijania mają wspólnego przodka, który za pomocą duplikacji, specjalizacji i różnicowania ewoluował tak, by ułatwić transfer elektronów i katalizę na bardzo wczesnym etapie początków metabolizmu, wyjaśniają naukowcy. Te dwa zidentyfikowane metody zwijania to zwijanie ferredoksyny oraz konformacja Rossmanna. Naukowcy sądzą, że te dwie podstawowe struktury, które mogą mieć wspólnego przodka, posłużyły jako wzorzec dla protein sprzed ponad 2,5 miliarda lat. Przypuszczamy, że pierwszymi proteinami były małe, proste peptydy, któe pobierały elektrony z oceanu, atmosfery lub skał i przekazywały je innym molekułom akceptującym elektrony, mówi biolog molekularny Vikas Nanda. W reakcji transferu elektronu uwalnia się energia i energia ta napędza życie, dodaje. Naukowcy przyznają, że to wszystko jest jedynie hipotezą. Porównywanie kształtu obecnie istniejących protein to metoda pełna ograniczeń, która nie pozwala na uzyskanie pewności co do prawdziwości wnioskowania. Domyślamy się co mogło się wydarzyć, a nie dowodzimy, co się wydarzyło, stwierdzają autorzy badań. Jednak, jak zauważają, można tego typu badania posunąć dalej. Można spróbować odtworzyć w laboratorium hipotetyczne proteiny z przeszłości i sprawdzić, jak działają i jak mogą ewoluować. Naszym głównym celem jest dostarczenie NASA informacji, dzięki którym przyszłe misje naukowe będą wiedziały gdzie i jak poszukiwać życia na planetach pozasłonecznych. Ze szczegółami badań można zapoznać się na łamach PNAS. « powrót do artykułu
  16. Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie. Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3. Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi. Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca. 2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety. Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku. Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości. « powrót do artykułu
  17. Zdaniem autorów nowych badań oraz algorytmu sztucznej inteligencji, jedno z masowych ziemskich wymierań, wymieranie dewońskie, nigdy nie miało miejsca. Obecnie uważa się, że przed około 375 milionami lat oceany stały się toksyczne, co doprowadziło do masowego wymierania. Wyginęły wówczas m.in. niemal wszystkie trylobity. Jednak grupa naukowców twierdzi, że nie było to masowe wymieranie, a stopniowy proces rozciągnięty na 50 milionów lat. Wymieranie dewońskie nie miało miejsca. Ziemia doświadczyła powolnego spadku bioróżnorodności, co zresztą niektórzy naukowcy już wcześniej sugerowali, mówi Doug Erwin z Narodowego Muzeum Historii Naturalnej w Waszyngtonie. Badanie historii bioróżnorodności nie jest łatwym zadaniem. Większość gatunków istnieje zaledwie kilka milionów lat. Jeśli więc widzimy skamieniałości gatunku w różnych miejscach, to pochodzą one z mniej więcej tego samego okresu. Podczas dotychczasowych badań nad bioróżnorodnością skupiano się na okresach liczących około 10 milionów lat. Jednak Shuzhong Shen z Instytutu Geologii i Paleontologii w Nankinie oraz jego koledzy i współpracujący z nimi Erwin byli w stanie przeprowadzić badania, w czasie których przyjrzeli się okresom trwającym zaledwie 26 000 lat. Dokonali tego za pomocą opracowanych przed dekadą metod analizy statystycznej, które wykorzystali do analizy 100 000 rekordów dotyczących skamieniałości 11 000 gatunków morskich znalezionych w Chinach i Europie. Obliczenia były tak złożone, że naukowcy musieli opracować specjalny algorytm sztucnej inteligencji i uruchomić go na czwartym najpotężniejszym superkomputerze świata, Tianhe-2A. Badaniami objęto okres 300 milionów lat,od początku kambru po początek triasu. Jak mówią obrazowo uczeni, poprawienie rozdzielczości czasowej badań pozwoliło na przejście od stwierdzenia, że wszyscy ludzie żyjący w tym samym wieku byli sobie współcześni, po uznanie za współczesnych sobie tylko ludzi, żyjących w tym samym półroczu. Spadek bioróżnorodności w dewonie jest wciąż jasno widoczny, ale następował on przez cały późny dewon, a nie był pojedynczym skoncentrowanym wydarzeniem, mówi emerytowany paleontolog Richard Bambach, autor pracy naukowej z 2004 roku, w której argumentował, że w dewonie nie doszło do masowego wymierania. Pomysł, że na Ziemi doszło do 5 masowych wymierań pojawił się po raz pierwszy w 1982 roku. Od tamtego czasu autorzy różnych badań argumentowali, że wymierań było od 3 do 20. Nie istnieje formalna definicja masowego wymierania, jednak większość specjalistów zgadza się, że takim mianem należy określić znaczne zwiększenie liczby gatunków ginących w krótkim czasie. Na przykład w okresie wymierania permskiego większość gatunków wyginęła w ciągu 63 000 lat. W roku 2004 Bambach argumentował również, że nie było wymierania triasowego. Jednak od tamtej pory pojawiło się więcej dowodów, iż miało ono jednak miejsce. Bambach przyznaje, że w tej kwestii się mylił. Wszystko jednak wskazuje na to, że Ziemia doświadczyła czterech, a nie pięciu, okresów masowego wymierania. « powrót do artykułu
  18. Transiting Exoplanet Survey Satellite (TESS) odkrył swoją pierwszą planetę wielkości Ziemi znajdującą się w ekosferze gwiazdy. Istnienie TOI 700 d została potwierdzona za pomocą Teleskopu Kosmicznego Spitzera. TOI 700 do jedna z niewielu znanych nam planet, która znajduje się w ekosferze swojej gwiazdy i jest wielkości Ziemi. "TESS został zaprojektowany i wystrzelony z myślą o poszukiwaniach planet wielkości Ziemi krążących woków pobliskich gwiazd. Planety towarzyszące niedalekim gwiazdom są łatwiejsze do odnalezienia. Odkrycie TOI 700 d to znaczące osiągnięcie dla TESS. Potwierdzenie wielkości planety i jej obecności w ekosferze to z kolei osiągnięcie Spitzera, teleskopu, którego misja ma się zakończyć 30 stycznia bieżącego roku", mówi Paul Hertz, dyrektor wydziału astrofizyki w kwaterze głównej NASA w Waszyngtonie. TESS monitoruje przez 27 dni wybrany sektory nieboskłonu. Poszukuje zmian jasności gwiazd, które mogą świadczyć o przechodzeniu planet na ich tle. TOI 700 to niewielka chłodna gwiazda typu M położona w odległości około 100 lat świetlnych w południowej części Gwiazdozbioru Złotej Ryby. Ma o 60% mniejszą masę od Słońca, a jej powierzchnia jest dwukrotnie chłodniejsza. Gwiazdę widać na 11 z 13 sektorów obserwowanych przez TESS w pierwszym roku misji. Dzięki tak długiemu czasowi obserwacji udało się zauważyć trzy planety przechodzące na jej tle. Początkowo gwiazda TOI 700 została zakwalifikowana jako bardziej podobna do Słońca, przez co jej planety wydawały się gorętsze i większe niż w rzeczywistości. Gdy dokonano korekt okazało się, że najbardziej zewnętrzna z planet jest wielkości Ziemi i znajduje się ekosferze. Co więcej, przez 11 miesięcy obserwacji nie zaobserwowano na gwieździe żadnych rozbłysków, co zwiększa szanse, że TOI 700 d ma stabilną atmosferę i warunki odpowiednie do życia. Najbardziej wewnętrzna planeta układu, TOI 700 b jest niemal dokładnie wielkości Ziemi, prawdopodobnie jest skalista i okrąża swoją gwiazdę w ciągu 10 dni. Kolejna z planet – TOI 700 c – ma średnicę 2,6 razy większą od średnicy Ziemi, jest prawdopodobniej gazowa, a jej czas obiegu wokół gwiazdy wynosi 16 dni. Znajdująca się w ekosferze TOI 700 d jest o 20% większa od naszej planety, obiega gwiazdę w ciągu 37 dni i otrzymuje z niej 86% energii jaką Ziemia otrzymuje od Słońca. Wszystkie planety prawdopodobnie charakteryzuje obrót synchroniczny, co oznacza, że jedna ich strona jest zawsze wystawiona w kierunku gwiazdy. Jako, że gwiazda TOI 700 jest jasna, znajduje się w pobliżu i nie zauważono na niej rozbłysków, jest ona bardzo dobrym celem kolejnych badań, pozwalających na precyzyjne pomiary masy. W niedalekiej zaś przyszłości powinno być możliwe zbadanie, czy planety mają atmosfery i jaki jest ich skład. « powrót do artykułu
  19. Przed dwoma laty w atmosferze pojawił się fragment wielkiej asteroidy. Niewielki meteoryt spłonął w ziemskiej atmosferze 28 kwietnia 2017 roku nad Kioto. Dane zebrane przez sieć SonotaCo pozwoliły stwierdzić, że w momencie wejścia w atmosferę okruch ważył około 29 gramów i miał średnice około 3 centymetrów. Teraz grupa naukowców z Narodowego Obserwatorium Astronomicznego Japonii, Wydziału Fizyki Uniwersytetu w Kioto oraz Nippon Meteor Society określiła, skąd fragment pochodził. Na podstawie badań trajektorii lotu uczeni stwierdzili [PDF], że okruch to fragment obiektu 2003 YT1. To podwójna asteroida, w skład której wchodzi większy obiekt o średnicy około 2 kilometrów, wokół którego krąży obiekt o średnicy 210 metrów. Ocenia się, że istnieje 6-procentowe ryzyko, iż w ciągu najbliższych 10 milionów lat asteroida zderzy się z Ziemią. Zdaniem Japończyków układ podwójny powstał w wyniku efektu YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack). Polega on na zmianie prędkości asteroidy pod wpływem promieniowania słonecznego. Jedna strona asteroidy jest ogrzewana przez Słońce, staje się cieplejsza od drugiej, promieniowanie cieplne z tej strony jest silniejsze, powstaje różnica w ciśnieniu promieniowania, która prowadzi do zmiany prędkości obrotowej. Przyspieszenie może być tak duże, że prowadzi do rozerwania asteroidy. Naukowcy z Kraju Kwitnącej Wiśni zbadali potencjalne mechanizmy produkcji odłamków z tej asteroidy, w tym utratę stabilności pod wpływem obrotu, uderzenia, fotojonizację, sublimację lodu, pękania pod wpływem temperatury i inne. Wykazali, że pod wpływem siły odśrodkowej z asteroidy mogą uwalniać się fragmenty o wielkości liczonej w milimetrach i centymetrach. Podobnej wielkości fragmenty mogą pojawić się w wyniku zderzeń z mikrometeorytami o średnicy około 1 mm. Inne mechanizmy nie zapewniają powstania tak dużych odłamków jak ten, który spłoną w atmosferze Ziemi. Asteroida 2003 YT1 została odkryta przed 16 lat i obecnie uważa się, że nie stanowi ona ryzyka dla naszej planety. Sama asteroida nie przelatywała w pobliżu Ziemi w roku 2017, dlatego też początkowo nie było wiadomo, skąd pochodził fragment, który spłonął nad Kioto. Jego trajektorię udało się jednak z dużą precyzją wyliczyć dzięki globalnej sieci śledzenia meteorytów. 2003 YT1 jest zaliczana do Grupy Apolla. To ponad 10 000 planetoid bliskich Ziemi, które przecinają orbitę naszej planety. Czas obiegu 2003 YT1 wokół Słońca wynosi 427 dni, a odległość od naszej gwiazdy waha się od 0,8 do 1,4 j.a. Następnej bliskiej wizyty tej asteroidy możemy się spodziewać 3 listopada 2023 roku, kiedy znajdzie się ona w odległości niecałych 9 000 000 kilometrów od Ziemi, z kolei w kwietniu 2073 roku asteroida podleci do Ziemi na odległość 1,7 miliona km. « powrót do artykułu
  20. W lipcu przyszłego roku zostanie wystrzelona misja Mars 2020. Po trwającej pół roku podróży lądownik z ważącym 1 tonę łazikiem rozpocznie sekwencję lądowania na dnie dawnego jeziora. Na miejsce lądowania wybrano Krater Jezero. Lądowanie będzie najbardziej ryzykownym i najmniej przewidywalnym momentem całej misji. Ci, którzy pamiętają słynne „7 minut horroru” podczas lądowania łazika Curiosity mogą wzruszyć ramionami sądząc, że NASA po prostu powtórzy to, co zrobiła w 2012 roku. Jednak pomiędzy oboma lądowaniami jest pewna zasadnicza różnica. Curiosity lądował w bezpiecznym płaskim terenie Krateru Gale. Mars 2020 wyląduje w miejscu znacznie trudniejszym, pełnym głazów i innych niebezpieczeństw. Aby zwiększyć powodzenie przyszłorocznego lądowania misję Mars 2020 wyposażono w technologię Terrain Relative Navigation, czyli autopilota. Autopilot ten to efekt 15 lat pracy inżyniera Andrew Johnsona z Jet Propulsion Laboratory. Specjalista pracował przez 15 lat nad urządzeniem, które będzie potrzebne przez... 10 sekund. Jednak te 10 sekund zdecydują o tym, czy lądowanie na Marsie się uda czy też nie, mówi Johnson. Gdy łazik znajdzie się na wysokości 4,2 kilometra nad powierzchnią Marsa i będzie opadał na spadochronach, jego komputer pokładowy zacznie szybko wykonywać fotografie powierzchni Czerwonej Planety. Rozdzielczość każdego zdjęcia będzie wynosiła 6 metrów na piksel, a system lądowania będzie je analizował, szukając głazów, szczelin, kraterów, klifów i innych przeszkód. Fotografie te zostaną też porównane ze zdjęciami wykonanymi wcześniej z orbity. Gdy komputer pokładowy zidentyfikuje 15 charakterystycznych cech terenu, przełączy swój system wizyjny na większą rozdzielczość. Na całą opisaną powyżej sekwencję będzie tylko 10 sekund. W tym czasie muszą zostać wykonane zdjęcia, ma być przeprowadzona ich analiza, komputer dokona oceny miejsca lądowania, porówna przewidywane miejsce lądowania z tym, wybranym na podstawie zdjęć z orbity i zdecyduje, czy należy zmieć tor lotu. Wszystko w ciągu wspomnianych 10 sekund, gdyż po tym, gdy od lądownika oddzieli się osłona termiczna nie będzie możliwe dokonywanie żadnych korekt lotu. To wszystko może wyglądać na niepotrzebne ryzyko i komplikowanie sekwencji lądowania, ale ma swoje głębokie uzasadnienie. O ile bowiem wcześniej łazik był w stanie określić swoje miejsce lądowania z dokładnością do 3000 metrów, nowa technologia ma pozwolić na zmniejszenie marginesu błędu do zaledwie 40 metrów. I NASA nie chodzi tutaj o bicie rekordów. Tylko bowiem taka technologia pozwala nam na lądowania w tak interesujących z naukowego punktu widzenia miejscach, jak Krater Jezero, mówi Johnson. NASA szacuje, że bez opracowanego przez Johnsona systemu wizyjnego szansa na udane lądowanie Jezero wynosiłaby 85%. Dzięki Terrain Relative Navigation wrasta ona do 99%. Skąd takie zaufanie do systemu, którego nie można było nigdy wcześniej przetestować w miejscu, w którym będzie używany? Wszystko dzięki wyczerpującym testom, jakie system przechodził w kwietniu i maju bieżącego roku na Pustyni Mojave, w tym w Dolinie Śmierci. Johnson i jego koledzy odbyli ponad 600 lotów śmigłowcem na wyskości do 5 kilometrów nad Ziemią. Do śmigłowca był przyczepiony marsjański system wizyjny, którego zadaniem było wykonywanie fotografii, ich analiza, porównywanie, znalezienie miejsca do lądowania, ocena ryzyka i przeprowadzenie symulowanego lądowania. « powrót do artykułu
  21. Za trzy tygodnie zostanie przedstawione szczegółowe podsumowanie projektu Deep Carbon Observatory (DCO), prowadzonego od 10 lat przez amerykańskie Narodowe Akademie Nauk. W programie bierze obecnie udział niemal 1000 naukowców z niemal 50 krajów na świecie. Mediom udostępniono już główne wnioski z raportu, które zostały opublikowane w piśmie Elements. Z badań wynika, że w oceanach, najwyższej warstwie gleby oraz w atmosferze znajduje się 43 500 gigaton (Gt – miliardów ton) węgla. Cała reszta jest uwięziona w ziemskiej skorupie, płaszczu i jądrze. Całkowita ilość węgla obecnego na naszej planecie to 1,85 miliarda Gt. Każdego roku z głębi Ziemi za pośrednictwem wulkanów oraz innych aktywnych regionów emitowanych jest od 280 do 360 milionów ton (0,28–0,36 Gt) węgla. Zatem całkowita antropogeniczna emisja węgla jest od 40 do 100 razy większa, niż całkowita emisja z aktywności wulkanicznej. Obieg węgla w głębi planety wykazuje długoterminową stabilność. Czasami dochodzi do katastrofalnych wydarzeń, podczas których do atmosfery przedostają się duże ilości węgla, co powoduje ocieplenie klimatu, zakwaszenie oceanów oraz masowe wymieranie. W ciągu ostatnich 500 milionów lat Ziemia doświadczyła co najmniej 5 tego typu wydarzeń. Upadek meteorytu, który przed 66 miliony laty przyczynił się do zagłady dinozaurów, spowodował emisję od 425 do 1400 Gt CO2 powodując ogrzanie klimatu i masowe wymieranie roślin i zwierząt. Niewykluczone, że uda się opracować system wczesnego ostrzegania przed erupcjami wulkanicznymi, gdyż przed 5 laty zaobserwowano, iż przed wybuchem w gazach wulkanicznych zmniejsza się udział dwutlenku siarki, a zwiększa dwutlenku węgla. Węgiel, będący podstawą wszelkiego życia i źródłem energii dla ludzkości, obiega planetę od płaszcza po atmosferę. By zabezpieczyć naszą przyszłość, musimy lepiej zrozumieć cały cykl obiegu węgla. Kluczowe jest określenie, jak wiele jest tego węgla, gdzie on się znajduje, jak szybko i w jakiej ilości przemieszcza się pomiędzy głębokimi obszarami ziemi a atmosferą i z powrotem, mówi Marie Edmonds z University of Cambridge, która bierze udział w projekcie DCO. Z kolei Tobias Fischer z University of New Mexico przypomina, że dotychczas w ramach prac DCO powstało ponad 1500 publikacji naukowych. Cieszymy się z postępu, jednak trzeba podkreślić, że głębokie warstwy naszej planety to obszar w dużej mierze nieznany nauce. Dopiero zaczynamy zdobywać potrzebną nam wiedzę. Ponad powierzchnią Ziemi występuje 43 500 gigaton węgla. Niemal cały ten węgiel, bo 37 000 gigaton znajduje się w głębinach oceanów. Kolejne 3000 gigaton występuje w osadach morskich, a 2000 Gt w biosferze lądowej. W powierzchniowych wodach oceanów występuje 900 Gt węgla, a w atmosferze jest go 590 Gt. Eksperci z DCO oceniają też, że obecnie na Ziemi aktywnych jest około 400 z 1500 wulkanów, które były aktywne od ostatniej epoki lodowej. Kolejnych 670 wulkanów, które były aktywne przed epoką lodową, może emitować gazy. Dotychczas udokumentowano emisję ze 102 takich wulkanów, z czego 22 to wulkany, w przypadku których ostatnia erupcja miała miejsce dawniej niż 2,5 miliona lat temu. Dzięki stacjom monitorującym, modelom cyfrowym i eksperymentom wiemy, że w latach 2005–2017 mierzalne ilości CO2 emitowało do atmosfery ponad 200 systemów wulkanicznych. Jeszcze w roku 2013 ich liczbę oceniano na 150. Udokumentowano też superregiony w których dochodzi do rozproszonej emisji gazów z wnętrza Ziemi, takie jak Yellowstone, Wielki Rów Wschodni w Afryce czy wulkaniczna prowincja Technong w Chinach. Dzięki tym badaniom możliwe było stwierdzenie, że emisja z takich regionów jest porównywalna z emisją wulkaniczną « powrót do artykułu
  22. Jednym z największych problemów eksploracji kosmosu jest olbrzymi koszt pokonania grawitacji Ziemi. Silniki rakietowe zużywają olbrzymie ilości paliwa na osiągnięcie odpowiedniego przyspieszenia, a samo paliwo tylko zwiększa masę, którą trzeba wynieść. Wskutek tego umieszczenie na orbicie każdego kilograma ładunku kosztuje dziesiątki tysięcy dolarów. Wyprawa w dalsze regiony to kolejne koszty. Dlatego też specjaliści od dawna zastanawiają się, w jaki sposób obniżyć te koszty. Jeden z pomysłów zakłada zbudowanie kosmicznej windy, kabla rozciągającego się od Ziemi na orbitę, po której można by wysyłać ładunki. Olbrzymią zaletą takiego rozwiązania byłaby możliwość wykorzystania energii słonecznej, zatem nie trzeba by było wynosić paliwa. Jest jednak pewien problem. Taki kabel musiałby być niezwykle wytrzymały. Zephyr Penoyre z University of Cambridge oraz Emily Sandford z Columbia University twierdzą, że już teraz istnieją komercyjnie dostępne materiały, z których taki kabel mógłby powstać. Trzeba jedynie zmienić sposób myślenia o budowie kosmicznej windy. Rozważana przez licznych ekspertów winda kosmiczna rozciągałaby się od Ziemi po orbitę geosynchroniczną, która znajduje się około 36 000 kilometrów nad powierzchnią naszej planety. Kabel o takiej długości miałby olbrzymią masę. Żeby nie dopuścić do jego upadku, trzeba by umocować go na orbicie do podobnej masy, a tak skonstruowana winda byłaby utrzymywana przez działające na nią siły odśrodkowe. Przez dziesięciolecia specjaliści prowadzili odpowiednie obliczenia i zawsze otrzymywali zniechęcające wyniki. Nie istnieje bowiem materiał wystarczająco wytrzymały, z którego można by taką windę zbudować. Penoyre i Sandford zaproponowali więc inne rozwiązanie. Zamiast mocować kabel do Ziemi, należy umocować go do Księżyca i opuścić w kierunku Ziemi. Różnica tkwi w sile odśrodkowej. Rozważana dotychczas winda kosmiczna wykonywałaby jeden obrót wokół planety w ciągu doby. Jednak lina mocowana do Księżyca wykonywałaby obrót raz na miesiąc, zatem działałyby na niż mniejsze siły. Co więcej, siły te byłyby inaczej rozłożone. Lina rozciągnięta od Księżyca ku Ziemi przechodziłaby przez obszar, w którym oddziaływania grawitacyjne Ziemi i Księżyca się znoszą. Obszar ten, punkt Lagrange'a, jest kluczowym elementem nowej koncepcji kosmicznej windy. Poniżej niego grawitacja ciągnie linę ku Ziemi, powyżej, ku Księżycowi. Penoyre i Sandford wykazali oczywiście, że nie istnieje materiał pozwalający na stworzenie liny rozciągającej się od Księżyca do Ziemi. Jednak kabel taki, by być użytecznym, nie musi być rozciągnięty na całą długość. Naukowcy wykazali, że z dostępnych obecnie polimerów węglowych można zbudować kabel rozciągający się od Księżyca po orbitę geosynchroniczną Ziemi. Tworzenie prototypowego kabla grubości rysika ołówka kosztowałoby miliardy dolarów. Nie jest to jednak coś, czego już teraz nie da się wykonać. Dzięki rozciągnięciu umocowanej do Księżyca liny głęboko w studnię grawitacyjną Ziemi możemy zbudować stabilną użyteczną windę kosmiczną pozwalającą na swobodne przemieszczanie się pomiędzy sąsiedztwem Ziemi a powierzchnią Księżyca, mówią Penoyre i Sandford. Wyliczają, że dzięki takiemu rozwiązaniu obecne koszty osiągnięcia powierzchni Księżyca zmniejszyłyby się o około 70%. Co więcej taka winda ułatwiłaby eksplorację  okolic punktu Lagrange'a. To niezwykle interesujący region, gdyż zarówno grawitacja jak i jej gradient wynoszą w nim 0, dzięki czemu można tam bezpiecznie prowadzić różnego typu prace konstrukcyjne. Jeśli z Międzynarodowej Stacji Kosmicznej wypadnie jakieś narzędzie, będzie ono szybko przyspieszało. W punkcie Lagrange'a gradient grawitacji jest praktycznie pomijalny, takie narzędzie przez długi czas będzie znajdowało się blisko ręki, z której wypadło, zauważają naukowcy. Dodatkową zaletą punktu Lagrange'a jest fakt, że w regionie tym znajduje się bardzo mało śmieci pozostawionych przez człowieka oraz innych obiektów, mogących stanowić zagrożenie dla pracujących tam ludzi oraz wznoszonych konstrukcji. Z tych właśnie powodów Penoyre i Sandford uważają, że dostęp do punktu Lagrange'a jest główną zaletą proponowanej przez nich windy kosmicznej. Możliwość założenia obozu w punkcie Lagrange'a to, naszym zdaniem, najważniejszy i najbardziej obiecujący element wczesnego użycia proponowanej przez nas windy kosmicznej. Taki obóz pozwoliłby na budowanie i konserwację nowej generacji sprzętu kosmicznego, czy to teleskopów, akceleratorów cząstek, wykrywaczy fal grawitacyjnych, generatorów energii, wiwariów czy platform startowych dla podboju dalszych regionów Układu Słonecznego. « powrót do artykułu
  23. Potężna burza geomagnetyczna, która spowoduje wyłączenia prądu, awarie satelitów i urządzeń elektrycznych jest nie do uniknięcia. Prawdopodobnie tego typu wydarzenia mają miejsce częściej, niż nam się wydaje i, bazując na najnowszych badaniach, można przypuszczać, że takiego uderzenia ze strony Słońca możemy spodziewać się prawdopodobnie w ciągu najbliższych 100 lat. Nikt nie jest jednak w stanie powiedzieć, czy nastąpi ono w następnej dekadzie czy w następnym wieku. Jako, że w coraz większym stopniu jesteśmy uzależnieni od technologii, burze gaomagnetyczne – związane z aktywnością Słońca – są coraz groźniejsze dla naszej cywilizacji. Już przed 10 laty informowaliśmy o raporcie NASA i Narodowej Akademii Nauk opisującym katastrofalne skutki, jakie mogłaby przynieść burza geomagnetyczna, czyli gwałtowna zmiana pola magnetycznego Ziemi spowodowana koronalnymi wyrzutami masy na Słońcu. Autorzy raportu szacują, że same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat. Mało prawdopodobne, by nawet tak potężne państwo było w stanie całkowicie się z niej podnieść, informowaliśmy. Dotychczas najsilniejszą znaną nam burzą geomagnetyczną była ta z września 1859 roku, kiedy to zorza polarna była widoczna na Karaibach, doszło do awarii sieci telegraficznych i pożarów. Sądzono jednak, że tak silne wydarzenia mają miejsce raz na 500 lat. Okazuje się jednak, że zdarzają się znacznie częściej. Jeffrey Love i jego koledzy ze Służby Geologicznej Stanów Zjednoczonych informują na łamach Space Weather o wynikach analizy, jakiej poddali New York Railroad Storm, burzę magnetyczną z 1921 roku. Tego typu wydarzenia ocenia się według skali Dst (disturbance short time). To skala oceny uśrednionej aktywności pola magnetycznego Ziemi. Jeśli ulega ono osłabieniu, a tak się dzieje przy koronalnych wyrzutach masy ze Słońca, pojawiają się na niej wartości ujemne. Wartość bazowa Dst Ziemi wynosi około -20 nanotesli (nT). Wartości poniżej -250 nT są uznawane za superburzę. Naukowcy dysponują bardzo ograniczonym zestawem danych dotyczących burzy z 1859 roku i na tej podstawie uznają, że w tym czasie Dst wynosiło pomiędzy -850 a -1050 nT. Tymczasem, jak wynika z badań Love'a i jego zespołu, Dst podczas burzy z 1921 roku wynosiło około -907 nT. Burza z roku 1921 mogła być bardziej intensywna niż ta z roku 1859. Zanim przeprowadziliśmy badania wiedziano, że było to gwałtowne zjawisko, jednak nie wiedziano, do jakiego stopnia. Pomiary historycznych burz geomagnetycznych nie są proste. Obecnie dysponujemy całym szeregiem instrumentów monitorujących, jednak nasza wiedza od wydarzeniach sprzed roku 1957, kiedy to pojawił się indeks Dst, jest bardzo uboga, a dane opierają się na informacjach z różnych magnetometrów rozmieszczonych na całym świecie. Przed badaniami Love'a cała nasza wiedza o burzy z 1921 roku była oparta na danych z jednego obserwatorium na Samoa. Jednak autorom najnowszej analizy udało się dotrzeć do notatek wykonanych przez specjalistów z Australii, Hiszpanii i Brazylii. Dzięki temu mogli ocenić intensywność tego wydarzenia bardziej precyzyjnie niż wcześniej. Ich wyliczenia są też bardziej precyzyjne niż te, dotyczące burzy z 1859 roku, które opierają się na daych z jednego magnetometru w Indiach. Burza z 1921 roku została nazwana New York Railroad Storm od pożaru kolejowej wieży kontrolnej w Nowym Jorku, który wówczas wybuchł. Obecnie wiemy, że dowody na związek pomiędzy burzą, a tym pożarem są słabe. Jednak wiemy również, że tego samego dnia wybuchły też trzy inne wielkie pożary, które dotychczas przeoczono. Do jednego z nich doszło w wyniku pojawienia się silnych prądów indukcyjnych w telegrafach na stacji kolejowej w Brewster w stanie Nowy Jork. Stacja całkowicie spłonęła. Drugi z pożarów zniszczył centralę telefoniczną w Karlstad w Szwecji, a trzeci wybuchł w Ontario. Wiemy też, że burza ta przebiegła dwuetapowo. W Karlstad operatorzy centrali najpierw informowali o awarii i dymie. A gdy dym się rozwiał, nastąpił nagły pożar okablowania. Autorzy najnowszych badań dotarli tez do zapisków wskazujących, że zorzę polarną obserwowano wówczas na Samoa, w Arizonie i w pobliżu Paryża, a do awarii sieci telegraficznych i telefonicznych doszło w Wielkiej Brytanii, Nowej Zelandii, Danii, Japonii, Brazylii i Kanadzie. Wszystko zaś wskazuje na to, że mieliśmy do czynienia z wydarzeniem o średniej intensywności, które w ciągu kilku godzin znacznie się wzmocniło, powodując liczne problemy. Gdyby taka burza jak w 1921 roku miała miejsce dzisiaj, doszłoby to zakłócenia pracy wielu systemów. Doświadczylibyśmy wyłączeń prądu, awarii sieci telekomunikacyjnych, być może utraty niektórych satelitów. Nie twierdzę, że byłby to koniec świata, ale doszłoby do zniszczeń na wielką skalę, stwierdza Love. « powrót do artykułu
  24. Naukowcy od dziesięcioleci spierają się o to, czy dochodzi do wymiany materiału pomiędzy jądrem Ziemi, a warstwami położonymi powyżej. Jądro jest niezwykle trudno badać, częściowo dlatego, że rozpoczyna się na głębokości 2900 kilometrów pod powierzchnią planety. Profesor Hanika Rizo z Carleton University, wykładowca na Queensland University of Technology David Murphy oraz profesor Denis Andrault z Universite Clermont Auvergne informują, że znaleźli dowody na wymianę materiału pomiędzy jądrem, a pozostałą częścią planety. Jądro wytwarza pole magnetyczne i chroni Ziemię przed szkodliwym promieniowaniem kosmicznym, umożliwiając istnienie życia. Jest najcieplejszym miejscem Ziemi, w którym temperatury przekraczają 5000 stopni Celsjusza. Prawdopodobnie odpowiada ono za 50% aktywności wulkanicznej naszej planety. Aktywność wulkaniczna to główny mechanizm, za pomocą którego Ziemia sie chłodzi. Zdaniem Rizo, Murphy'ego i Andraulta niektóre procesy wulkaniczne, np. te na Hawajach czy na Islandii, mogą brać swój początek w jądrze i transportować ciepło bezpośrednio z wnętrza planety. Twierdzą oni, że znaleźli dowód na to, iż do płaszcza ziemskiego trafia materiał z jądra. Odkrycia dokonano badając niewielkie zmiany w stosunku izotopów wolframu. Wiadomo, że jądro jest zbudowane głównie z żelaza i aluminium oraz z niewielkich ilości wolframu, platyny i złota rozpuszczonych w żelazno-aluminiowej mieszaninie. Wolfram ma wiele izotopów, w tym wolfram-182 i wolfram-184. Wiadomo też, że stosunek wolframu-182 do wolframu-184 jest w płaszczu znacznie wyższy niż w jądrze. Dzieje się tak dlatego, że hafn, który nie występuje w jądrze, posiada izotop hafn-182. Izotop ten występował w przeszłości w płaszczu, jednak obecnie już go nie ma, gdyż rozpadł się do wolframu-182. Właśnie dlatego stosunek wolframu-182 do wolframu-184 jest w płaszczu wyższy niż w jądrze. Uczeni postanowili więc zbadać stosunek izotopów wolframu, by przekonać się, czy na powierzchni występują skały zawierające taki skład wolframu, jaki odpowiada jądru. Problem w tym, że istnieje mniej niż 5 laboratoriów zdolnych do badania wolframu w ilościach nie przekraczających kilkudziesięciu części na miliard. Badania udało się jednak przeprowadzić. Wykazały one, że z czasem w płaszczu Ziemi doszło do znaczącej zmiany stosunku 182W/184W. W najstarszych skałach płaszcza stosunek ten jest znacznie wyższy niż w skałach młodych. Zespół badaczy uważa, że zmiana ta wskazuje, iż materiał z jądra przez długi czas trafiał do płaszcza ziemskiego. Co interesujące, na przestrzeni około 1,8 miliarda lat nie zauważono zmiany stosunku izotopów. To oznacza, że pomiędzy 4,3 a 2,7 miliarda lat temu do górnych warstw płaszcza materiał z jądra nie trafiał w ogóle lub trafiało go niewiele. Jednak 2,5 miliarda temu doszło do znaczącej zmiany stosunków izotopu wolframu w płaszczu. Uczeni uważają, że ma to związek z tektoniką płyt pod koniec archaiku. Jeśli materiał z jądra trafia do na powierzchnię, to oznacza, że materiał z powierzchni Ziemi musi trafiać głęboko do płaszcza. Proces subdukcji zabiera bogaty w tlen materiał w głąb planety. Eksperymenty zaś wykazały, że zwiększenie koncentracji tlenu na granicy płaszcza i jądra może spowodować, że wolfram oddzieli się od jądra i powędruje do płaszcza. Alternatywnie, proces zestalania wewnętrznej części jądro może prowadzić do zwiększenia koncentracji tlenu w części zewnętrznej. Jeśli uda się rozstrzygnąć, który z procesów zachodzi, będziemy mogli więcej powiedzieć o samym jądrze Ziemi. Jądro było w przeszłości całkowicie płynne. Z czasem stygło i jego wewnętrzna część skrystalizowała, stając się ciałem stałym. To właśnie obrót tej części jądra tworzy pole magnetyczne chroniące Ziemię przed promieniowaniem kosmicznym. Naukowcy chcieliby wiedzieć, jak przebiegał proces krystalizacji o określić jego ramy czasowe. « powrót do artykułu
  25. Wyniki badań zespołu dr Montserrat Boady z Dexeus Women's Health w Barcelonie sugerują, że w przestrzeń kosmiczną mogłyby być wysyłane całkowicie żeńskie załogi. Na wyposażeniu musiałyby się tylko znajdować pojemniki z zamrożonymi plemnikami. Dzięki temu dałoby się zaludniać pozaziemskie kolonie. Hiszpanka wspomina też o bankach spermy zlokalizowanych poza Niebieską Planetą. Rezultaty badań zaprezentowano na konferencji Europejskiego Towarzystwa Ludzkiej Reprodukcji w Wiedniu. Niektóre badania sugerowały znaczący spadek ruchliwości próbek świeżych ludzkich plemników. Nic jednak nie wspominano o możliwych oddziaływaniach różnic [warunków] grawitacyjnych na zamrożone ludzkie gamety, a przecież to w takim stanie można by je transportować z Ziemi w przestrzeń kosmiczną. Nic nie stoi na przeszkodzie, by zacząć się zastanawiać nad możliwością rozmnażania poza naszą planetą - dodaje Boada. Podczas eksperymentów Hiszpanie posłużyli się ejakulatem 10 zdrowych dawców. Niektóre próbki wystawiano na oddziaływanie mikrograwitacji w samolotach do akrobacji powietrznych. Loty paraboliczne z wykorzystaniem samolotu Mudry CAP 10 przeprowadzono w Aeroclub Barcelona-Sabadell of Spain. CAP 10 wykonywał serię 20 manewrów parabolicznych; na każdą parabolę przypadało ok. 8 s mikrograwitacji. Później próbki zbadano pod kątem stężenia plemników, ruchliwości, morfologii i fragmentacji DNA. Nie stwierdzono znaczących różnic między próbkami kontrolnymi i próbkami wystawianymi na działanie mikrograwitacji. Odnotowano 100% zgodność pod względem wskaźnika fragmentacji i żywotności oraz 90% zgodność pod względem stężenia i ruchliwości. Te niewielkie rozbieżności są zapewne związane z heterogenicznością próbek, a nie z ekspozycją na różne warunki grawitacyjne. Brak różnic w cechach zamrożonych plemników [...] pozwala myśleć o bezpiecznym transporcie męskich gamet w kosmos i o możliwości utworzenia ludzkich banków spermy poza Ziemią. Naukowcy dodają, że to na razie wstępne badania; należałoby je więc powtórzyć z większą liczbą próbek i dłuższym czasem ekspozycji. Najlepszą opcją byłoby przeprowadzenie eksperymentu z wykorzystaniem prawdziwego statku, ale coś takiego bardzo trudno zrealizować. « powrót do artykułu
×
×
  • Dodaj nową pozycję...