Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Uniwersytet Jagielloński' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 11 wyników

  1. Zespół z Uniwersytetu Jagiellońskiego (UJ) poinformował o odkryciu nowego gatunku motyla. Jego łacińska nazwa - Catasticta copernicus - to sposób na uhonorowanie Mikołaja Kopernika w 550. rocznicę urodzin. Motyla, którego można spotkać na granicy lasu na wysokości ok. 3500 m n.p.m. w peruwiańskich Andach, opisano na łamach periodyku Zootaxa. Catasticta to rodzaj motyli z rodziny bielinkowatych (Pieridae). Dotychczas opisano ponad 100 należących do niego gatunków. Samce C. copernicus są bardzo terytorialne. Przepędzają inne owady z miejsca, gdzie czekają na samice. Jak podkreślono w komunikacie UJ, wybierają [one] strategiczne pozycje nad koroną drzewa lub nad ostrym grzbietem górskim i w godzinach okołopołudniowych aktywnie ich pilnują. Cztery osobniki C. copernicus (3 samce i 1 samica) zgromadzono w kolekcji Centrum Edukacji Przyrodniczej UJ. W innych europejskich zbiorach można zaś znaleźć 11 kolejnych motyli. W 2021 r. w ekspedycji Christera Fåhraeusa z Wydziału Biologii Uniwersytetu w Lund brał m.in. udział dr hab. Tomasz W. Pyrcz z Instytutu Zoologii i Badań Biomedycznych UJ. Dostanie się w niedostępne i nieeksplorowane dotąd rejony wymagało użycia helikoptera i zaangażowania armii peruwiańskiej. To wtedy pozyskano pierwsze okazy motyla nazwanego na cześć Kopernika. Artykuł pt. „The sunny butterflies: new species of high montane pierids of the Catasticta poujadei group from the Peruvian Andes (Pieridae, Pierinae, Aporiina)”, w którym opisano C. copernicus, został stworzony przez 8-osobowy zespół; z ramienia UJ, oprócz dr. hab. Pyrcza, pracowały nad nim mgr Jadwiga Lorenc-Brudecka oraz dr Kamila S. Zając. Droga do stwierdzenia, że badany okaz należy do nowego gatunku, bywa długa i żmudna. Wymaga ona przede wszystkim zweryfikowania i sprawdzenia we wszystkich dostępnych kolekcjach oraz literaturze informacji na temat gatunków już znanych - wyjaśnia zastępca dyrektora Centrum Edukacji Przyrodniczej UJ dr Rafał Garlacz. Wiąże się to często z potrzebą wykonania różnorodnych analiz – [...] morfologicznych i anatomicznych, ale także molekularnych czy biochemicznych. Dopiero wyniki z wszystkich procedur pozwalają na pewne stwierdzenie odkrycia nowego gatunku - podsumowuje. « powrót do artykułu
  2. Uniwersytet Jagielloński wyśle w przestrzeń kosmiczną teleskop, który będzie poszukiwał śladów wodoru i deuteru wokół małych ciał Układu Słonecznego. Projekt HYADES, który właśnie został dofinansowany kwotą 3 milionów euro przez Europejską Radę ds. Badań Naukowych, ma na celu zbadanie pochodzenia wody na Ziemi oraz poszukiwanie jej źródeł w Układzie Słonecznym. Woda to jeden z najważniejszych składników, niezbędnych do rozwoju życia. Wiemy, że występuje ona na Marsie i wchodzi w skład komet. Jednak jej bezpośrednia obserwacja na kometach jest trudna. Znacznie łatwiej jest zaobserwować atomy wodoru uwolnione w gazowych otoczkach komet wskutek rozpadu cząsteczek wody, mówi kierownik projektu HYADES, doktor Michał Drahus. Atomy wodoru emitują dużo światła przez linię widmową Lyman alfa, dzięki czemu są bardzo czułym wskaźnikiem obecności wody. Jednak ten zakres promieniowania jest trudny w obserwacji. Znajduje się bowiem w zakresie dalekiego ultrafioletu, który jest całkowicie pochłaniany przez atmosferę Ziemi. Dlatego też naukowcy z UJ postanowili przenieść swoje obserwacje w kosmos. W ramach pięcioletniego projektu powstanie satelita wyspecjalizowany w poszukiwaniu wody. Jego głównym celem będzie zbadanie różnych grup komet pod kątem jej występowania. Jest to o tyle istotne, że zgodnie z obecnym stanem wiedzy, Ziemia uformowała się bez wody. Dopiero później ten życiodajny składnik trafił na naszą planetę. Jedna z hipotez mówi, że została ona przyniesiona przez komety. Dlatego też ich obserwacje mogą pomóc w określeniu, skąd wzięła się woda na Ziemi. O tym, czy komety mogły być źródłem wody na Błękitnej Planecie może świadczyć stosunek izotopów wodoru. Jeśli znajdziemy na kometach wodę o składzie izotopowym takim, jaki ma woda na Ziemi, będzie to silnym potwierdzeniem hipotezy o pochodzeniu wody. Misja HYADES może zrewolucjonizować naszą wiedzę na ten temat. O ile bowiem w ciągu ostatnich 35 lat tego typu badania przeprowadzono na próbce 12 komet uzyskując niejednoznaczne wyniki, to polscy naukowcy mają zamiar przebadać 50 komet w ciągu zaledwie 3 lat. Na tym jednak możliwości HYADES się nie kończą. Kosmiczny teleskop z UJ poszuka też nieznanych zasobów wody w Układzie Słonecznym. Naukowcy chcą przyjrzeć się m.in. grupie planetoid przypominających komety. Uzyskane informacje na temat sublimacji lodu wodnego z tych ciał dadzą nam unikalny wgląd w zawartość wody w pasie głównym planetoid, mówi doktor Drahus. Niezwykle interesującym celem badawczym mogą być też obiekty międzygwiezdne, które podróżują przez Układ Słoneczny. Obiekty te mają niesłychane znaczenie dla nauki, gdyż uformowały się wokół innych gwiazd, w związku z czym przynoszą nam unikalne informacje o swoich macierzystych układach planetarnych, mówi Michał Drahus. Dotychczas zidentyfikowaliśmy dwa tego typu obiekty – 1I/Oumuamua oraz 2I/Borisov – naukowcy sądzą jednak, że jest ich znacznie więcej. « powrót do artykułu
  3. Prof. dr hab. Michał Wierzchoń z Instytutu Psychologii Uniwersytetu Jagiellońskiego został wybrany na przewodniczącego Europejskiego Towarzystwa Psychologii Poznawczej (ESCoP). Należy zaznaczyć, że to pierwszy Polak, który będzie piastował tę funkcję od czasów założenia ESCoP w 1985 r. Bardzo się cieszę, że tak liczne grono badaczy wybrało mnie, abym pokierował Europejskim Towarzystwem Psychologii Poznawczej. To zaszczyt i wielkie wyzwanie, które motywuje do dalszej pracy. Mój wybór stanowi również dowód rozpoznawalności międzynarodowej całego polskiego środowiska psychologów poznawczych - powiedział prof. Wierzchoń. Naukowiec jest kierownikiem Laboratorium Badań Świadomości C-Lab, dyrektorem Centrum Badań Mózgu UJ, a także wiceliderem inicjatywy „Neuronalna architektura świadomości” (The Neural Architecture of Consciousness). Oprócz tego pełni funkcje prodziekana ds. naukowych Wydziału Filozoficznego UJ, a także kierownika Międzynarodowego Programu Doktorskiego CogNeS. Prof. Wierzchoń jest autorem licznych publikacji naukowych, w tym książki „Granice świadomości: W poszukiwaniu poznawczego modelu świadomości” oraz artykułów opublikowanych w takich pismach, jak: Journal of Cognitive Psychology, PLoS ONE, Journal of Pain czy Consciousness and Cognition. Jego zainteresowania obejmują m.in. teorie świadomości, świadomość wzrokową, neuronowe korelaty świadomości oraz substytucję sensoryczną [uczenie mimowolne czy rywalizację obuoczną]. Zespół nowo wybranego przewodniczącego ESCoP wspiera rozwój technologii Colorophone'a - specjalnego oprogramowania, które umożliwia osobom niewidomym rozpoznawanie kolorów za pomocą dźwięku. Projekt ten powstaje na Norweskim Uniwersytecie Naukowo-Technicznym, a jego inicjatorem jest także polski naukowiec Dominik Osiński - podkreślono w komunikacie UJ. « powrót do artykułu
  4. Dwudziestodziewięcioletni Mateusz Hołda z Katedry Anatomii UJ CM został najmłodszym profesorem tytularnym w historii Polski. Jak podkreślono w komunikacie prasowym Uniwersytetu Jagiellońskiego, 4 lipca postanowieniem prezydenta RP Andrzeja Dudy otrzymał [on] tytuł profesora nauk medycznych i nauk o zdrowiu w dyscyplinie nauki medyczne. Do tej pory najmłodszym polskim profesorem był Krzysztof Sośnica z Uniwersytetu Przyrodniczego we Wrocławiu. W 2017 r., jeszcze jako student VI roku kierunku lekarskiego, Hołda zakończył przewód doktorski (mógł go przeprowadzić, ponieważ w 2016 r. został laureatem V edycji Diamentowego Grantu Ministerstwa Nauki i Szkolnictwa Wyższego); egzaminy doktorskie zdał z oceną celującą 9 marca, a pracę doktorską obronił miesiąc później - 10 kwietnia. Ponad dwa lata temu (2020) został najmłodszym w historii polskiej nauki posiadaczem stopnia doktora habilitowanego. W 2019 r. Forbes umieścił Hołdę na liście „30 under 30”, a więc w prestiżowym gronie Europejczyków przed trzydziestką, którzy są w swoich dziedzinach liderami. W tym samym roku [Hołda] został uznany przez Europejski Bank Odbudowy i Rozwoju oraz brytyjski think-tank Emerging Europe za najbardziej wpływowego Europejczyka młodego pokolenia - napisano na stronie UJ CM. Hołda był wielokrotnie wyróżniany i nagradzany, zarówno w kraju, jak i poza jego granicami. Dostał, m.in.: nagrodę Polskiej Akademii Nauk – Laur Medyczny im. dr Wacława Mayzla (2015), Studenckiego Nobla w kategorii nauki medyczne i nauki o zdrowiu (2016), stypendium Fundacji na rzecz Nauki Polskiej START (2017), stypendium Ministra Nauki i Szkolnictwa Wyższego dla wybitnych młodych naukowców (2018), tytuł naukowca przyszłości (2019), a także nagrodę Emerging Europe w kategorii Young Influencer of the Year. W dorobku najmłodszego polskiego profesora tytularnego znajduje się niemal 100 publikacji w wiodących czasopismach naukowych, w tym w „Annals of Anatomy”, „International Journal of Cardiology”, „Journal of Anatomy”, „Stroke” czy „JASE”. W swojej pracy naukowej specjalista skupia się na morfologii układu sercowo-naczyniowego (od poziomu molekularnego do poziomu narządu) i technikach obrazowania architektury mięśnia sercowego. Już w 2013 r. Hołda założył międzynarodowy zespół naukowy HEART (ang. Heart Embryology and Anatomy Research Team), który zajmuje się właśnie badaniami nad architekturą układu sercowo-naczyniowego; warto dodać, że pozostaje jego kierownikiem. Dotychczas najmłodsi polscy profesorowie otrzymywali tytuł po 30. r.ż. Dwa lata temu w wieku 35 lat profesorem został Krzysztof Sośnica z UPWr. W lutym br. nominację uzyskał 36-letni Paweł Chmielarz z Politechniki Rzeszowskiej (został on najmłodszym profesorem tytularnym w naukach inżynieryjno-technicznych). W 2005 roku najmłodszym uczonym z tytułem profesora był 37-latek - Marek Ogiela z Akademii Górniczo-Hutniczej. Jesienią 2021 roku do grona profesorów dołączył z kolei, ukończywszy 38 lat, Wojciech Piątek z Uniwersytetu im. Adama Mickiewicza w Poznaniu - podano w komunikacie UJ. Jak podchodzi do swojego sukcesu główny zainteresowany? Oto jego wpis z 20 lipca na Facebooku: To chyba ten moment, na który czeka każdy naukowiec. Wynik dziewięciu lat intensywnej pracy naukowej zaowocował przyznaniem mi tytułu profesora medycyny. I tak oto w wieku 29 lat stałem się najmłodszym w historii Polski profesorem. Na drodze do tego sukcesu było więcej porażek niż zwycięstw - było ciężko (czasami bardzo ciężko), ale na pewno było warto. Dziękuję wszystkim którzy przyczynili się do tego sukcesu - jest Was wielu! Myślę, że to jednak nie jest koniec mojej ścieżki naukowej, a dopiero jej początek. « powrót do artykułu
  5. Naukowcy z Uniwersytetu Jagiellońskiego stworzyli kwantowy nanomagnes o wyjątkowych właściwościach. To krok w kierunku nowych rodzajów komputerowych pamięci i procesorów. Zespół Uniwersytetu Jagiellońskiego pod kierunkiem dr. hab. Dawida Pinkowicza, na łamach prestiżowego pisma „Nature Communications” opisał unikalną cząsteczkę – nowego typu metaloorganiczny nanomagnes kwantowy. Nanomagnesy badane są już od lad 90, ale polski zespół stworzył strukturę, która w skali nano przypomina te, jakie stosuje się w zwykłych, dużych magnesach. W nowej cząsteczce centralny jon magnetyczny otoczony jest wyłącznie przez inne jony metali. Molekuła składa się bowiem z centralnego jonu erbu (metal ziem rzadkich), który łączy się z trzema ciężkimi jonami renu (metal przejściowy). To pozwala zbliżyć się do cenionych właściwości, jakie wykazują duże, makroskopowe magnesy. Choć praktyczne zastosowania molekularnych magnesów raczej nie pojawią się w najbliższej przyszłości, to w dłuższej perspektywie takie badania mogą odmienić kluczowe dla cywilizacji dziedziny, np. informatykę. W pierwszej kolejności nanomagnesy kwantowe mają szansę zastąpić dotychczas stosowane materiały magnetyczne tam, gdzie już osiągnęły one granicę swoich możliwości. Tak jest właśnie w przypadku magnetycznych dysków twardych. Ich dalszy rozwój jest już ograniczony przez same prawa fizyki, które nie pozwalają na dalszą miniaturyzację domen magnetycznych stanowiących podstawową jednostkę pamięci - wyjaśnia mgr Michał Magott, członek grupy badawczej. W dalszej kolejności nanomagnesy mają szansę na zastosowanie w konstrukcji tranzystorów, a właściwie spintronicznych tranzystorów, które mogą w przyszłości zastąpić tradycyjne tranzystory w układach elektronicznych, a do ich konstrukcji potrzebne jest właśnie źródło magnetyzmu naszych nanomagnesów, czyli spin elektronu – dodaje. Jednym z kluczowych zadań, przed którymi stoją projektanci nanomagesów, jest uzyskanie takich struktur, które będą działały w temperaturze pokojowej. Obecnie wymagają one zwykle silnego chłodzenia, co utrudnia lub wręcz uniemożliwia praktyczne zastosowania. Dopiero w 2020 r. jedna z grup zajmujących się tym tematem uzyskała molekularny magnes, który działa w temperaturze ok. minus 30 stopni. To ogromny sukces. Mamy nadzieję, że nasze odkrycie zadziała w podobny sposób - zaproponowaliśmy zupełnie nową strategię syntezy molekularnych nanomagnesów, która umożliwia otrzymanie cząsteczek, naśladujących struktury stosowanych przemysłowo magnesów metalicznych. Liczymy na to, że właśnie ta nowa ścieżka syntetyczna będzie potrzebną zmianą strategii, która umożliwi otrzymanie wysokotemperaturowych molekularnych nanomagnesów – mówi mgr Magott. Badacza i jego kolegów czekają teraz dalsze, żmudne badania. Na razie udało nam się pokazać, że ta nowa strategia syntetyczna jest skuteczna i pozwala na otrzymanie świetnego nanomagnesu. Teraz trzeba przeprowadzić setki (może nawet tysiące) prób z wykorzystaniem tego nowego podejścia, aż uda się otrzymać taki nanomagnes, który nada się do zastosowań praktycznych – podkreśla naukowiec. Badania nad nanomagnesem ErRe 3 zostały sfinansowane przez Narodowe Centrum Nauki w ramach projektu Sonata Bis 6. « powrót do artykułu
  6. W Instytucie Fizyki Uniwersytetu Jagiellońskiego powstał pierwszy na świecie tomograf, który pozwala na uzyskanie trójfotonowego obrazu PET. Urządzenie J-PET autorstwa profesora Pawła Moskala i jego zespołu znacząco różni się od tradycyjnych tomografów PET, generujących obraz w oparciu o dwa fotony. Nowatorska technika obrazowania nie tylko pozwoli na lepsze diagnozowanie nowotworów, ale umożliwi też badanie symetrii pomiędzy materią a antymaterią. Tomograf powstał w ramach projektu Jagielloński PET (J-PET). Wykorzystuje on znaną technikę obrazowania metodą pozytonowej tomografii emisyjnej. Podczas tej techniki wyznaczany jest przestrzenny rozkład atomów pozytonium, czyli stanów związanych elektronu i pozytonu, które powstają w ciele pacjenta w czasie badania PET. Zespół profesora Moskala z UJ oraz ich współpracownicy z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie,  Narodowego Centrum Badań Jądrowych, Uniwersytetu w wiedniu i włoskiego Narodowego Instytutu Fizyki Jądrowej, jako pierwszy pokazał, w jaki sposób zrekonstruować rozpad pozytonium na trzy fotony. Możliwość rekonstrukcji takiego właśnie rozpadu pozytonium pozwala na opracowanie niekonwencjonalnych sposobów obrazowania PET. Umożliwia również prowadzenie badań podstawowych. Profesor Moskal i jego grupa opublikowali na łamach Nature Communications artykuł, w którym opisali test symetrii względem połączenia odwrócenia ładunku (C), odbicia przestrzennego (P) i odwrócenia w czasie (T) w układach leptonowych. To tzw. test symetrii CPT. Dzięki wykorzystaniu J-PET osiągnęli niespotykaną dotychczas precyzję (10-4) takich badań przeprowadzonych za pomocą pozytonium. Projekt Jagielloński PET ma na celu stworzenie urządzenia, które pozwoli na jednoczesne obrazowanie całego ciała. Naukowcy chcą, by służyło ono zarówno do lokalizowania nowotworów, jak i określania stopnia ich złośliwości, badania rozprowadzania leków i ich metabolizmu. W skład zespołu pracującego nad nowatorskim rozwiązaniem wchodzą lekarze, biolodzy, chemicy, fizycy, elektronicy i informatycy. Urządzenie budowane jest w oparciu o technologię stworzoną na Uniwersytecie Jagiellońskim. Jednocześnie na uczelni powstaje Centrum Teranostyki. To termin stworzony z połączenia słów terapia i diagnostyka. Centrum będzie zajmowało się opracowywaniem rozwiązań technologicznych pozwalających na jednoczesne wykrywanie i leczenie chorób. « powrót do artykułu
  7. Celem eksperymentu GERDA jest badanie natury neutrina i próba wyznaczenia jego masy efektywnej. Wykorzystywana do tego jest jedna z najbardziej czułych metod, jaką jest obserwacja podwójnego bezneutrinowego rozpadu beta (0νββ). GERDA jest projektem europejskim, zrzeszającym naukowców z 16 instytutów badawczych i uniwersytetów z Niemiec, Włoch, Rosji, Polski, Szwajcarii i Belgii. Grupa z Instytutu Fizyki UJ jest jedyną grupą z Polski, biorącą udział w eksperymencie. Ewolucja projektu, wymuszona poprzez konieczność poprawy czułości detektora w jego kolejnych fazach realizacji, wymaga zawsze redukcji tła, w czym specjalizuje się grupa z IF UJ. W ostatnim numerze czasopisma naukowego Science, opublikowany został artykuł zespołu GERDA pt. „Probing Majorana neutrinos with double-β decay” zawierający wyniki dotychczasowych poszukiwań podwójnego bezneutrinowego rozpadu beta izotopu 76Ge. Są one prowadzone w podziemnym laboratorium w Gran Sasso we Włoszech. Członkami tego międzynarodowego zespołu, z Instytutu Fizyki Uniwersytetu Jagiellońskiego, są: prof. Marcin Wójcik, dr Marcin Misiaszek, dr Krzysztof Pelczar oraz dr hab. Grzegorz Zuzel. We wspomnianym artykule podano dotychczasowe wyniki badań, których celem jest udzielenie odpowiedzi na najbardziej podstawowe pytania współczesnej fizyki: czy neutrina są swoimi własnymi antycząstkami? Jaka jest bezwzględna skala mas neutrin? Czy w oparciu o poznawane własności neutrin możemy wyjaśnić asymetrię pomiędzy materią i antymaterią we Wszechświecie? Wiele rozszerzeń Modelu Standardowego cząstek czyni neutrina, zakładając że są one swoimi antycząstkami, odpowiedzialnymi za dominację materii nad antymaterią. To oznaczałoby także, iż powinien istnieć bardzo rzadki rozpad promieniotwórczy, łamiący zasadę zachowania liczby leptonowej, w którym dwa neutrony zamieniane są w jądrze na dwa protony bez emisji neutrin. Możliwości rejestracji podwójnego bezneutrinowego rozpadu beta ograniczane są obecnością naturalnej promieniotwórczości (stanowiącej tzw. tło), która może imitować poszukiwany sygnał. W eksperymencie GERDA udało się nam osiągnąć niezwykle niski poziom tła poprzez zastosowanie osłon z ultra radio-czystej wody oraz ciekłego argonu (osłona pasywna i aktywna). Ponadto, zastosowano wyrafinowane software-owe metody identyfikacji oraz eliminacji resztkowego tła (opracowane przez  grupę z IF UJ). Dzięki temu GERDA jest pierwszym eksperymentem, w którym możliwy stał się pomiar czasu połowicznego zaniku podwójnego bezneutrinowego rozpadu beta dłuższego niż 1026 lat. Jest to okres o 16 rzędów wielkości dłuższy niż wiek Wszechświata. Dla takiego czasu połówkowego, w jednym kilogramie 76Ge zachodziłby najwyżej jeden rozpad w ciągu 18 lat. Biorąc pod uwagę standardową interpretację podwójnego bezneutrinowego rozpadu beta, czas połowicznego zaniku może być powiązany z tzw. masą efektywną (Majorany) neutrina. W przypadku GERDY możemy wyznaczyć górną granicę na tę wielkość na poziomie 0.07 – 0.16 eV/c2. Badania prowadzone przez naukowców z UJ finansowane są przez Narodowe Centrum Nauki (w ramach programów HARMONIA, SONATA-BIS, OPUS) oraz przez Fundację na rzecz Nauki Polskiej (program TEAM). « powrót do artykułu
  8. Opublikowano tegoroczną Listę szanghajską, czyli ranking 1000 najlepszych światowych uczelni wyższych. Pierwszą dziesiątkę ponownie zdominowały uczelnie ze Stanów Zjednoczonych. Najlepszym uniwersytetem na świecie jest, po raz 17., Uniwersytet Harvarda. Za nim uplasował się Stanford University, a na trzecim miejscu znajdziemy brytyjski University of Cambridge. Pozostałe pozycje w pierwszej dziesiątce zajęły Massachusetts Institute of Technology (USA), Uniwersytet Kalifornijski w Berkeley (USA), Princeton University (USA), Uniwersytet Oksfordzki (Wielka Brytania), Columbia University (USA), California Institute of Technology (USA) oraz University of Chicago (USA). Najlepszą uczelnią w Europie kontynentalnej pozostaje Szwajcarski Federalny Instytut Technologiczny w Zurichu, który w bieżącym roku uplasował się na pozycji 19. Drugą najlepszą uczelnią w Europie kontynentalnej jest Uniwersytet w Kopenhadze (26. pozycja). Najlepsze uczelnie Azji to Uniwersytet Tokijski (25. miejsce) i Uniwersytet w Kioto (pozycja 32.). Najlepszą chińską uczelnią jest Uniwersytet Tsinghua sklasyfikowany na 43. miejscu. Wśród 50 najlepszych uczelni na świecie znajdziemy 31 szkół wyższych z USA, 6 uczelni z Wielkiej Brytanii, po 2 z Kanady, Japonii i Francji oraz po 1 z Danii, Szwajcarii, Szwecji, Australii, Chin, Niemiec i Holandii. Wśród 100 najlepszych uczelni po raz pierwszy pojawiły się Uniwersytet Shenzen (82. miejsce) oraz Uniwersytet Nowej Południowej Walii (pozycja 94.). Na liście 1000 uczelni znalazły się też polskie szkoły wyższe. Najlepszą z nich jest Uniwersytet Jagielloński sklasyfikowany w 4. setce, pomiędzy miejscami 301–400. Taka klasyfikacja wynika z faktu, że tylko pierwszych 100 miejsc jest dokładnie wymienionych. Później uczelnie są grupowane po 50 lub 100. Za drugą z najlepszych polskich uczelni został uznany Uniwersytet Warszawski, który trafił do 5. setki. W porównaniu z rokiem ubiegłym obie uczelnie zamieniły się miejscami. W 2018 roku to Uniwersytet Warszawski był w 4., a Jagielloński w 5. setce. Możemy też przyjrzeć się bliżej ocenom cząstkowym uczelni, by lepiej zrozumieć, dlaczego Uniwersytet Jagielloński w bieżącym roku awansował, a Uniwersytet Warszawski spadł w klasyfikacji. Jednym z elementów branych pod uwagę jest jakość nauczania rozumiana jako liczba absolwentów, którzy zdobyli Nagrodę Nobla lub Medal Fieldsa. Różne wagi są przykładane w zależności od okresu, w którym laureat nagrody otrzymał dyplom uczelni. Najbardziej punktowani byli ci laureaci nagród, którzy dyplom danej uczelni otrzymali po roku 2011. Im dawniej otrzymany dyplom, tym mniejsza liczba punktów za noblistę czy laureata Medalu Fieldsa. Jako, że w ostatnim czasie żaden z absolwentów UW czy UJ nie otrzymał żadnej z nagród, obu polskim uczelniom ujęto nieco punktów w porównaniu z rokiem ubiegłym i tak liczba punktów przyznanych UW spadła z 15,2 do 13,7, a UJ zmniejszono punktację z 10,2 do 9,7. Kolejny element to jakość kadry naukowej również mierzona liczbą wykładowców posiadających Nagrodę Nobla lub Medal Fieldsa. W wyliczeniu punktacji ważne było, kiedy nagrodę przyznano. Im dawniej, tym mniej punktów. Tutaj obie nasze czołowe uczelnie otrzymały, podobnie jak w roku ubiegłym, po 0 punktów. Drugim z kryteriów pomiaru jakości kadry naukowej była liczba często cytowanych badaczy w minionym roku według Clarivate Analytics. Pod uwagę brano tylko głównych autorów badań. W ubiegłym roku UW otrzymał tutaj 9,6 punktu, w tym roku przyznano mu 0 punktów. UJ miał w ubiegłym roku w tej kategorii 0 punktów, w bieżącym zdobył 7,3 punktu. Punkty przyznawano też za artykuły opublikowane w Science oraz Nature w latach 2014–2018. Tutaj obie uczelnie poprawiły nieco swój wynik. Uniwersytet Warszawski zwiększył punktację z 11,5 do 11,6, a Uniwersytet Jagielloński z 5,4 do 6,2. Pod uwagę wzięto również artykuły ujęte w Science Citation Index-Expanded oraz Social Science Citation Index.  Również i tutaj widzimy zwiększenie stanu posiadania. Punktacja UW wzrosła z 32,6 do 33,8, a UJ z 37,9 do 38,8. Ostatnie kryterium to wydajność instytucji naukowej w przeliczeniu na ekwiwalent naukowca zatrudnionego na pełen etat. Ten wskaźnik spadł w przypadku UW z 18,3 do 17,9 punktu, a w przypadku UJ wzrósł z 19 do 19,6 punktu. Jeśli zaś chodzi o pozostałe polskie uczelnie, to Akademia Górniczo-Hutnicza znalazła się w 7. setce (utrzymała pozycję z roku ubiegłego), a Uniwersytet Adama Mickiewicza i Uniwersytet Medyczny w Warszawie zakwalifikowano pomiędzy miejscami 701 a 800. Obie uczelnie utrzymały pozycję. Setka 9. to Politechnika Warszawska (spadek z 8. setki w roku ubiegłym), a pomiędzy miejscem 901. a 1000. znajdziemy też Śląski Uniwersytet Medyczny (spadek z 9. setki), Uniwersytet Mikołaja Kopernika (utrzymał pozycję) i Politechnikę Wrocławską (utrzymała pozycję). Z zestawienia w bieżącym roku całkowicie wypadły Politechnika Łódzka, Uniwersytet Łódzki i Uniwersytet Wrocławski. Polskie szkolnictwo wyższe nadal ma się, delikatnie mówiąc, nie najlepiej. Naszą dumę, Uniwersytet Jagielloński, wyprzedziły uczelnie z USA, Wielkiej Brytanii, Szwajcarii, Kanady, Japonii, Danii, Francji, Szwecji, Australii, Chin, Niemiec, Holandii, Norwegii, Finlandii, Singapuru, Belgii, Izraela, Rosji, Arabii Saudyjskiej, Korei Południowej, Brazylii, Tajwanu, Włoch, Irlandii, Hiszpanii, Portugalii, Austrii, Czech, Meksyku, Argentyny i RPA. W rankingu krajów Polskę wyprzedza też Iran, którego najlepsza uczelnia została sklasyfikowana na równi z UJ, ale na liście znajdziemy 13 uczelni z tego kraju. « powrót do artykułu
  9. Jesienią powinna zakończyć się przebudowa kompleksu szklarni "Victoria" w Ogrodzie Botanicznym Uniwersytetu Jagiellońskiego. Nowy pawilon jest wyższy od poprzedniego o ok. 7 metrów. Jego rozbudowa była konieczna z uwagi na rosnącą w nim unikatową palmę daktylową pochodzącą z Wysp Kanaryjskich. Pierwsza szklarnia powstała przy dzisiejszej przy ul. Kopernika w 1785 roku. Ufundował ją Michał Poniatowski, brat króla Stanisława Augusta Poniatowskiego. W drugiej połowie XIX wieku posadzono w niej palmę daktylową pochodzącej z naturalnego stanowiska na Wyspach Kanaryjskich. Dziś to najcenniejszy okaz w krakowskim ogrodzie i najstarszy utrzymywany w warunkach szklarniowych w Europie. Zdaniem opiekujących się nim ogrodników posiada niepowtarzalną wartość przyrodniczą i historyczną. Olbrzymia roślina, aby mogła nadal się rozwijać, potrzebowała wyższego obiektu. Inaczej mogła zacząć obumierać. Prace rozpoczęły się w połowie sierpnia ub. roku od rozbiórki starej szklarni. Następnie w jej miejscu powstała tymczasowa, ogrzewana konstrukcja stalowo-foliowa, w której palmy przetrwały okres zimowy w bezpiecznych warunkach. W międzyczasie wykonawca przystąpił do wznoszenia fundamentów przyszłego obiektu. Dziś konstrukcja główna nowej szklarni jest gotowa. Na zewnątrz trwają zaawansowane prace związane z montażem aluminiowo-szklanej okładziny. Kolejnym etapem inwestycji będą prace wykończeniowe wewnątrz. Remont pochłonie ponad 9 mln zł. Nowy pawilon w najwyższym punkcie liczy 21 m, czyli o ok. 7 m od tego, który stał w tym miejscu od początku lat 70. ubiegłego stulecia. Do 14,3 metra, z obecnych 8,4 m, urósł też tzw. zimownik, w którym przechowuje się kolekcje roślin z ciepłych krajów, będące ozdobą ogrodu na wolnym powietrzu w okresie letnim. Szklarnia wyglądem nawiązuje do swoich poprzedniczek widocznych na najstarszych rycinach ogrodu pochodzących z połowy XIX wieku. Nowa szklarnia będzie nowoczesnym, w pełni zautomatyzowanym obiektem. Zastosowano w nim optymalne rozwiązania budowlane w postaci odpowiednich materiałów izolujących o najwyższej jakości. Powstanie też system automatycznego sterowania klimatem, co pozwoli zmniejszyć energochłonność szklarni i utrzymać wewnątrz właściwą temperaturę i wilgotności. Ogrodnicy będą mogli również chronić rośliny przed nadmiernym nasłonecznieniem roślin przy użyciu przesuwnych rolet - mówi prof. Józef Mitka, kierownik uniwersyteckiego ogrodu. Obiekt zostanie udostępniony osobom słabowidzącym i niewidomym, co zdaniem prof. Józefa Mitki będzie jego największą zaletą. Dzięki współpracy z krakowską Akademią Sztuk Pięknych powstanie ścieżka dydaktyczna im dedykowana. W planach mamy już rozszerzenie tej oferty na kolejne atrakcje naszego ogrodu - podkreśla z dumą. Przebudowa kompleksu "Victoria" nie jest jedyną inwestycją w Ogrodzie Botanicznym UJ w ostatnich latach. Gruntowną modernizację przeszła też szklarnia "Holenderka" - w której znajduje się okazała kolekcja ponad 350 storczyków i niezwykle rzadkich sagowców - oraz wybrane elementy infrastruktury: alejki, 2 stawy i fontanny oraz ogrodzenie od strony al. Powstania Warszawskiego. Dodatkowo wzdłuż ścieżek stanęło ponad 30 tablic edukacyjnych. Ogród Botaniczny Uniwersytetu Jagiellońskiego jest najstarszym w Polsce. Mimo że początki jego historii sięgają XVII wieku, oficjalnie założono go w 1783 roku. Powstał w z inicjatywy Komisji Edukacji Narodowej jako zakład pomocniczy Katedry Chemii i Historii Naturalnej. Obszar, obejmujący początkowo ok. 2,4 ha, zakomponowano jako park barokowy typu francuskiego, w obrębie którego urządzono kolekcje roślin leczniczych oraz ozdobnych. Dzisiejszą aranżację zawdzięcza prof. Władysławowi Szaferowi, jednemu z najwybitniejszych polskich botaników. W 1976 roku wpisano go do rejestru zabytków jako cenny obiekt przyrody, pomnik historii nauki, sztuki ogrodniczej i kultury. « powrót do artykułu
  10. Nowy sposób na wytworzenie maleńkich struktur płaskiego grafenu zademonstrował zespół z Polski i Niemiec w Science. Płatki grafenu wytworzono po raz pierwszy nie na metalu, a od razu na podłożu z półprzewodnika. To nowe perspektywy dla zastosowań, między innymi w elektronice i fotonice. Badania przeprowadził zespół badaczy fizyków z Uniwersytetu Jagiellońskiego i chemików z Uniwersytetu w Erlangen i Norymberdze. Grafen to atomowej grubości płaska struktura złożona z atomów węgla ułożonych w sieć przypominającą plaster miodu. Taka cienka i niewidoczna gołym okiem węglowa „kartka” jest niezwykle wytrzymała, elastyczna, przezroczysta, przewodzi ciepło i prąd. Kiedy w 2010 r. za odkrycie grafenu przyznano Nagrodę Nobla, tysiące naukowców i przedsiębiorców ruszyły, aby szukać zastosowań dla tego materiału. Potem sprawa przycichła... Czyżby nie było pomysłu, jak wykorzystać ten materiał? Pytany o to prof. Marek Szymoński z Uniwersytetu Jagiellońskiego mówi: Grafen sam w sobie ma rewelacyjne właściwości, ale z punktu widzenia zastosowań to właściwie tylko przewodząca, bardzo cienka ‘kartka’. Tymczasem np. dla elektroniki cyfrowej bardziej interesującymi materiałami są tzw. materiały z przerwą wzbronioną - do nich należą półprzewodniki. To materiały, przez które prąd przepłynie, ale tylko, jeśli dostarczy się nośnikom ładunku odpowiednią energię – a więc np. przyłożone napięcie przekroczy odpowiednią wartość. Przy mniejszym napięciu działają jak izolator – nie przepuszczają prądu. Dzięki temu można na urządzeniach półprzewodnikowych wykonywać m.in. operacje logiczne – jeśli prąd przepłynął – dostajemy wartość 1, jeśli nie – 0. Najbardziej znanym półprzewodnikiem jest krzem, którego znaczenia w przemyśle komputerowym (słynna Dolina Krzemowa) trudno przecenić. Miniaturyzacja urządzeń elektronicznych jednak postępuje i naukowcy zastanawiają się nad materiałami, z których można by zbudować urządzenia o działaniu podobnym do półprzewodnikowych, ale miałyby wielkość zaledwie kilku nanometrów (nanometr to milionowa część milimetra). A w takiej skali tradycyjne urządzenia półprzewodnikowe nie najlepiej się spisują. Naukowcy szukają więc nowych materiałów o odpowiednich właściwościach. I tutaj właśnie nadzieją są nanometrowej wielkości struktury grafenowe o kształcie płatków lub wstążek. Okazuje się bowiem, że odpowiednio małym strukturom grafenu można nadać właściwości pozwalające na ich wykorzystanie do zbudowania elementarnych urządzeń elektronicznych – na przykład bramek logicznych lub nanotranzystorów. Problemem jest jednak to, jak precyzyjnie produkować takie niewidoczne gołym okiem płatki grafenu. Trudno tu przecież używać nanonożyczek i z atomową precyzją wycinać z kartek grafenu niewidoczne płatki. Naukowcy zastanawiają się więc nad odwrotnym podejściem: jak z mniejszych związków organicznych, na przykład pojedynczych molekuł aromatycznych, układać grafenowe puzzle. I tu właśnie z pomocą przychodzą badania prof. Konstantina Amsharova z FAU w Niemczech oraz polskiego zespołu. Wyniki tych badań ukazały się w styczniu w prestiżowym czasopiśmie Science. Naukowcy pokazali, jak w sprytny sposób przeprowadzić reakcję chemiczną, by z łatwych do kontrolowania półproduktów (tzw. prekursorów) produkować maleńkie płatki grafenu. Przedstawiony przez nich sposób działa sekwencyjnie - naukowcy nazywają to "nanozippingiem" i porównują tę reakcję do działania suwaka. W dodatku w doświadczeniu – przeprowadzonym w Krakowie – nanopłatki grafenu udało się wyprodukować od razu na podłożu z półprzewodnika, co jest istotnym nowym osiągnięciem. Nasza praca jest pierwszą, która donosi o w pełni kontrolowanej syntezie nanografenu na powierzchniach niemetalicznych – informuje w rozmowie z PAP pierwszy autor pracy dr Marek Kolmer, który obecnie realizuje staż podoktorski w Oak Ridge, USA. Prof. Marek Szymoński, który także jest wśród autorów publikacji, tłumaczy, że podstawową cegiełką do budowy płatków w ich doświadczeniu są aromatyczne struktury węglowe zbudowane z połączonych po jednym wiązaniem pierścieni benzenowych zakończonych na brzegach atomami wodoru lub fluoru. Jeśli jeden z fluorów połączy się z najbliżej położonym atomem wodoru z sąsiedniego pierścienia – a to można kontrolować na przykład przez podnoszenie temperatury – zaczyna się sekwencja reakcji pomiędzy kolejnymi pierścieniami benzenowymi. I tak „ząbek po ząbku”, para po parze, jak w zamku błyskawicznym, pierścienie benzenowe będą się ze sobą łączyć w strukturę nanografenu – mówi prof. Szymoński. Dr Marek Kolmer, tłumaczy, że w wyniku sześciu sekwencyjnie aktywowanych reakcji z prekursora powstaje molekuła nanografenu licząca 42 atomy węgla. To puzzel, który może zostać wykorzystany do produkcji większych, atomowo zdefiniowanych struktur – opowiada. Dotąd struktury grafenowe z prekursorów molekularnych wytwarzano na podłożach z metali takich jak złoto, srebro czy miedź. Metale te są jednak przecież świetnymi przewodnikami. Aby sprawdzić, jak wytworzone nanocząstki grafenu spisują się jako materiały elektroniczne, płatki trzeba oderwać i przenieść je inne podłoże, np. z półprzewodnika. A wtedy istnieje ryzyko, że taki atomowo zdefiniowany układ ulegnie modyfikacji. Tymczasem niemiecko-polskiemu zespołowi udało się wyprodukować płatki nanografenu od razu na podłożu z dwutlenku tytanu (rutylu), który jest półprzewodnikiem. Dr Kolmer tłumaczy, że rutyl jest kluczowy do przeprowadzenia reakcji chemicznej, która nie zajdzie na podłożu z miedzi czy złota. Badacze spodziewają się jednak, że nanografen tą metodą uda im się wytwarzać na innych półprzewodnikach i izolatorach. « powrót do artykułu
  11. Serdecznie zapraszamy do udziału w konferencji NEURONUS 2018 IBRO Neuroscience Forum, która odbędzie się w dniach 20–22 kwietnia 2018 r. w Auditorium Maximum Uniwersytetu Jagiellońskiego w Krakowie. !RCOL Neuronus IBRO Neuroscience Forum jest liczącą się konferencją naukową w Europie Środkowo-Wschodniej, poświęconą dynamicznie rozwijającej się neuronauce. Zeszłoroczna edycja zgromadziła 500 osób, reprezentujących 61 instytutów badawczych oraz uniwersytetów z 18 państw. Tegoroczny bogaty program naukowy podzielono na liczne sesje w czterech blokach tematycznych: 1) Drugs That Heal, Drugs That Heal (Tribute to professors Jezry Vetulani and Krzysztof Wedzony), 2) Cognitive Sessions, 3) Biological Sessions i 4) Medical Sessions. Uzupełnią je wykłady uznanych naukowców: 1) Amira Amediego z Uniwersytetu Hebrajskiego w Jerozolimie, 2) Ole Jensena z Uniwersytetu w Birmingham, 3) Markusa Ullspergera z Uniwersytetu Ottona von Guerickego w Magdeburgu, 4) Emmy Robinson z Uniwersytetu Bristolskiego, 5) Yvesa de Konincka z Uniwersytetu Laval, 6) Tomasa Kunera z Uniwersytetu w Heidelbergu. Oprócz tego zaplanowano 3 sesje posterowe (plakatowe). Pierwsza odbędzie się 20 kwietnia, druga - 21 kwietnia, a trzecia - 22 kwietnia. Tutaj także wyodrębniono kategorie tematyczne. Więcej informacji można znaleźć na stronie: http://neuronusforum.pl/ Rejestracja trwa do 10 kwietnia 2018 r. « powrót do artykułu
×
×
  • Dodaj nową pozycję...