Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Narodowe Centrum Badań Jądrowych' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 16 wyników

  1. Po czterech latach (ostatni stacjonarny finał był w 2019) spowodowanych pandemią tegoroczny Finał XVIII edycji konkursu Fizyczne Ścieżki powrócił do formuły stacjonarnej i odbył się w Narodowym Centrum Badań Jądrowych w Otwocku 20-21 kwietnia 2023 roku. W trakcie dwudniowego finału Konkursu, organizowanego przez Narodowe Centrum Badań Jądrowych i Instytut Fizyki Polskiej Akademii Nauk, zakwalifikowani do niego uczniowie zaprezentowali swoje prace w jednej z trzech kategorii: Pokaz Zjawiska Fizycznego, Praca Naukowa lub Esej. Podobnie jak na prawdziwym seminarium naukowym podczas Finału po prezentacji pracy jej autorzy odpowiadali na pytania Jury oraz osób zasiadających na widowni. Po obejrzeniu efektownych Pokazów Zjawisk Fizycznych, wysłuchaniu prezentacji Prac Naukowych oraz odczytu Esejów, jurorzy udali się na obrady, w wyniku których wyłonili laureatów Konkursu. Zwieńczeniem seminarium finałowego było uroczyste wręczenie uczniom i nauczycielom pamiątkowych dyplomów i nagród. Żaden konkurs nie budziłby emocji, gdyby nie możliwość zdobycia atrakcyjnych nagród. W przypadku Fizycznych Ścieżek za jedną z najważniejszych można uznać bezwarunkowy wstęp na wydziały fizyki wybranych uniwersytetów oraz wszystkie kierunki wybranych uczelni technicznych (więcej informacji można znaleźć na stronie Konkursu fizycznesciezki.pl lub stronach współpracujących uczelni). Wysiłek uczniów włożony w przygotowanie i zaprezentowanie pracy został doceniony przez pana Marszałka Adama Struzika, który dla laureatów ufundował nagrody finansowe. Symboliczne czeki w imieniu pana Marszałka wręczył jego reprezentant pan prezes Dariusz Grajda. Konkurs został również wsparty przez Starostę Otwockiego i Prezydenta Otwocka, którzy ufundowali nagrody w postaci książek dla uczniów i nauczycieli. Ponadto uczniowie oraz opiekunowie prac naukowych otrzymali nagrody rzeczowe zakupione dzięki darowiźnie Fundacji PGE. Podczas Gali Finałowej oprócz nagród konkursowych wręczono Nagrodę im. Prof. Ludwika Dobrzyńskiego – inicjatora i spiritus movens konkursu Fizyczne Ścieżki. Nagroda ta jest formą wyróżnienia dla nauczycieli i opiekunów naukowych, którzy wykazali się wyjątkowym zaangażowaniem w przygotowanie uczestników do Konkursu. W tym roku przyznano ją nauczycielom ze Słupska - pani Grażynie i Jarosławowi Linderom. Państwo Linder mogą się pochwalić licznymi finalistami i laureatami Konkursu. Wśród nich wielu zdecydowało się kontynuować swoje młodzieńcze zainteresowania, podejmując naukę na uczelniach wyższych na kierunkach nauk ścisłych lub inżynieryjnych. Poniżej pełna lista zwycięzców XVIII edycji konkursu Fizyczne Ścieżki: Kategoria: Pokaz Zjawiska Fizycznego I miejsce zajął: Paweł Wakuluk „Generator Marxa czyli wytwarzanie sztucznych błyskawic” II miejsce ex aequo zajęli: Łukasz Rogalski „Pokaz zjawisk fizycznych w tunelu aerodynamicznym” III LO im. Juliusza Słowackiego w Piotrkowie Trybunalskim oraz Joanna Tokarz, Anna Tokarz „Ze świecą w poszukiwaniu zjawisk fizycznych” I Liceum Ogólnokształcące im. Jana Smolenia w Bytomiu III miejsce ex aequo zajęli: Mateusz Bieniek, Norbert Majewski, Tomasz Cholewiński „Model akumulatora gazowego” Zespół Szkół Edukacji Technicznej w Łodzi oraz Aleksandra Solecka, Milena Bonk, Paweł Klamut „Gdzie pierogi nauczyły się pływać?” I Liceum Ogólnokształcące im. Komisji Edukacji Narodowej w Sanoku Kategoria: Praca Naukowa I miejsce zajął: Michał Mielnicki „Wpływ ciągłej wymiany dielektryka na pojemność kondensatora” V LO im. Augusta Witkowskiego w Krakowie II miejsce zajęli: Anita Godyń, Daniel Kmiecik „Jaśniej czy ciemniej? – niech rozstrzygną to pomiary fotometryczne” Zespół Szkół Ekonomiczno-Chemicznych w Trzebini W kategorii Esej: II miejsce ex aequo otrzymały: Aleksandra Badora „Dlaczego to fizyk może rozwiązać wielką zagadkę matematyczną?” Publiczne LO nr II z Oddziałami Dwujęzycznymi im. Marii Konopnickiej w Opolu oraz Magdalena Listek „Laboratorium o rozsuwanych ścianach” V LO im. Augusta Witkowskiego w Krakowie III miejsce otrzymała: Olga Ociepa „Postzubrinowskie wojny grawitacyjne” Waldorfskie Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bielsku-Białej « powrót do artykułu
  2. Do końca maja potrwa modernizacja badawczego reaktora jądrowego MARIA. Jako przewidywany termin jego uruchomienia wskazywany jest przełom czerwca i lipca. Dr Marek Pawłowski, rzecznik Narodowego Centrum Badań Jądrowych (NCBJ), wyjaśnia, że napromienianie izotopów ma zostać wznowione od 1. cyklu pracy. Przerwa remontowa rozpoczęła się 5 września ubiegłego roku. Była ona podyktowana starzeniem się i brakiem części zamiennych. Dr Pawłowski wspomina również o konieczności dostosowania zbiorników na odpady ciekłe do nowych wymagań prawnych. Gdy prace modernizacyjne zostaną ukończone, rozpocznie się seria testów wszystkich  układów i urządzeń. Najpierw są one sprawdzane przy niepracującym reaktorze, a następnie gdy reaktor pracuje na minimalnej mocy. Gdy testy wypadną pomyślnie, NCBJ zwróci się do prezesa Państwowej Agencji Atomistyki o zgodę na uruchomienie reaktora. Dopiero po jej uzyskaniu MARIA będzie mogła podjąć pracę na nowo. Reaktor MARIA działa od grudnia 1974 roku. Jest urządzeniem doświadczalno-produkcyjnym i jednym z najważniejszych źródeł niektórych izotopów promieniotwórczych dla światowej medycyny. Na przykład w ubiegłym roku, dzięki błyskawicznej zmianie harmonogramu pracy MARII, udało się zapobiec światowym niedoborom medycznego molibdenu-99. MARIA, nazwany tak od imienia Marii Skłodowskiej-Curie, wykorzystywany jest też do badań materiałowych i technologicznych, domieszkowania materiałów półprzewodnikowych, neutronowej modyfikacji materiałów oraz badań fizycznych. « powrót do artykułu
  3. Reaktor Maria z Narodowego Centrum Badań Jądrowych (NCBJ) w Świerku to jeden z głównych dostawców medycznego molibdenu-99. Zaspokaja 10% światowego zapotrzebowania. Pierwiastek ten jest stosowany w 80% zabiegów diagnostycznych z użyciem radiofarmaceutyków i w radioterapii. Maria kilkukrotnie w ciągu roku napromieniowuje tarcze uranowe niezbędne w produkcji Mo-99. Jest też skonfigurowany tak, by awaryjnie zwiększać produkcję, gdyby u innych dostawców pojawiły się problemy. Tak było na początku bieżącego roku, gdy w holenderskim reaktorze HFR doszło do awarii. Naukowcy z NCBJ uzyskali właśnie europejski patent na tarcze uranowe wykonane metodą druku 3D, które zoptymalizują produkcję molibdenu. Światowe zapotrzebowanie na molibden-99 jest ogromne. Jest to radioizotop wytwarzany zazwyczaj w badawczych reaktorach jądrowych, czyli w urządzeniach o ograniczonych możliwościach produkcyjnych. Właśnie dlatego tak ważne jest ciągłe doskonalenie metod jego produkcji, mówi współtwórca patentu, profesor Paweł Sobkowicz. W technikach obrazowania budowy i funkcji naszego ciała często wykorzystuje się izotopy promieniotwórcze, wprowadzane do organizmu. Następnie aparatura diagnostyczna rejestruje fotony emitowane przez jądra rozpadających się pierwiastków. Jednym z najważniejszych z nich jest technet-99m. To izotop metastabilny, a emitowane przezeń fotony są nieszkodliwe dla tkanek i łatwo je rejestrować. Ponadto okres jego połowicznego rozpadu wynosi zaledwie 6 godzin, więc wkrótce po badaniu znika on z organizmu. Krótki czas połowicznego rozpadu technetu-99m to zaleta z punktu widzenia pacjenta, jednak poważny problem technologiczny. Znacząco ogranicza to bowiem czas, jaki może minąć pomiędzy wyprodukowaniem pierwiastka, a jego użyciem podczas diagnostyki. Dlatego też do szpitali wysyła się nie technet, a molibden-99, który rozpada się do technetu. Czas połowicznego rozpadu molibdenu-99 wynosi 67 godzin. To wystarczająco dużo, by przewieźć go z miejsca produkcji do szpitala. Molibden-99 najczęściej powstaje przez napromienianie neutronami niewielkich tarcz zawierających nisko wzbogacony uran-235. Neutrony z reaktora mają ograniczoną zdolność przenikania do wnętrza materiału tarczy. Aby zagwarantować, że jak najwięcej jąder uranu-235 przekształci się w molibden-99, tarcze zazwyczaj przygotowuje się w postaci cienkich płytek z dyspersji uranu lub jego tlenku albo krzemku w aluminium. Proces produkcji płytek nie pozostawia wiele miejsca na optymalizację. Dlatego zaproponowaliśmy inny sposób przygotowywania tarcz uranowych: druk przestrzenny metodą laserowego spiekania proszków, mówi inżynier Maciej Lipka, jeden z pomysłodawców patentu. Polscy eksperci wykorzystali laserowe spiekanie proszków metalowych. To jedna z technik druku przestrzennego, w której wykorzystuje się lasery do topienia warstwy proszku. Techniki takie znane są od dawna, ale dotychczas nie wykorzystywany ich do wytwarzania tarcz uranowych. Eksperci ze Świerku uważają, że ta metoda produkcji ma wiele zalet. Pozwala ona bowiem na zoptymalizowanie kształtu tarcz tak, by lepiej rozpraszały ciepło. Tarcze nagrzewają się więc słabiej, dzięki czemu można zwiększyć w nich zawartość uranu-235, a zatem wyprodukować więcej molibdenu-99. Podczas ostrzeliwania neutronami, w tarczy uranowej powstaje nie tylko molibden-99, ale też wiele innych izotopów. Po wyjęciu z reaktora każdą tarczę trzeba więc poddać stosownej obróbce chemicznej, która służy wyodrębnieniu molibdenu. Tymczasem za pomocą druku przestrzennego można przygotować np. tarcze ażurowe, o bardzo dużej powierzchni czynnej, skuteczniej oddziałujące z rozpuszczalnikami chemicznymi, wyjaśnia Maciej Lipka. Co więcej, część jąder uranu-235 nie ulega przemianie po napromieniowaniu, zatem ich kształt można by dobierać tak, by zwiększyć ilość odzyskiwanego z nich uranu, który można użyć do produkcji kolejnych tarcz. « powrót do artykułu
  4. Rozbłyski gamma, jako jedne z najbardziej energetycznych procesów zachodzących w najdalszych zakątkach Wszechświata, od lat są w centrum zainteresowania astrofizyków. Naukowcy spodziewają się, że podobnie jak w przypadku innych dalekich obiektów, istnieje możliwość soczewkowania grawitacyjnego sygnałów pochodzących od takich zdarzeń. NCBJ bierze udział w poszukiwaniach potwierdzenia tych oczekiwań. Rozbłyski gamma (GRB, z ang. Gamma-Ray Burst) są obserwowane na całym niebie i są tak jasne, że sygnały od nich docierają z najodleglejszych zakątków Wszechświata. Właściwe zrozumienie kosmologicznego pochodzenia rozbłysków gamma oraz ich natury, zawdzięczamy Polakowi, profesorowi Bohdanowi Paczyńskiemu. Najdalsze obserwowane GRB mają przesunięcie ku czerwieni (z ang. redshift) ~10. Wynika z tego, że ich źródłami są obiekty, od których światło podróżowało do nas ponad 13 miliardów lat. Ze względu na dużą odległość należy się spodziewać, że światło dochodzące do nas od wielu z nich może ulegać soczewkowaniu grawitacyjnemu wywołanemu przez bliższe nam galaktyki. Jednak poza jednym niedawnym przypadkiem opublikowanym w czasopiśmie Nature, nie zdołano jeszcze zaobserwować soczewkowanego GRB tylko i wyłącznie w oparciu o dane z zakresu gamma. Od dawna sugerowano, że soczewkowanie grawitacyjne może powielać obrazy GRB. Obserwacje takich zjawisk mogłyby być wykorzystane między innymi do znaczącego polepszenia dokładności pomiarów parametrów kosmologicznych, takich jak stała Hubble'a, do badania fizyki fundamentalnej (testując prędkość ich propagacji w zależności od energii), oraz do uzyskania ograniczenia na obfitość ciemnej materii w postaci zwartych obiektów (czarne dziury, wystygłe: gwiazdy neutronowe lub białe karły). Tradycyjne poszukiwania soczewkowanych GRB skupiają się na zakresie promieni gamma. Międzynarodowy zespół naukowców, w którym pracuje prof. Marek Biesiada z Narodowego Centrum Badań Jądrowych, proponuje by poszukiwania takich zjawisk oprzeć nie tylko o dane gamma, ale też o wielozakresowe obserwacje poświaty rozbłysków (z ang. GRB afterglow). Problemów przy szukaniu soczewkowanych rozbłysków gamma jest kilka – mówi prof. Marek Biesiada. Po pierwsze, promieniowanie gamma emitowane jest w obszar dość wąskiego stożka – zatem musimy mieć więcej szczęścia, aby wzajemne ustawienie źródła i soczewki skutkowało obserwowalnymi wielokrotnymi obrazami. Po drugie, detektory gamma mają zbyt słabą rozdzielczość, aby zidentyfikować położenie tych wielokrotnych obrazów. Na szczęście sygnały z obrazów docierają do nas z pewnym opóźnieniem czasowym, czyli detektor powinien zarejestrować dwa sygnały o identycznym kształcie. Tu też tkwi pewien problem: opóźnienie czasowe musi być większe niż 1 sekunda, lecz krótsze niż 300 sekund. W innym przypadku nie mamy szans na odkrycie soczewkowania w detektorze promieni gamma. Ograniczenie czasowe oznacza, że soczewkami mogą tu być obiekty o masach między 100 a 10 mln mas Słońca – to zapewne musiałyby być egzotyczne obiekty, np. masywne czarne dziury o tzw. pośrednich masach, które wciąż są jedynie hipotetyczne. Na szczęście, rozbłyskom gamma towarzyszą znacznie dłużej trwające późniejsze poświaty: najpierw w promieniach X, następnie w świetle widzialnym i na falach radiowych. Co więcej, promieniowanie poświaty nie jest już skolimowane do wnętrza stożka. Mamy więc większe szanse na odkrycie układu soczewkowanego grawitacyjnie. Jest to pomysł, który jakiś czas temu zainspirował mnie i dr Aleksandrę Piórkowską-Kurpas z Uniwersytetu Śląskiego. Korzystając ze standardowego modelu poświaty GRB, badacze określili, jak wyglądałyby dane obserwacyjne soczewkowanej poświaty błysków gamma. Analizy oparte zostały o dwa modele soczewek grawitacyjnych: model punktowy (opisujący gwiazdy lub czarne dziury) oraz model galaktyki (tzw. osobliwa izotermiczna sfera). W takiej sytuacji poświata rentgenowska składałaby się z kilku rozbłysków o podobnym kształcie. Z kolei optyczna krzywa jasności poświaty mogłaby posiadać pojaśnienia na swej gałęzi opadającej, gdy jej blask nieuchronnie się zmniejsza. Symulacje numeryczne pozwoliły uzyskać przewidywane profile krzywych jasności poświat w zależności od masy soczewki i opóźnienia czasowego sygnałów. W oparciu o swoje analizy naukowcy sugerują, aby przyszłe poszukiwania soczewkowanych GRB oprzeć na dwóch przypadkach obiektów soczewkujących: 1) Zwarty obiekt, typu czarnej dziury o masie nie większej niż 10 mln mas Słońca. Opóźnienie będzie wtedy niewielkie (~100 sekund lub mniejsze), a zwielokrotnione obrazy gamma mogą być rozdzielone lub nakładające się. Jeśli jednak sygnał opóźniony będzie słabszy niż czułość detektora, aparatura zarejestruje tylko jeden sygnał. W takim przypadku, można wykorzystać późniejsze obserwacje poświaty w zakresach rentgenowskim i optycznym, by ocenić, czy obraz jest soczewkowany, czy może obiekt miał kilka następujących po sobie emisji. Jeśli sygnał GRB jest faktycznie soczewkowany, wówczas poświata rentgenowska najprawdopodobniej zawierałaby kilka rentgenowskich flar o podobnym kształcie. W obrazie optycznym poświaty również powinniśmy zaobserwować pojaśnienia „górki” krzywej jasności. 2) Galaktyki o masie 1-100 mld mas Słońca. W takim przypadku typowe opóźnienie będzie rzędu ~17 min – 28 h. Wobec tego w zakresie gamma niezmiernie trudno będzie wykryć soczewkowanie (o ile w ogóle będzie to możliwe). Natomiast w zakresie promieni X, światła widzialnego, czy fal radiowych powinny się ujawnić wyraźne flary (pojaśnienia) na tle słabnącej emisji poświaty. Takie zjawisko pozwoliłoby na łatwą weryfikację czy doszło do soczewkowania. Biorąc pod uwagę, że teleskopy optyczne oraz radioteleskopy są zazwyczaj w stanie rozróżnić poszczególne obrazy zwielokrotnione, pozwoli to na weryfikację soczewkowania. Jest to kolejny argument na rzecz rozwijania tzw. astronomii wielozakresowej (ang. multimessenger astronomy), co również jest domeną NCBJ. W ramach powyższych badań, w archiwalnych danych naukowcy znaleźli potencjalnego kandydata soczewkowanego błysku gamma o katalogowej nazwie – GRB130831A. Opóźnienie czasowe było rzędu 500 sekund, co mieści się w zakresie omawianych sytuacji. Pewne detale tego zjawiska nie pozwalają jednak na stuprocentowe potwierdzenie postawionej hipotezy. Naukowcy nie poddają się i zapowiadają dalsze badania GRB 130831A. Tym samym żywią ogromne nadzieje, że dzięki wielozakresowym przeglądom nieba, w szczególności monitoringu całego nieba w zakresie gamma, znalezienie kolejnych soczewkowanych błysków gamma jest tylko kwestią czasu. « powrót do artykułu
  5. Naukowcy z NCBJ przeprowadzili analizy fizykochemiczne srebrnej biżuterii słowiańskiej wykonanej z użyciem techniki granulacji i filigranu. Dzięki badaniom udało się prześledzić procesy i techniki lutowania artefaktów wchodzących w skład skarbów, będących elementem tradycji wikińskiej. Polska kolekcja muzealna znalezisk typu skarby wczesnośredniowieczne stanowi drugi co do wielkości zbiór na świecie. Naukowcy z Narodowego Centrum Badań Jądrowych, we współpracy z badaczami z różnych dziedzin, pracują nad archeometrycznym opracowaniem zabytków wczesnośredniowiecznych, wykonanych ze stopów srebra. Skupiają się nad badaniem pochodzenia i sposobu wykonania zabytków wchodzących w skład skarbów. Skarby to depozyty srebra – monety, sztabki i ozdoby, często w formie siekanej, składane w naczyniu w ziemi. Jest to tradycja zaczerpnięta z kultury i wierzeń Wikingów. Obecnie w Polsce odnaleziono i zainwentaryzowano w muzeach około 600 skarbów i cały czas ich przybywa. Jest to materiał liczniejszy od odnalezionego dotychczas w Skandynawii lądowej, przy czym na Gotlandii, zwanej wyspą skarbów, liczebność odnalezionych skarbów wynosi 800 sztuk. Zjawisko chowania skarbów występuje również na terenie dawnej Rusi Kijowskiej, która była, podobnie jak tereny władztwa wczesnopiastowskiego, związana z tradycjami i podbojami wikińskimi. W okresie kształtowania się państwa polskiego (900-1039) skarby, prócz ceramiki i śladów osadnictwa, stanowią unikalny materiał źródłowy dla historii. Brak jest z tego okresu cmentarzysk, które pojawiają się na terenie Polski dopiero wraz z ugruntowaniem się chrześcijaństwa. Brak jest również z tego okresu wystarczającej liczby źródeł pisanych. Toteż badanie dostępnego materiału archeologicznego, jakim są liczne skarby, ma za zadanie przybliżenie funkcjonowania gospodarki kruszcowej i rozchodzenia się myśli technologicznej podczas tworzenia się pierwszego władztwa Piastów. Jako element badań nad skarbami naukowcy z NCBJ wykonali analizy fizykochemiczne srebrnej biżuterii wykonanej z użyciem techniki granulacji i filigranu (małe granulki i tasiemki mocowane do bazy ozdoby) znalezionej na ziemiach w Wielkopolsce. Technika ta ma swoje źródła w sztuce bizantyjskiej, przejętej później przez złotników wielkomorawskich, a ozdoby znajdywane w skarbach wczesnośredniowiecznych są jej ostatnim przejawem kontynuacji. Badaniom poddano 5 wisiorków o księżycowym kształcie – tzw. Lunuli, pochodzących ze skarbu odnalezionego w latach 30-tych XX wieku w Obrze Nowej (miejscowości położonej między Wrocławiem a Poznaniem). Należą one do zbiorów Państwowego Muzeum Archeologicznego w Warszawie. Lunule stanowią element sztuki złotniczej, charakterystycznej dla obszarów wschodnich – dawnej Rusi Kijowskiej, i są związane z funkcjonowaniem horyzontu złotnictwa słowiańskiego. Do tej pory ozdoby wczesnośredniowieczne były rozważane głównie w kontekście typologicznym, a wstępne badania technologiczne serii ozdób (nie zawierającej fragmentów lunuli) pochodzących ze skarbów odnalezionych w Słuszkowie i Rajskowie (woj. wielkopolskie) oraz w Stojkowie (woj. zachodniopomorskie) opisano w 20191 na łamach czasopisma Archaeological and Anthropological Sciences. Badania obejmowały zabytki przynależne do trzech grup złotniczych: zachodniosłowiańskiej, post-morawskiej i skandynawskiej. Wykazały możliwość wyróżnienia dwóch typów lutowania ornamentu do powierzchni: fizycznego (z użyciem lutu metalicznego na bazie miedzi) – w przypadku grupy zachodniosłowiańskiej i chemicznego (z użyciem lutu chemicznego bazującego na różnych związkach miedzi ze znacznym stopniem utlenienia) – dla pozostałych grup. Badania pochodzenia surowca srebrowego, użytego do produkcji ozdób z trzech wspomnianych skarbów, z użyciem analizy stosunków izotopowych ołowiu, wskazują na dominację kruszcu azjatyckiego, pozyskanego z przetopu monet arabskich (dirhemów), będących licznym materiałem wchodzącym w skład skarbów, a pozyskiwanym poprzez wymianę handlową w dobie średniowiecza. W przypadku lunuli z Obry Nowej badacze, stosując szersze spektrum technik instrumentalnych, przyjrzeli się bliżej sposobowi lutowania, służącemu do przytwierdzenia zdobień (granulek i tasiemek) do powierzchni biżuterii. W badaniach tych, prócz typowych narzędzi mikroskopowych tj. skaningowej mikroskopii elektronowej z mikroanalizą rentgenowską i mikroskopii optycznej, wykorzystano spektroskopię mikro-Ramana i dyfrakcję rentgenowską. Badania potwierdziły wykorzystanie, jako głównego składnika lutów, związków na bazie miedzi z dodatkiem kleju żywicznego (co wynika z obecności węgla w obszarach lutowania). W miejscu łączenia granulek z bazą w widmach ramanowskich zarejestrowano sygnały od amorficznego węgla, podobnego do bitumenu. Naukowcy donoszą, że jest to pozostałość po termicznej obróbce kleju żywicznego, użytego jako formę mocowania/przyklejania malutkiego ornamentu do podłoża w procesie lutowania chemicznego. Obecność węgla została również potwierdzona przy użyciu dyfrakcji rentgenowskiej wykonanej dla próbki lutu. Ponadto obszary lutowania są utlenione, a innymi składnikami mieszaniny lutującej prócz miedzi są ołów, z dodatkiem cyny, cynku, wapnia, fosforu oraz krzemu. Składniki te rozlane są po całej powierzchni artefaktów. Jest to efekt lutowania w stosunkowo wysokiej temperaturze (do 800oC), aczkolwiek odkryto wytrącenia lutu wokół mocowanych ornamentów. Z obecności ołowiu wraz z wapniem, fosforem i alkaliami w mikro-obszarach lutowania, naukowcy wywnioskowali, iż do mieszaniny lutowniczej mogła być dodawana glejta (nieoczyszczony tlenek ołowiu), który jest formą uzyskiwaną m.in. w procesie rafinacji srebra. Złoża srebrowe często współwystępują z ołowiem i cynkiem. Dodatkowo ołów jest dodawany w procesie kupelacji do oczyszczania srebra. Wobec czego zawsze metalurgia srebra jest nierozerwalnie związana z metalurgią ołowiu, a jak wykazały badania również i w złotnictwie. Do tej pory nie rozpatrywano ołowiu jako składnika w procesie lutowania chemicznego, jego obecność pomijano, jako dodatek złożowy. Pewna ciekawostka, której naukowcy się dopatrzyli w trakcie badań wiąże się właśnie z użyciem glejty ołowianej, jako składnika mieszaniny lutującej. Nawiązuje ono bowiem do przepisu 11 zaczerpniętego z przewodnika po dawnym warsztacie złotniczym, zbioru receptur lutowniczych, z X Papirusu Lejdejskiego*. Dodanie niskotopliwego ołowiu do stopu srebra czy złota (znana są również antyczne złote ozdoby wykonane w technice granulacji, zaś receptury opisane w źródłach historycznych dotyczą lutowania złota, ale stosują się też do srebra) powoduje nadtopienie i zniekształcenia powierzchni w rejonie lutowanym – efekt ten również zaobserwowano na powierzchni lunul. Dodatkowo, zgodnie z przepisem wspomnianym w X Papirusie z Leiden oraz w recepturach opisywanych przez Pliniusza Starszego, dodatek miedzi oraz cyny w mieszance lutowniczej najprawdopodobniej wywodzi się ze stopów opartych na miedzi, takich jak brąz z domieszką cynku. Badania sposobu lutowania ornamentów na ozdobach wchodzących w skład skarbów stanowią duże wyzwanie dla warsztatu konwencjonalnych badań materiałowych – mówi kierownik projektu dr Ewelina Miśta-Jakubowska z NCBJ. Obecny skład zabytków jest efektem wielu przemian wtórnych, takich jak procesy korozyjne, a potem konserwacja, która często źle przeprowadzona wręcz uniemożliwia prowadzenie badań technologicznych w sposób nieniszczący. Już na etapie produkcji, mieszania surowców w procesie cieplnym, skład mieszaniny lutującej zmienia się względem produktów wyjściowych. Później skład chemiczny zostaje zmieniony „czasem” i konserwacją. W efekcie do badań mamy do dyspozycji zabytek charakteryzujący się znacznym stopniem niejednorodności strukturalnej i chemicznej. W interpretacji wyników badań nad sposobami lutowania granulatu i filigranu należy brać pod uwagę wszystkie te zmienne. Mimo trudności, przed którymi stają naukowcy zajmujący się wczesnośredniowiecznymi technikami złotnictwa, analiza składu lutu wykorzystywanego w takiej ornamentacji jest bardzo ważna. Jako, że ilość znalezisk rośnie, a liczba technik badawczych się wciąż poszerza, zyskujemy dużo materiału porównawczego. Dane te mogą być wykorzystane do prześledzenia przepływu technologii w tym okresie, a co za tym idzie odtworzenia elementu gospodarki kruszcowej w okresie formowania się polskiej państwowości. Wyniki przedstawione w niniejszej publikacji otwierają nowy rozdział w badaniach ornamentacji z wczesnośredniowiecznych skarbów polskich – dodaje dr Miśta. Naukowcy zapowiadają, że w przyszłości dane zostaną uzupełnione o badania izotopowe ołowiu, srebra i cyny, celem zaproponowania pochodzenia kruszcu, w tym ołowiu będącego składnikiem lutowania. Dalsze badania są realizowane m.in. we współpracy z Muzeum Narodowym w Szczecinie, Muzeum Narodowym w Kielcach, Muzeum Pierwszych Piastów oraz z laboratorium geochemicznym w Juniata Collegue w Stanach Zjednoczonych. « powrót do artykułu
  6. Reaktor badawczy MARIA w trybie ekspresowym zmienił harmonogram pracy, by zapobiec brakom w dostawach medycznego molibdenu-99 (Mo-99). Działanie miało związek z usterką w holenderskim reaktorze HFR, który należy do grona kilku światowych dostawców tego radionuklidu. Molibden-99 jest podstawowym radioizotopem służącym do uzyskiwania radioaktywnego technetu. Ten zaś jest wykorzystywany w większości procedur medycyny nuklearnej. Molibden-99 jest produkowany w reaktorach badawczych na drodze napromieniania neutronami tarcz uranowych. W zeszłym tygodniu przed jednym z rutynowych uruchomień reaktora HFR wykryto usterkę w obiegu chłodzenia (przed każdym kolejnym uruchomieniem dokonuje się kontroli wszystkich instalacji). Z tego względu nie można go było uruchomić zgodnie z planem, czyli 20 stycznia. Okazało się jednak, że już 21 stycznia produkcję HFR przejął reaktor MARIA w Otwocku-Świerku pod Warszawą. 20 stycznia byliśmy w Świerku w trakcie spotkania z naszymi partnerami produkującymi medyczny molibden-99, kiedy jednemu z nich zadzwonił telefon - opowiada Paweł Nowakowski, dyrektor Departamentu Eksploatacji Obiektów Jądrowych w Narodowym Centrum Badań Jądrowych (NCBJ). Nasz gość odszedł na chwilę na bok, by odebrać połączenie i po chwili spytał, czy za dwa dni jesteśmy w stanie awaryjnie napromienić dodatkowe tarcze uranowe. Dobro pacjentów onkologicznych jest dla nas niezwykle ważne, więc zgodziłem się bez wahania. Jesteśmy również przygotowani do przeprowadzenia kolejnych napromieniań w najbliższych tygodniach. Jak podkreślono w komunikacie prasowym NCBJ, zespół ekspertów przeprowadził szczegółowe obliczenia optymalizujące konfigurację rdzenia MARII. Później zatwierdziła je Państwowa Agencja Atomistyki. Udało się to zrealizować w zaledwie parę godzin. Zadanie wykonano tak szybko, gdyż od 2010 r. MARIA jest przygotowana do napromieniania tarcz uranowych do produkcji molibdenu-99. W roku przeprowadza się kilka cykli. NCBJ zaznacza, że w razie nieplanowanych przestojów u głównych dostawców reaktor badawczy MARIA może zmienić harmonogram i zapełnić lukę. Warto podkreślić, że MARIA jest jednym z najważniejszych dostawców napromienianych tarcz uranowych do produkcji Mo-99, odpowiedzialnym za około 10% światowych dostaw.     « powrót do artykułu
  7. Na podstawie najnowszych wyników badań z obserwatoriów fal grawitacyjnych LIGO/Virgo, naukowcy przeprowadzili testy Ogólnej Teorii Względności (OTW). Zgodność teorii Einsteina z danymi obserwacyjnymi testowano dziewięcioma różnymi metodami. Żadnych niezgodności nie stwierdzono. W badaniach brali udział polscy naukowcy z grupy Polgraw, w tym uczeni z NCBJ. Ogólna Teoria Względności zaproponowana ponad 100 lat temu przez Alberta Einsteina jest obecnie powszechnie przyjętą teorią grawitacji. Jest ona niezwykle elegancka i koncepcyjnie w zasadzie prosta, choć obliczenia wykonywane na jej podstawie do prostych nie należą. Teoria prawidłowo opisuje poznane zjawiska astronomiczne napędzane przez grawitację, a także jest podstawą do budowy scenariuszy kosmologicznych. W miarę postępu badań i obserwacji, w miarę gromadzenia coraz większych, coraz dokładniejszych i coraz lepiej uporządkowanych zbiorów danych, obszar dostępnych nam zjawisk stale się poszerza. W nauce żadnej teorii nie traktujemy jako dogmatu – tłumaczy prof. Marek Biesiada z Zakładu Astrofizyki NCBJ. Dlatego teorie poddajemy testom, stale sprawdzając ich przewidywania. Jak dotąd OTW została potwierdzona bardzo precyzyjnymi obserwacjami w Układzie Słonecznym i w układach podwójnych pulsarów. Fale grawitacyjne emitowane przez zlewające się czarne dziury dostarczają kolejnej możliwości testowania teorii względności. Jest to reżim silnie zakrzywionych czasoprzestrzeni, wcześniej słabo dostępny testowaniu. Są przynajmniej dwie przesłanki nakazujące nam sprawdzać, czy OTW wymaga modyfikacji lub zastąpienia nową teorią. Pierwszą z nich są problemy kosmologiczne znane jako ciemna materia i ciemna energia. Problem ciemnej materii polega na tym, że galaktyki i ich gromady przyciągają silniej niż powinny, gdyby uwzględnić całą znaną nam materię. Problem ciemnej energii to fakt, że Wszechświat przyspiesza swą ekspansję, zamiast zwalniać, jak wydaje się przewidywać OTW. Chociaż robocze nazwy ciemna materia i ciemna energia sugerują odpowiedź w postaci nieznanych składników materialnych, pozostaje możliwość, że OTW wymaga modyfikacji. Drugą przesłanką jest wynikająca z OTW konieczność występowania osobliwości, czyli obszarów, gdzie kończą się historie wszystkich cząstek i fotonów. Wydaje się, że problem ten jest związany z kwantową teorią grawitacji, której nie udało się stworzyć w zadowalającej wszystkich postaci. Tu również fale grawitacyjne emitowane przez zlewające się czarne dziury mogą dostarczyć nam wskazówek. Współprace badawcze LIGO i Virgo opublikowały w tym tygodniu podsumowanie analiz zebranych przez nie danych pod kątem ich zgodności z przewidywaniami OTW. Analizy zebrano w 9 głównych grup stanowiących testy teorii. Pierwszy test dotyczył zgodności rejestrowanego sygnału bazowego (szumu) ze znanym z testów laboratoryjnych szumem detektora. Z OTW wiemy jak sygnał od dwóch zwartych obiektów powinien wyglądać w detektorach fal grawitacyjnych. Jednak to, czym posługujemy się do opisu sygnału jest teorią – jak cała nauka jest pewnym przybliżeniem, najlepszym jakie mamy, opisującym świat, dopóki nie znajdziemy lepszego. Jeśli OTW nie opisywałaby dostatecznie dobrze takich sygnałów to mielibyśmy przewidywanie teoretyczne plus dodatkowy komponent, który wynika z nieuwzględnionych efektów. Aby zobaczyć, czy taki dodatkowy komponent jest obecny, trzeba było sprawdzić, czy po odjęciu przewidywanego sygnału reszta będzie miała charakterystykę normalnego szumu w detektorze. Przeprowadzony test potwierdził słuszność OTW. Przeprowadzono też test zgodności przebiegu (kształtu) fal przed i po zlaniu się dwóch obiektów. Źródłami fal grawitacyjnych, które obserwujemy są układy: dwóch gwiazd neutronowych; dwóch czarnych dziur; układ czarna dziura – gwiazda neutronowa. Zdarzenie zlania się tych obiektów następuje w 3 głównych fazach: moment tuż przed zderzeniem, moment zlania się oraz faza stabilizacji. OTW przewiduje, że fazy sprzed zderzenia oraz po powinny generować podobne fale. Przewidywania OTW są zgodne z obserwacjami dla analizowanej próbki. Kolejne dwa testy dotyczyły zachowania się obiektów w pierwszej fazie zlewania, gdy ciała niebieskie okrążają się wzajemnie. Wzajemne okrążanie zwartych obiektów, takich jak czarne dziury czy gwiazdy neutronowe, zbliżających się do siebie dzięki utracie energii emitowanej w postaci fal grawitacyjnych, można przybliżyć przez powolny ruch w przybliżeniu słabego pola – nazywa się to post-Newtonowskim przybliżeniem OTW. Podejście to opisane jest kilkoma parametrami, których określenie na tej podstawie można porównać z parametrami otrzymanymi przez OTW. Najnowsze obserwacje wraz z już istniejącymi, pozwalają bardzo dobrze określić ograniczenia wartości tych parametrów. Wyniki te są statystycznie spójne z przewidywaniami OTW. Pierwsza faza, przed zlaniem się obiektów, pozwala również na sprawdzenie, czy obserwowany sygnał jest zgodny z przewidywaniami zlania się dwóch rotujących czarnych dziur (czarnych dziur Kerra). Jeśli któryś ze składników (lub oba) będzie rotował – powstały obiekt będzie spłaszczony na biegunach i poszerzony na równiku. Naukowcy są w stanie wyłuskać tę informację z danych obserwacyjnych, dzięki czemu można ustalić, że źródłem fal grawitacyjnych nie są żadne egzotyczne, nieprzewidziane przez OTW, obiekty. Podobne podejście zastosowano do określenia parametrów zdarzenia w trakcie i po zlaniu się obiektów. Czas trwania zlewania się i stabilizacji nowego obiektu jest dużo krótszy od fazy zbliżania się, więc obserwowany sygnał jest dużo silniejszy od widocznego szumu. Oszacowane na tej podstawie parametry dają wartości statystycznie zgodne z przewidywaniami OTW. Kolejnym jest test propagacji fal grawitacyjnych. Według przewidywań OTW fale grawitacyjne nie podlegają dyspersji, czyli prędkość ich rozchodzenia się nie zależy od ich częstotliwości. OTW można zmodyfikować w taki sposób, by własność ta nie była zachowana. W takiej sytuacji fale pochodzące bezpośrednio ze zlania się obiektów, o wyższej częstotliwości, dotarłyby do obserwatora szybciej, niż fale o mniejszej częstotliwości – pochodzące z fazy początkowej. Nie znaleziono dowodów dyspersji fal grawitacyjnych, co jest zgodne z przewidywaniami OTW. Brak zaobserwowanej dyspersji umożliwia nam ograniczenie modeli fizyki cząstek, które zakładają, że grawitony cząstki odpowiadające za oddziaływania grawitacyjne - mają masę (tak zwany model ciężkich grawitonów). W ramach OTW grawitony powinny być bezmasowe i podróżować z prędkością światła. Modele ciężkich grawitonów przewidują jednak istnienie dyspersji w pewnym stopniu, więc obserwacje mogą dać ograniczenie na masę grawitonów. W tych badaniach określono masę grawitonów (o ile ją posiadają) na poniżej 1.3*10-23 eV/c2. Ósmy test dotyczy polaryzacji fal grawitacyjnych. W ramach OTW fale grawitacyjne mogą mieć jedynie dwa typy polaryzacji: typu plusa lub typu X. Bardziej ogólna teoria może prowadzić do nawet sześciu unikatowych typów polaryzacji fal. Przeanalizowano dane obu detektorów LIGO oraz detektora Virgo pod kątem polaryzacji, których OTW nie uwzględnia. Testy nie wykazały możliwości istnienia innych polaryzacji niż przewidywanych przez OTW. Istnieją alternatywne teorie względem istnienia czarnych dziur. Obiekty takie, nazywane są mimikami czarnych dziur ze względu na to, że mają podobne parametry jak czarne dziury, jednak nie są nimi w sensie OTW. Jedną z najbardziej charakterystycznych cech czarnych dziur jest horyzont zdarzeń, czyli obszar, z którego nic nie jest w stanie uciec - nawet światło. W przypadku mimików, powierzchnia taka miałaby albo częściową, albo pełną refleksyjność, co wywołałoby pewnego rodzaju echo w sygnale z trzeciej fazy zlewania się obiektów. Analizy nie wykazały istnienia tego typu ech, co jest zgodne z przewidywaniami OTW. Stawiając się w pozycji przeciwników OTW, naukowcy przeprowadzili 9 testów, które mogłyby wykazać błędność Ogólnej Teorii Względności. Dowodów niezgodności nie znaleziono. Testy z całą pewnością będą kontynuowane, bo taka jest istota badań naukowych. Wszelkie niezgodności jakie ewentualnie wystąpią między obserwacjami, a przewidywaniami OTW, mogą w przyszłości zaowocować poznaniem nowych zjawisk. Nie są to wszystkie testy jakim można poddać teorię grawitacji dzięki badaniu fal grawitacyjnych – wyjaśnia dr Adam Zadrożny z Zakładu Astrofizyki NCBJ, członek polskiej grupy badawczej Polgraw. Bardzo ciekawym przykładem był pomiar stałej Hubble’a dla obserwacji fal grawitacyjnych GW170817 i rozbłysku optycznego AT 2017gfo, które były wynikiem tego samego zdarzenia. Zostało to opisane w czasopiśmie Nature w 2017 roku (vol. 551, p. 85–88). Pomiar stałej Hubble’a wykonany przy użyciu danych z detektorów fal grawitacyjnych był zgodny z wynikami uzyskanymi innymi metodami. Warto też dodać, że prof. Andrzej Królak (IM PAN i NCBJ) razem z prof. Bernardem F. Schutzem (Cardiff University) w pracach w latach 80-tych dali postawy wielu metodom analizy danych z detektorów interferometrycznych takich jak LIGO i Virgo. Polska od 2008 roku jest częścią projektu Virgo. Polscy uczestnicy projektu tworzą grupę Polgraw, której przewodzi prof. Andrzej Królak (IM PAN, NCBJ). Grupa bierze udział zarówno w badaniach naukowych konsorcjum LIGO-Virgo-KAGRA (LVK) jak i w konstrukcji detektora Virgo. Wśród badań naukowych prowadzonych przez grupę Polgraw, w ramach LVK, są między innymi analiza danych, rozwijanie metod statystycznych, modelowanie źródeł fal grawitacyjnych oraz analizy emisji fal elektromagnetycznych towarzyszących emisji fal grawitacyjnych. W skład grupy Polgraw wchodzi 12 instytucji w tym Instytut Matematyczny PAN, CAMK (Warszawa), Obserwatorium Astronomiczne UW, Uniwersytet Zielonogórski, Uniwersytet w Białymstoku, NCBJ, Uniwersytet Wrocławski, CAMK (Toruń), Obserwatorium Astronomczne UJ, AGH, ACK Cyfronet AGH, Centrum Fizyki Teoretycznej PAN. W skład konsorcjum LVK wchodzą ze strony NCBJ prof. Andrzej Królak, dr Orest Dorosh, dr Adam Zadrożny i mgr Margherita Grespan. Prace prowadzone w NCBJ dotyczą metod detekcji sygnałów pochodzących od rotujących gwiazd neutronowych, infrastruktury umożliwiającej szybką detekcję sygnałów grawitacyjnych oraz nowych metod analizy i lokalizacji sygnału opartych o sieci neuronowe. « powrót do artykułu
  8. Reaktor MARIA jest jednym z głównych ośrodków napromieniania mikrosfer zawierających radioaktywny holm, które są stosowane w terapii nowotworów wątroby. Technologia opracowana w NCBJ na zlecenie firmy Quirem Medical – globalnego producenta mikrosfer teraperutycznych QuiremSpheres – służy pacjentom w kilkunastu wyspecjalizowanych klinikach w Europie. Mikrosfery o średnicy ok. 30 mikrometrów wykonane z polilaktydu holmu (polimeru kwasu mlekowego) służą do miejscowej radioterapii, głównie w przypadku nowotworów wątroby. Na etapie produkcji umieszcza się w nich stabilny izotop holm-165, który poprzez bombardowanie neutronami można przekształcić w radioaktywny izotop holm-166. Holm-166 ma bardzo przydatne właściwości. Jego czas życia jest stosunkowo krótki (ok. 27 godzin). Rozpadając się, emituje promieniowanie beta o energii ok. 2 MeV, którego zasięg w tkankach wynosi kilka milimetrów. Radioaktywny holm, uwięziony w mikrosferach, podaje się głównie pacjentom z zaawansowanymi nowotworami wątroby, wstrzykując zawiesinę z mikrogranulkami do odpowiednich naczyń krwionośnych prowadzących je do miejsca lokalizacji nowotworu. Promieniowanie beta, działając na dobrze zlokalizowanym obszarze, niszczy komórki rakowe, pozostawiając nietkniętą większość zdrowej części narządu. Procedura ta nazywana jest radioembiolizacją. Stosuje się ją w przypadku nowotworów nieoperacyjnych i niewrażliwych na chemioterapię. Holm ma dwie dodatkowe zalety: emituje także promieniowanie gamma, co pozwala precyzyjnie zlokalizować miejsca i ilości wprowadzonej do organizmu substancji radioaktywnej. Jest też paramagnetykiem, co stwarza dodatkowe możliwości m.in. śledzenia podanego specyfiku w organizmie. Jedyne stosowane obecnie w terapii mikrosfery zawierające holm są wytwarzane i dystrybuowane przez niderlandzką firmę Quirem Medical B.V. jako QuiremSpheres®. W 2017 r. zespół naukowców pracujących w reaktorze MARIA we współpracy z firmą Quirem Medical przystąpił do opracowania technologii napromienia mikrosfer holmowych. Zadanie wymagało dostosowania infrastruktury reaktora, a także wypracowania nowych rozwiązań technologicznych oraz procedur i nowej metodologii napromieniania materiałów tarczowych – opowiada dr inż. Rafał Prokopowicz, Kierownik Zakładu Badań Reaktorowych. Powodem tego jest fakt, że każda fiolka z mikrosferami zawiera naważkę przygotowaną do terapii konkretnego pacjenta i należy ją napromienić w taki sposób, aby w wyznaczonych dniu i godzinie terapii miała odpowiednią aktywność, ustaloną dla danego pacjenta” Każdy materiał podczas napromieniania podgrzewa się od promieniowania. Mikrosfery z poliaktydu są bardzo wrażliwe – ich degradacja może rozpocząć się już po osiągnięciu 60° C. Tymczasem muszą one zachować swój kształt podczas napromieniania, aby mogły swobodnie dostać się do leczonego miejsca po podaniu pacjentowi. „W celu poprawy warunków napromieniania mikrosfer, udoskonaliliśmy układ chłodzenia umieszczanych w reaktorze zasobników z mikrosferami” – wyjaśnia naukowiec. Konieczne było także umieszczenie w rdzeniu reaktora, tuż obok miejsca napromieniania, specjalnych detektorów promieniowania monitorujących cały czas warunki napromieniania. Stworzyliśmy specjalny algorytm i oparty na nim program komputerowy, który na podstawie sygnałów z detektorów ułatwia bardzo precyzyjne wyznaczanie czasu napromieniania poszczególnych zasobników z mikrosferami, tak aby uzyskały one aktywność wymaganą w czasie terapii. Jest to kluczowe narzędzie, niezbędne do prawidłowego napromieniania mikrosfer, ponieważ gęstość strumienia neutronów w reaktorze fluktuuje przez cały czas jego pracy. Naukowcy NCBJ we współpracy z Quirem opracowali także specjalne fiolki do napromieniania mikrosfer. Od nazwy reaktora zostały one nazwane fiolkami typu MARIA. Tajemnicą tych fiolek jest specjalne wyprofilowanie dna, które powoduje, że umieszczony w pojemniku materiał układa się w cienką, stosunkowo dobrze chłodzoną warstwę. Pojemniki plastikowe umieszcza się w zasobnikach metalowych, wprowadzanych później do kanałów pionowych reaktora – wyjaśnia inż. Łukasz Murawski, Kierownik Działu Technologii Napromieniań. Aby zapewnić jeszcze lepsze chłodzenie, we wnętrzu zasobnika powietrze zastępuje się helem. Tak przygotowane zasobniki wędrują pocztą hydrauliczną do miejsca napromieniania, a po odpowiednim czasie napromieniania w ten sam sposób są transportowane do komór gorących, gdzie przepakowywane są do pojemników transportowych. Dalej specjalna firma transportowa przewozi je ekspresowo do szpitala, gdzie czeka już pacjent. Najczęściej są to szpitale niemieckie i niderlandzkie. Czas gra tu wielką rolę, gdyż po upływie jednego dnia aktywność preparatu spada już o połowę. Ponieważ zapotrzebowania na realizację terapii pojawiają się z niewielkim wyprzedzeniem, zespół reaktora niemal przez całą dobę, 7 dni w tygodniu musi być gotowy do błyskawicznego przygotowania i przeprowadzenia napromieniania oraz ekspedycji mikrosfer. Wymaga to zaangażowania i ciągłej gotowości wielu specjalistów. Obecnie w reaktorze MARIA napromienia się fiolki z mikrosferami na potrzeby ponad 100 pacjentów rocznie. Są one wykorzystywane w kilkunastu klinikach rozsianych po całej Europie, m.in. w Roterdamie, Nijmegen, Utrechcie, Dreźnie, Magdeburgu, Jenie, Bazylei, Rzymie, Pizie, Barcelonie, Madrycie, Porto i innych. Od ponad trzech lat reaktor MARIA jest jednym z niewielu, a jednocześnie jednym z głównych miejsc napromieniowywania mikrosfer dla firmy Quirem. W związku z rosnącym zapotrzebowaniem na terapie radioembolizacji z zastosowaniem Ho-166, współpraca ta będzie kontynuowana i rozwijana – zapewnia dr inż. Michał Gryziński, dyrektor Departamentu Eksploatacji Obiektów Jądrowych NCBJ. Mamy nadzieję na wybudowanie przy reaktorze MARIA laboratorium, które pozwoli NCBJ stać się centrum dystrybucji mikrosfer QuiremSpheres w Europie Wschodniej oraz w Polsce, gdzie na razie ta forma terapii nie jest jeszcze dostępna. « powrót do artykułu
  9. Obliczenia wykonane przez polskich naukowców we współpracy z grupą uczonych z Dubnej (Rosja) pozwalają przewidywać z niedostępną dotąd dokładnością szanse wytworzenia nowych izotopów pierwiastków superciężkich. W pracy opublikowanej w prestiżowym czasopiśmie Physics Letters B zaprezentowali oni najbardziej obiecujące kanały produkcji szerokiej gamy izotopów o liczbie atomowej od 112 do 118 w różnych konfiguracjach zderzeń jądrowych prowadzących do ich powstania. Przewidywania wydają się być wiarygodne, jako że potwierdzają je ze znakomitą zgodnością dane eksperymentalne dostępne dla procesów już przebadanych. W pracy, która ukaże się w październikowym numerze Physics Letters B, międzynarodowy zespół naukowy zaprezentował nowe, niezwykle bogate i obiecujące wyniki przewidywań dla prawdopodobieństw (przekrojów czynnych) produkcji izotopów najcięższych pierwiastków o liczbach atomowych od 112 do 118. Obliczenia zostały przeprowadzone dla procesów fuzji indukowanej pociskami jądrowymi wapnia Ca-48 zgodnie z planami przyszłych eksperymentów. Polscy uczeni – prof. Michał Kowal, kierownik Zakładu Fizyki Teoretycznej Narodowego Centrum Badań Jądrowych i dr Piotr Jachimowicz z Uniwersytetu Zielonogórskiego – dostarczyli wyniki swoich rachunków uwzględniających niebrane do tej pory efekty, a mające ogromny wpływ na dokładność ostatecznie otrzymywanych wyników. Do tej pory, gdy liczono prawdopodobieństwa wytwarzania superciężkich izotopów, w ogóle nie brano pod uwagę efektów związanych z powłokowym charakterem punków siodłowych w rozszczepieniu jąder atomowych – wyjaśnia prof. Kowal. Wszyscy badacze zakładają brak efektów kwantowych dla tej kluczowej w procesie rozszczepienia konfiguracji jądrowej. My te efekty uwzględniliśmy, a co więcej podaliśmy przepis ich tłumienia wraz ze wzrostem temperatury tworzącego się superciężkiego układu jądrowego. Takie obliczenia nie były dotąd prezentowane nigdzie w literaturze. Aby uzyskać swój wynik, uczeni posłużyli się metodą statystyczną, generując miliony stanów nad stanem podstawowym i wspominanym punktem siodłowym. Metodę i wyniki opisali szczegółowo w równolegle skierowanej do publikacji pracy. Mając te wyniki, można było dość prosto policzyć prawdopodobieństwo przetrwania jąder wytworzonych w wyniku konkretnego zderzenia pocisku i odpowiednio dobranej tarczy – opowiada prof. Kowal. Po prostu, korzystając z podstawowej definicji prawdopodobieństwa przetrwania jądra złożonego, właściwie bez stosowania przybliżeń, oszacowaliśmy współzawodnictwo rozszczepienia z rożnymi innymi kanałami rozpadu. Badając stabilność i analizując możliwe kanały rozpadu tworzonych jąder, badacze uwzględnili zarówno rozpady poprzez emisję neutronów, jak i protonów oraz cząstek alfa. Wyniki zaprezentowane w pracy bardzo dobrze zgadzają się z danymi uzyskanymi w przeprowadzonych już eksperymentach. Jednocześnie autorzy wskazują na najbardziej obiecujące kanały produkcji nowych, niewytwarzanych dotąd izotopów, które mogłyby być wykorzystane w przyszłych planowanych eksperymentach. Rewelacyjna zgodność z istniejącymi funkcjami wzbudzania (prawdopodobieństwami syntezy jąder superciężkich) pozwala mieć zaufanie do zaprezentowanych prognoz i przewidywań. Szczególnie obiecujące dla niektórych kombinacji tarcza-pocisk okazują się kanały z emisją jednego protonu lub jednej cząstki alfa. Ten wynik jest intrygujący, gdyż może prowadzić do zupełnie nowych, nieznanych dziś izotopów jąder superciężkich. Ponieważ zaproponowane kanały reakcji nie są nadmiernie egzotyczne, a raczej łatwo dostępne w eksperymencie, już wkrótce okaże się, czy przewidywania uczonych co do możliwości produkcji tych nowych wyjątkowo ciężkich izotopów się potwierdzą. Już przed laty informowaliśmy, że ten sam zespół naukowy stwierdził, iż izomery pierwiastków superciężkich mogą być znacznie bardziej stabilne niż dotąd sądzono. « powrót do artykułu
  10. Europejska Organizacja Badań Jądrowych CERN pod Genewą zatwierdziła kilka dni temu nowy eksperyment, który będzie badał własności najlżejszych cząstek materii, tzw. neutrin. Jest to pierwszy tego typu eksperyment przy Wielkim Zderzaczu Hadronów (LHC), który rozpocznie nową erę badań nad neutrinami. W pracach nad projektem istotną rolę odegrał dr Sebastian Trojanowski z Narodowego Centrum Badań Jądrowych (NCBJ). Planowany eksperyment FASERν (na końcu nazwy grecka mała litera „ni”) ma być nie tylko pierwszym takim detektorem w samym LHC, ale też w całej historii podobnych doświadczeń, w których dwa strumienie cząstek lecących w przeciwległych kierunkach zderzają się ze sobą. Otwiera to nową, fascynującą erę badań nad neutrinami, które są najbardziej nieuchwytnymi spośród znanych nam obecnie cząstek elementarnych. Neutrina produkowane w LHC to najbardziej energetyczne neutrina wytworzone kiedykolwiek przez człowieka. Można je jedynie porównać do neutrin powstałych w ekstremalnych zjawiskach takich jak zderzenia wysoko energetycznych promieni kosmicznych z atmosferą ziemską. Eksperyment FASERν przy LHC umożliwi laboratoryjne badanie tych cząstek przy energiach, dla których jak dotąd nie było to możliwe. Detektor FASERν będzie częścią większego, niedawno zatwierdzonego eksperymentu FASER, którego jednym z czterech pomysłodawców jest dr Sebastian Trojanowski związany z NCBJ oraz Uniwersytetem w Sheffield w Wielkiej Brytanii. FASERν to wyjątkowo mały detektor w porównaniu z typowymi eksperymentami neutrinowymi – mówi dr Trojanowski, który był bezpośrednio zaangażowany w prace przygotowawcze prowadzące do zatwierdzenia nowego detektora. Będzie to prostopadłościan o długości nieco ponad metra i szerokości jedynie 25cm. Tak niewielki rozmiar można było uzyskać dzięki precyzyjnemu dobraniu lokalizacji detektora, w miejscu gdzie trafia przeważająca część bardzo silnej wiązki neutrin produkowanych w LHC w punkcie kolizji protonów w detektorze ATLAS. Instalację nowego detektora będzie można przeprowadzić bardzo szybko, a zbieranie pierwszych danych rozpocznie się wraz z ponownym uruchomieniem LHC już w 2021 roku. FASERν może również utorować drogę do innych eksperymentów neutrinowych w przyszłych zderzaczach cząstek, zaś rezultaty tych eksperymentów będą mogły zostać użyte podczas planowania przyszłych, znacznie większych detektorów neutrin – mówi dr Jamie Boyd, jeden z liderów projektu FASER, na co dzień pracujący w ośrodku CERN pod Genewą. Choć nowy detektor FASERν jest osobnym instrumentem badawczym w stosunku do głównego detektora FASER zatwierdzonego wcześniej w tym roku, współgranie obydwu części eksperymentu może odegrać kluczową rolę w prowadzonych badaniach nad fizyką neutrin. Dodatkowo, w gronie kilku fizyków teoretyków z NCBJ oraz laboratorium SLAC w Stanach Zjednoczonych przeprowadziliśmy już pierwsze analizy ekscytujących perspektyw na odkrycie całkiem nowych cząstek elementarnych przy współudziale obu części eksperymentu FASER. Planujemy dalsze takie badania w przyszłości – wyjaśnia dr Trojanowski. Badania wysoko energetycznych neutrin nie tylko pomogą nam lepiej zrozumieć przebieg burzliwych zdarzeń nieustannie zachodzących na styku atmosfery ziemskiej z przestrzenią kosmiczną, lecz również rzucą więcej światła na naturę oddziaływań tych trudnych do detekcji cząstek. Teoretyczne spekulacje dotyczące istnienia neutrin sięgają lat 30. XX wieku, ale pierwsza ich eksperymentalna obserwacja nastąpiła dopiero niemal ćwierk wieku później. W późniejszym okresie opracowano teoretycznie dość szczegółowy opis oddziaływań neutrin z innymi cząstkami materii, który nadal jednak nie został dogłębnie przetestowany eksperymentalnie, szczególnie w obszarze wysokich energii charakterystycznych dla detektora FASERν. Jednym z głównych celów eksperymentu będzie sprawdzenie, czy dokładne pomiary własności neutrin w tym zakresie energii są zgodne z przewidywaniami teoretycznymi i naszym obecnym stanem wiedzy, czy też nadszedł czas na weryfikację tych poglądów. Badanie neutrin jest jedną ze specjalności polskich fizyków i współpracujących kilku polskich ośrodków. Między innymi Warszawska Grupa Neutrinowa, której istotną część stanowią naukowcy z NCBJ, bierze udział w wielkim eksperymencie neutrinowym T2K w Japonii i przygotowuje kolejny eksperyment z planowanym jeszcze potężniejszym detektorem HyperKamiokande. W porównaniu z wielkimi eksperymentami neutrinowymi ulokowanymi w kopalniach jak T2K czy oceanach lub lodach Antarktydy, FASERν jest nową jakością i powinien dać naukowcom cenne oraz stosunkowo tanie narzędzie badania otaczającego nas świata. « powrót do artykułu
  11. European XFEL i Narodowe Centrum Badań Jądrowych (NCBJ) w Otwocku-Świerku pod Warszawą zamierzają ustanowić pierwsze ultraszybkie połączenie komputerowe Niemiec i Polski. Celem przedsięwzięcia jest wykorzystanie Centrum Superkomputerowego CIŚ w NCBJ do przetwarzania i analizy danych generowanych w European XFEL. Dedykowane połączenie komputerowe pomiędzy Hamburgiem i NCBJ będzie zapewniało szybkość transferu 100 gigabitów na sekundę (Gbit/s). Z wyjątkiem szybszego połączenia z DESY, to połączenie będzie około 100 razy szybsze niż obecne typowe połączenie internetowe European XFEL z innymi instytutami badawczymi. Dzięki niemu transfer danych dla średniego eksperymentu w obiekcie zajmuje około miesiąca . Dla porównania, szybkie łącza internetowe dla gospodarstw domowych zazwyczaj zapewniają około 250 Mb/s przy pobieraniu danych. Nowe połączenie będzie co najmniej 400 razy szybsze. W projekcie instalacji nowego szybkiego połączenia dla przesyłu danych, wraz z European XFEL i NCBJ, wezmą również udział: Niemiecka Krajowa Sieć Badań i Edukacji (DFN), Centrum Superkomputerowo-Sieciowe w Instytucie Chemii Bioorganicznej w Poznaniu (PCSS), Naukowa i Akademicka Sieć Komputerowa (NASK) oraz Deutsches Elektronen-Synchrotron (DESY). Pod koniec maja tego roku partnerzy podpisali protokół ustaleń, który posłuży jako podstawa i punkt wyjścia do ustanowienia nowego szybkiego połączenia. Można je w dużej mierze zbudować na istniejącej infrastrukturze technicznej, ale trzeba będzie dodać pewne szczególne elementy. Na przykład połączenie między niemieckimi i polskimi sieciami badawczymi będzie możliwe dzięki Uniwersytetowi Europejskiemu Viadrina we Frankfurcie nad Odrą i sąsiedniemu polskiemu miastu Słubice. Połączenie z NCBJ zapewni dodatkowe zasoby uzupełniające obecne zlokalizowane w Centrum Obliczeniowym DESY, gdzie wszystkie dane eksperymentalne z europejskiego XFEL były dotychczas analizowane i gdzie większość przetwarzania danych będzie nadal wykonywana. Dzięki laserowi rentgenowskiemu dostarczającemu do 27 000 impulsów na sekundę, najszybsze detektory urządzenia umożliwiają przechwytywanie do 8000 obrazów w wysokiej rozdzielczości na sekundę. W połączeniu z innymi danymi z lasera rentgenowskiego i jego instrumentów badawczych uzyskuje się ogromny strumień danych, wymagający specjalnego zarządzania i analizy w celu zapewnienia prawidłowego uzyskiwania informacji naukowych. Strumień danych może osiągnąć nawet wielkość 1 petabajta na tydzień w szczytowym czasie działania użytkownika, co odpowiada milionowi gigabajtów (GB). Analiza tych danych stanowi podstawę do określenia trójwymiarowej struktury molekuł, badania niezwykle szybkich procesów za pomocą tak zwanych filmów molekularnych oraz badania nowych i ultraszybkich zjawisk w badaniach materiałowych. Robert Feidenhans’l, dyrektor zarządzający European XFEL, powiedział: Współpraca z NCBJ w dziedzinie analizy danych jest przełomowym krokiem w kierunku coraz ściślejszego powiązania badań w Europie. Dodatkowe zasoby obliczeniowe nie tylko zwiększą wydajność, ale również zapewnią większą elastyczność operacyjną, co jest bardzo mile widziane. Musimy zwiększyć wymaganą wydajność obliczeniową dla naszych eksperymentów i cieszymy się, że wspólnie z naszymi partnerami NCBJ i DESY znaleźliśmy znakomite rozwiązanie. European XFEL to europejski laser na swobodnych elektronach zbudowany międzynarodowym wysiłkiem w Hamburgu w Niemczech. Narodowe Centrum Badań Jądrowych jest polskim współudziałowcem tej inwestycji. XFEL rozpoczął badania we wrześniu 2017 r. W liczącym ponad 3 km długości tunelu elektrony najpierw rozpędzane są do prędkości bliskiej prędkości światła, a następnie przepuszczane są przez specjalnie ukształtowane pole magnetyczne, co zmusza je do emisji promieniowania elektromagnetycznego o bardzo dobrze kontrolowanych parametrach. Wytworzone w ten sposób wiązki rentgenowskie docierające do hali eksperymentalnej w ultrakrótkich impulsach mogą być wykorzystywane przez fizyków, chemików, biologów i inżynierów do badania materii i procesów w niej zachodzących. PolFEL to polski laser na swobodnych elektronach budowany w NCBJ w Świerku na bazie doświadczeń zdobytych przy budowie lasera XFEL w Hamburgu. PolFEL będzie jedynym tego typu urządzeniem w Europie północno-wschodniej. Ze względu na swoją konstrukcję, w tym nadprzewodzące źródło elektronów opracowane przez naukowców ze Świerka, laser będzie oferował możliwości wykonywania badań dotąd niedostępnych na żadnym urządzeniu na świecie. Narodowe Centrum Badań Jądrowych jest instytutem działającym na podstawie przepisów ustawy o instytutach badawczych. Ministrem nadzorującym instytut jest minister energii. NCBJ jest największym instytutem badawczym w Polsce zatrudniającym ponad 1100 pracowników, w tym ponad 200 osób ze stopniem naukowym doktora, z czego ponad 60 osób ma status samodzielnych pracowników naukowych. W NCBJ pracuje ponad 200 osób z tytułem zawodowym inżyniera. Główna siedziba instytutu znajduje się w Otwocku w dzielnicy Świerk, gdzie zlokalizowany jest ośrodek jądrowy należący do NCBJ, w tym reaktor badawczy Maria. Instytut prowadzi badania naukowe i prace rozwojowe oraz wdrożeniowe w obszarze powiązanym z szeroko rozumianą fizyką subatomową, fizyką promieniowania, fizyką i technologiami jądrowymi oraz plazmowymi, fizyką materiałową, urządzeniami do akceleracji cząstek oraz detektorami, zastosowaniem tych urządzeń w medycynie i gospodarce oraz badaniami i produkcją radiofarmaceutyków. Instytut posiada najwyższą kategorię A+ przyznaną w wyniku oceny polskich jednostek naukowych dokonanej w 2017 r. Pozycję naukową instytutu wyznacza także liczba publikacji (ok. 500 rocznie) i liczba cytowań mierzona indeksem Hirscha (ponad 140). Są to wartości lokujące NCBJ w pierwszej piątce wśród wszystkich jednostek badawczych i akademickich w Polsce prowadzących porównywalne badania. « powrót do artykułu
  12. W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ). Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji. Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument. Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor. Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk. Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku. « powrót do artykułu
  13. Fizyczne Ścieżki to konkurs uczniowski, który co roku, począwszy od 2005 r., organizowany jest wspólnie przez Narodowe Centrum Badań Jądrowych w Świerku i Instytut Fizyki Polskiej Akademii Nauk w Warszawie. Konkurs rozpoczyna się w maju, a kończy Seminarium Finałowym w marcu lub kwietniu. Jest on przeznaczony dla tych wszystkich, którzy znajdują w sobie pasję badawczą i poznawczą, którzy mają pełne pomysłów głowy, dla humanistów, którzy patrzą na świat szeroko otwartymi oczami. Konkurs rozgrywa się w trzech kategoriach: pokaz zjawiska fizycznego, praca naukowa oraz esej. Pokaz zjawiska fizycznego – nie trzeba znać wszystkich subtelności (w tym matematycznych) fizyki, aby móc przygotować pasjonujący pokaz jakiegoś zjawiska – ważny jest przede wszystkim dobry pomysł, który zaciekawi widzów; Esej – skierowany do tych, którzy potrafią zauważyć, jak dalece fizyka kształtuje naszą cywilizację – w tym celu wystarczy dysponować tzw. lekkim piórem i nawet podstawową wiedzą fizyczną; Prace naukowe – kategoria wymagająca, ale nie oznacza to, że jedynie osoby z umysłem Einsteina są w stanie podołać temu zadaniu: trzeba się tylko odważyć i opanować reguły rządzące pracą naukową. Konkurs jest dwuetapowy: Uczestnik przesyła swoją pracę lub jej opis pocztą elektroniczną na adres organizatora. Nadesłane prace oceniają pracownicy naukowi i na podstawie ich ocen Jury typuje finalistów. Są oni zapraszani na seminarium finałowe gdzie prezentują swoje propozycje przed Jury i publicznością oraz odpowiadają na pytania Jury związane z ich pracą. Podczas seminarium finałowego wyłonieni są laureaci konkursu, którzy otrzymują nagrody, a wśród nich możliwość uzyskania indeksów wydziałów fizyki największych uczelni w Polsce, oraz staże w jednostkach naukowych zarówno polskich jak i zagranicznych. W tym roku odbywa się już XIV edycja konkursu. Po raz pierwszy w 14-letniej historii konkursu, Seminarium Finałowe odbywa się w Parku Naukowo-Technologicznym w Narodowym Centrum Badań Jądrowych. Uczestnicy i Opiekunowie pochodzący z całej Polski zostali zaproszeni do Instytutu, gdzie oprócz zaprezentowania swojej pracy przed Jury, mają możliwość zwiedzenia jedynego w Polsce reaktora jądrowego Maria. Konkurs objęty jest patronatem Ministra Edukacji Narodowej i Ministerstwa Nauki i Szkolnictwa Wyższego. Partnerzy i sponsorzy, to: Województwo Mazowieckie, Miasto Otwock, Powiat Otwocki, Centrum Nauki Kopernik i System Antyplagiatowy Plagiat.pl. Główne nagrody w konkursie to nagrody pieniężne sponsorowane przez Województwo Mazowieckie, nagrody rzeczowe ufundowało zaś Miasto Otwock i Powiat Otwocki. Pokaz zjawiska fizycznego: 1. Autonomiczny dom - Bartosz Bartoszewski, Michał Ściubisz, II kl. LO Budując nasz projekt, myśleliśmy przede wszystkim o naszym mieście uzdrowiskowym Busko Zdrój. Chcemy poprawić jakość tamtejszego powietrza. W tym celu zbudowaliśmy makietę samowystarczalnego domu. Zastosowaliśmy w nim systemy, dzięki którym wytwarza śladowe ilości szkodliwych substancji i jest tańszy w eksploatacji niż "standardowy" dom. Zbudowaliśmy od postaw m.in. biologiczną oczyszczalnię ścieków, wiatrak o osi pionowej, przyszły sposób transportu lotniczego, uprawę roślin i hodowlę zwierząt. Zastosowaliśmy również panele fotowoltaiczne. 2. Tornada i wiry - Bartosz Pater, Urszula Stokowska, Marta Błaż, IV–V kl. SP. Prezentujemy przykłady wirowania różnych przedmiotów i substancji. Wir w butelkach z wodą, tonikiem, brokatem. Ogniste tornado w metalowym koszu. Pokazujemy, że wir można uzyskać nie tylko podczas obracania, ale również, gdy mamy wąskie szczeliny i różne temperatury w powietrzu. Uzyskujemy wówczas ogniste tornado w szklanej przeciętej rurze i dymne tornado z podpałki grillowej. Pokazujemy żartobliwe optyczne tornado w kalejdoskopie z pleksi. Do uzyskania wiru gazowego użyliśmy suchego lodu oraz doniczki i folii spożywczej. Tworzymy wiry z pary wodnej, gwałtownie uderzając gaz. Tornado finansowe to również z naszej strony żart, ale wynikający z eksperymentowania i wyjaśniania DLACZEGO? Dlaczego nie wszystkie monety magnesują się? Dlaczego magnes rozrywa balon z monetami? Na koniec BANALNY wir w słoiku z wodą i koralikami. 3. Astroblaster - Mateusz Machaj, Kacper Górski, II kl. LO Często zdarza się, że gdy piłka mniejsza spada wraz z umiejscowioną pod nią większą na ziemię, odbija się ona znacznie wyżej niż to spodziewane. Postaramy się wprowadzić was w szczegóły takiego zjawiska oraz znaleźć układ zapewniający najbardziej widowiskowe odbicie. Projekt ASTROBLASTER ma na celu wyjaśnienie, czym jest przekazanie energii i pędu, za pomocą narzędzi matematycznych oraz fizycznej analizy doświadczalnej. 4. W krainie suchego lodu - Przemysław Sikorski, Aleksandra Guguła, III kl. GIM. Seria ciekawych doświadczeń fizycznych z wykorzystaniem suchego lodu jako tematu przewodniego. 5. Źródła prądu elektrycznego - Denis Janiak, Mariusz Majzner, III kl. LO Pokazujemy różne przykłady źródeł prądu elektrycznego. Ogniwa chemiczne: ogniwo galwaniczne (metalowe płytki w elektrolicie), żartobliwy kartoflany piesek z diodową główką, ogniwo cytrynowe. Ogniwo indukcyjne: prąd w zwojnicach uzyskujemy podczas spadania silnych magnesów neodymowych. Fotoogniwo otrzymaliśmy z płytek miedzianych, z których jedna była wytrawiana w ogniu palnika. Umieszczone w elektrolicie i oświetlane światłem UV są źródłem prądu w zamkniętym obwodzie. Termoogniwo umieszczamy w dwóch ośrodkach różniących się znacznie temperaturami. Otrzymujemy w obwodzie prąd dzięki termicznemu przesunięciu elektronów. Praca naukowa: 1. Badanie natężenia światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa - Michał Kogut, Milena Piasecka, III kl. GIM. Światło widzialne jest falą elektromagnetyczną i jak wszystkie fale elektromagnetyczne, składa się z połączonego oscylującego pola elektrycznego i magnetycznego, które są zawsze prostopadłe względem siebie. Polaryzacja światła polega na ukierunkowaniu oscylacji fali elektrycznej względem kierunku jej ruchu. Jeżeli światło pada na polaryzator liniowy, ma zastosowanie prawo Malusa. Nasz eksperyment miał na celu sprawdzić natężenie światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa. Aby sprawdzić tę zależność, najpierw dokonywaliśmy pomiarów wartości natężenia światła przechodzącego przez 2 i 3 filtry, później porównywaliśmy te wartości z wynikami obliczeń. Nasze badania pokazały, że prawo Malusa jest spełnione dla 3 filtrów. 2. Zastosowanie dekompozycji LU do oscylatora anharmonicznego – Mikołaj Myszkowski, II kl. LO Oscylator anharmoniczny ma szerokie zastosowanie w wielu dziedzinach fizyki teoretycznej. W pracy przedstawiono ogólny przypadek nieliniowego oscylatora anharmonicznego przy użyciu reprezentacji macierzowej. Zapis Hamiltonianu za pomocą operatorów kreacji i anihilacji, a następnie rozkład metodą LU pozwala na otrzymanie nowych wyników, takich jak równanie poziomów energetycznych, które jest nieskończone, a przez to nierozwiązywalne. Przedstawiono także nową metodę przybliżoną, a otrzymane wartości są porównane do metod perturbacyjnych. 3. Czas zderzenia sprężystego - Wojciech Kulpa, Konrad Karaba, II kl. LO Celem pracy jest pomiar czasu zderzenia sprężystego dwóch metalowych kul. Doświadczenie to wykonaliśmy, stosując dwie niezależne metody: analogową i cyfrową. W metodzie analogowej zastosowaliśmy kondensator, który zostanie naładowany, a następnie podczas zderzenia częściowo rozładowany. Teoria obwodów elektrycznych pozwoli nam obliczyć czas rozładowywania się kondensatora. W metodzie cyfrowej zastosujemy to, co komputer "lubi najbardziej" – liczenie. Co zatem będzie liczył? Liczył będzie impulsy taktowane przez wewnętrzny zegar o częstotliwości 1MH. Rozpoczęcie i zakończenie zliczania uwarunkowane będzie sygnałem zewnętrznym, czyli zetknięciem się kul. Zetknięte kule zmienią poziom logicznego "1" na "0" na jednym z pinów portu wejściowego mikrokontrolera. Wynik przekazany będzie na ekran komputera. 4. Bezpieczny lot – innowacyjna modyfikacja skrzydła - Bartosz Piechocki, III kl. LO W dzisiejszych czasach przemysł lotniczy szybko się rozwija, a konstruktorzy samolotów muszą wymyślać nowe rozwiązania problemów, aby ich samolot był wydajniejszy i bezpieczniejszy. Jako pilot zauważyłem, że w małym lotnictwie problemem jest szczelina, która tworzy się pomiędzy skrzydłem a sterami podczas ich wychylania. Chciałem sprawdzić, jak mój pomysł na modyfikację skrzydła w postaci "załatania" szczeliny elastycznym materiałem ulepszy jego osiągi, więc wymyśliłem 2 eksperymenty. W pierwszym sprawdziłem, czy moja modyfikacja polepsza przepływ powietrza oraz siłę nośną. W drugim eksperymencie sam wykonałem profesjonalny tunel aerodynamiczny, który umożliwił mi dokładne badania nad siłą nośną, oporem i przepływem powietrza. Wyniki pokazały polepszenie się charakterystyk i osiągów skrzydła. 5. Microwave Resonant Cavity Thruster, silnik mikrofalowy - Jakub Jędrzejewski, IV kl. Tech. Na początku XIX wieku angielski inżynier Roger Shawyer opublikował informację na temat swojego silnika, który wykorzystując fale elektromagnetyczne z zakresu mikrofal ma wytwarzać ciąg. Problemem okazało się wyjaśnienie teoretyczne powstawania siły, gdyż nikt nie jest w stanie do dnia dzisiejszego jednoznacznie wyjaśnić zasady działania silnika. Postawiłem sobie pytania: Czy on rzeczywiście działa? Jak to sprawdzić? W mediach pojawiły się informację, że silnik EmDrive łamie trzecią zasadę dynamiki Newtona. Czy aby na pewno? W celu sprawdzenia odpowiedzi na postawione pytania wykonałem własny model silnika wraz z systemem zasilania i kontroli. Ponieważ siły, które mogłyby być wygenerowane przez silnik, są bardzo małe, musiałem zaprojektować również specjalne stanowisko pomiarowe, które jest w stanie mierzyć siły z dokładnością przynajmniej rzędu μN, a nawet większą. 6. Fuzor – reaktor syntezy termojądrowej - Filip Tomczyk, Jakub Jędrzejewski, III i IV kl. Tech. Teoria opisująca działanie fuzora została opracowana przez amerykańskiego wynalazcę Phila Farnswortha we wczesnych latach 30. ubiegłego wieku. Wspomniane urządzenie stanowi rozwiązanie największych problemów stających na drodze naukowców, pojawiających się przy próbach wywołania i utrzymania zjawiska fuzji termojądrowej innymi metodami. Mimo że jest to urządzenie powstałe ponad 85 lat temu, sposób jego działania w połączeniu z obecnie dostępną technologią powinien pozwolić dogłębnie oraz bezpiecznie badać zjawisko fuzji. Nieokiełznana dotąd fuzja może być w przyszłości dla nas bezpiecznym oraz odnawialnym źródłem energii, posiadającym sporą przewagę nad energią atomową. W przeciwieństwie do niej nie daje możliwości wystąpienia jakiejkolwiek awarii, a także nie generuje odpadów radioaktywnych o długim okresie połowicznego rozpadu. Dodatkowo wyłączenie reaktora jest niemal natychmiastowe. Energia powstała przy łączeniu lekkich jąder, czyli syntezie termojądrowej, jest dużo większa niż energia uwolniona przy rozszczepianiu ciężkich jąder uranu. Cecha negatywna syntezy to duża ilość włożonej pierwotnej energii, potrzebnej do zainicjowania reakcji. Jest ona jednak nieistotna, biorąc pod uwagę pozostałe zalety fuzji. Jednakże, aby móc marzyć o takiej przyszłości, trzeba zacząć kreować ją już dziś. Jest to nasz główny cel przyświecający tworzeniu fuzora. Założeniem naszego projektu jest budowa reaktora termojądrowego nazywanego fuzorem. Jest to akcelerator cząstek zdolny do przeprowadzenia fuzji deuteru. Głównym celem projektu było zdobycie i opublikowanie jak największych ilości danych powiązanych ze wspomnianym zjawiskiem, które mogą zostać wykorzystane w przyszłych badaniach. Podczas badań chcemy sprawdzać wpływ wielu czynników na zjawisko fuzji, m.in. wpływ materiału siatki klatki elektrostatycznej na przebieg fuzji oraz uzyskany bilans energetyczny. Projekt urządzenia jest oparty o fuzor Farnswortha–Hirscha, jednakże jest to praca całkowicie autorska, ponadto wprowadzimy wiele usprawnień. 7. Panta Rhei..... Czasem w górę - Dominik Filipczak, I kl. LO Praca obejmuje zagadnienia związanie z podstawami reologii i zjawiskami, które zachodzą w płynach nienewtonowskich. Jej głównym tematem jest efekt Weissenberga. Zbadano czynniki wpływające na wynik efektu dla dwóch cieczy nienewtonowskich. Czynnikami tymi były: zmiana stężenia cieczy oraz szybkość obracania pręta, na który wznosi się ciecz. 8. Ile waży Ziemia - Julia Czachorowska, Alicja Grzybowska, Małgorzata Rękawiecka, III kl. GIM. Zadaniem zespołu było jak najdokładniejsze wyznaczenie masy Ziemi na podstawie własnych pomiarów, bez użycia nowoczesnych rozwiązań i urządzeń. Inspirację zaczerpnęłyśmy z badań przeprowadzonych przez Eratostenesa. Postanowiłyśmy iść tym śladem i obliczyć masę Ziemi ze wzoru, do którego wyznaczyłyśmy w jak najprostszy sposób wszystkie potrzebne wielkości (za wyjątkiem stałej grawitacji). Podczas pracy tworzyłyśmy proste przyrządy służące do mierzenia kąta padania promieni słonecznych. Na podstawie jednoczesnych pomiarów w centrum i na północy Polski, wyliczyłyśmy promień Ziemi. Wyznaczyłyśmy też przyspieszenie ziemskie przez mierzenie czasu spadania upuszczanych ołowianych kulek. Otrzymana przez nas wartość masy Ziemi różni się o mniej niż 10% od wartości tablicowej. Esej: 1. Kosmiczny mechanizm – Agata Ślusarska, III kl. GIM. Ludzie w dzisiejszych czasach różnie spoglądają na świat i naukę. Niektórzy zachwycają się wszystkimi wspaniałościami, które nas otaczają, inni nie widzą niczego poza czubkiem własnego nosa, wykorzystują daną im władze do okrutnych celów lub są całkowicie obojętni na piękno Wszechświata. 2. Rozmyślania podczas sprzątania biurka - Maria Krzyżowska, I kl. LO Dokąd zmierza nasz świat? Jak będzie wyglądał jego koniec? Pytania te nurtowały filozofów od wieków. Myślę, że każdy z nas zadał je sobie chociaż raz. Z odpowiedzią przychodzi nam druga zasada termodynamiki. W mojej pracy opowiem, czym jest entropia, dlaczego nazywamy ją strzałką czasu oraz jaki związek z tym wszystkim ma zabałaganione biurko. « powrót do artykułu
  14. Detektor POLAR został uruchomiony we wrześniu 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2. Naukowcy opublikowali właśnie pierwsze wyniki naukowe w czasopiśmie Nature Astronomy. POLAR jest efektem współpracy pomiędzy Szwajcarią (Uniwersytet w Genewie i Paul Scherrer Institut), Polską (Narodowe Centrum Badań Jądrowych) i Chinami. Błyski gamma (GRB) są obserwowane jako bardzo krótkotrwałe sygnały rentgenowskie pochodzące ze źródeł, które znajdują się w kosmologicznych odległościach od Ziemi. Te źródła emitują w ciągu kilku sekund więcej energii niż Słońce w czasie całego swojego życia i nie wiadomo, jak to robią. Kierunki błysków nie powtarzają się, więc prawdopodobnie emisji towarzyszy jakaś nieodwracalna katastrofa kosmiczna. Obecnie GRB obserwowane są średnio ok. raz dziennie przez kilka detektorów satelitarnych. Od lat 60/70 XX w. mierzone są kierunki błysków, intensywności i energie fotonów gamma oraz ich zmienność w czasie. POLAR otworzył nowe "okno": pomiar polaryzacji tego promieniowania. POLAR to największy detektor przeznaczony do pomiaru polaryzacji kwantów gamma z GRB, wystarczająco duży i precyzyjny, aby wykonać pomiary wielu błysków i wiarygodnie określić polaryzację. POLAR zmierzył 55 GRB. Do określenia polaryzacji potrzeba tysięcy fotonów z GRB. Z opublikowanych właśnie pierwszych danych na temat polaryzacji pięciu błysków gamma wynika, że wyznaczony stopień polaryzacji fotonów w błyskach we wszystkich przypadkach jest bardzo mały. W przypadku najjaśniejszego błysku było możliwe zmierzenie polaryzacji oddzielnie w kolejnych chwilach czasu. Okazało się, że w każdym momencie pomiaru została stwierdzona wysoka polaryzacja, ale kierunek polaryzacji obracał się w czasie. Obserwowana polaryzacja wymaga kierunkowego uporządkowania źródła emisji, a szybka zmienność kierunku polaryzacji sugeruje jakąś nową, nieznaną i niezbadaną własność emitera. Zjawisko to może być bardzo interesujące. Jeśli chcemy lepiej zrozumieć proces emisji GRB, musimy zbudować o wiele większy detektor niż POLAR. Obecnie naukowcy przygotowują bardziej wydajny detektor POLAR-2 i mają nadzieję uruchomić go w 2022 roku na następnej chińskiej stacji kosmicznej. Współtwórcami kluczowych elementów eksperymentu POLAR byli polscy naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych*. Bezpośrednio w prace zaangażowanych było ok. 10 osób, w tym z łódzkiej Pracowni Fizyki Promieniowania Kosmicznego NCBJ i z Zakładu Elektroniki i Systemów Detekcyjnych NCBJ w Świerku. Jednym z osiągnięć współpracy było zaprojektowanie i wybudowanie centralnego układu dokonującego selekcji przypadków (trygera) i oprogramowanie go. Z uwagi na ograniczoną możliwość komunikacji urządzenia satelitarnego z Ziemią przesyłane dane muszą podlegać selekcji jeszcze w kosmosie. M.in. odrzucane są zdarzenia wywołane przez jonizujące cząstki promieniowania kosmicznego. Najciekawsze są zdarzenia, podczas których w detektorze nastąpiło co najmniej podwójne rozproszenie fotonu gamma w bardzo krótkim odstępie czasu. Takie przypadki wykorzystuje się od określenia polaryzacji fotonów gamma z rozbłysku. W pracowni NCBJ w Łodzi powstał prototyp zasilacza wysokiego napięcia dla 25 fotopowielaczy POLARa. Jest to projekt zmarłego w 2016 r. znakomitego elektronika p. Jacka Karczmarczyka. Oprócz prac technicznych Polacy uczestniczyli także we wszystkich fazach testowania detektora podczas badań kwalifikacyjnych oraz funkcjonalnych. Wszystkie elementy detektora muszą wytrzymać ekstremalne warunki: próżnię, gwałtowne wstrząsy, duże przeciążenia, wysoką i niską temperaturę, a także wysokie dawki promieniowania. W Świerku prototypowano także plastikowe detektory scyntylacyjne, służące do detekcji promieniowania gamma. Matryca 1600 takich scyntylatorów jest sercem detektora POLAR. « powrót do artykułu
  15. Praca zespołu teoretyków z Narodowego Centrum Badań Jądrowych i Uniwersytetu Zielonogórskiego wskazuje, że niektóre stany izomeryczne pierwiastków superciężkich mogą mieć czasy życia mierzone w sekundach, a więc dziesiątki tysięcy razy dłuższe niż czasy życia ich bardzo niestabilnych stanów podstawowych. Jeśli takie egzotyczne stany jądrowe zostaną wytworzone eksperymentalnie, będą wystarczająco stabilne, by badać ich własności chemiczne. Tablica Mendelejewa zawiera obecnie 118 pierwiastków, ale tylko 80 z nich ma izotopy stabilne. Jądra izotopów niestabilnych wcześniej czy później ulegają rozpadowi. W niektórych przypadkach czas połowicznego rozpadu jest bardzo długi, liczony w milionach lat, w innych czas ten wynosi mniej niż milionowe części sekundy. Nietrwałe są wszystkie izotopy pierwiastków najcięższych. Czasy życia krótsze niż sekunda nie pozwalają przy obecnym stanie techniki ustalić własności chemicznych pierwiastka, w szczególności grupy układu okresowego, do której należy. Jądra atomowe są układami złożonymi z protonów i neutronów, które oddziałują między sobą w sposób, który obecnie potrafimy opisać jedynie w przybliżeniu. W najcięższych jądrach łączna liczba nukleonów - protonów i neutronów - sięga 300. W świecie makroskopowym, znanym z codziennego doświadczenia, układy złożone mogą ulegać zaburzeniom, np. zaczynają drgać lub obracać się, pozostając nadal związane. W świecie układów złożonych tworzących jądra atomowe, którym rządzą prawa fizyki kwantowej, także mogą wystąpić zaburzenia, a odpowiadają im przejścia układów do stanów wzbudzonych. Różnica – i w gruncie rzeczy istota świata w skali kwantowej – polega na tym, że energie i inne parametry kwantowych stanów wzbudzonych, nie mogą w wyniku zaburzenia zmienić się dowolnie. Dopuszczalne zmiany są ściśle porcjowane czyli skwantowane. Jądro w stanie wzbudzonym ma energię większą od energii stanu podstawowego i na ogół szybko, w czasie rzędu jednej bilionowej części sekundy, powraca do niego, oddając energię wzbudzenia w postaci emisji kwantów gamma. Jednak w niektórych jądrach zdarzają się takie stany wzbudzone, które trwają przez czas wyraźnie dłuższy – nazywa się je izomerami. Jednym z przejawów ich wewnętrznego wzbudzenia może być zmiana spinu, czyli kwantowego odpowiednika momentu pędu, mierzącego jak „szybko wirują składniki układu”. Jądra w stanie izomerycznym tworzą atomy o tych samych własnościach chemicznych co jądra w stanie podstawowym. W 2001 roku odkryto w ośrodku GSI w Niemczech izomer izotopu pierwiastka darmsztadt o liczbie masowej 270. Okazało się, że rozpada się on poprzez emisję cząstki alfa, tak jak większość pierwiastków superciężkich, ale jego czas życia jest ok. 60 razy dłuższy niż czas życia tego samego izotopu w stanie podstawowym. Izomery żyjące dłużej niż stan podstawowy znane były w przypadku lżejszych jąder. Jednak rozpad izomeru darmsztadtu poprzez emisję cząstki alfa oznaczał, że typowy rozpad elektromagnetyczny (gamma) jest dla tego jądra mniej prawdopodobny. Pojawiło się naturalne pytanie, czy istnieją też inne izomery pierwiastków superciężkich, których czasy życia są wydłużone w stosunku do czasów życia ich stanów podstawowych. Zespół polskich fizyków podjął próbę oceny efektów odpowiedzialnych za wzbronienie rozpadu alfa. Naukowcy, przeprowadzając obliczenia i oszacowania, poszukiwali takich jąder superciężkich, dla których rozpad alfa byłby najbardziej wzbroniony. Można oczekiwać, że jądra takie są najlepszymi kandydatami na długożyciowe izomery. Czysto eksperymentalne określenie struktury stanu wzbudzonego jest w zasadzie niemożliwe – wyjaśnia prof. Michał Kowal, kierownik Zakładu Fizyki Teoretycznej NCBJ. Podejrzewano dotychczas, że za obserwowaną stabilność izomeru darmsztadt-270m odpowiedzialne jest wzbudzenie pary neutronowej. Z naszych rachunków wynika, że o stabilności decydują raczej wzbudzenia protonowe. Stany wzbudzone, z którymi mamy tu do czynienia, można wyobrażać sobie jako układy, w których część nukleonów – na przykład dwa protony, dwa neutrony lub obie te pary jednocześnie – nie znajduje się w swym podstawowym położeniu, lecz krąży wokół rdzenia jądra w tę samą stronę. W niektórych jądrach taki stan wzbudzony może mieć całkowity spin o wartości sięgającej 19 lub 20 stałych Plancka. Dominującym kanałem rozpadu rozważanych jąder jest rozpad alfa, czyli emisja jądra helu zbudowanego z dwóch protonów i dwóch neutronów. Rozpad alfa jąder ze stanów izomerycznych może zachodzić do stanu podstawowego lub do któregoś ze stanów wzbudzonych jądra potomnego (końcowego). Nikt dziś nie umie obliczyć dokładnie czasu życia izomeru ze względu na rozpad alfa – dodaje prof. Kowal. Wiadomo jednak, że wzbronienie rozpadu alfa związane jest z co najmniej trzema przyczynami: różnicą struktury lub spinu stanów początkowego i końcowego oraz różnicą energii tych stanów. Rozpad alfa do jądra potomnego w stanie podstawowym wymaga zmiany spinu jądra o dwadzieścia jednostek stałej Plancka. To bardzo dużo! Bariera centryfugalna związana z taką zmianą jest ogromna i praktycznie całkowicie blokuje ten rozpad. Ponadto, ze względu na zupełnie odmienną strukturę stanów początkowego i końcowego, rozpad jest dodatkowo silnie wzbraniany. Te dwa efekty powodują, że rozpad do stanu podstawowego jądra potomnego będzie niesłychanie mało prawdopodobny. Z kolei rozpad do jądra potomnego w stanie wzbudzonym o podobnym spinie co pierwotne jądro izomeryczne, zachodzi z dużym prawdopodobieństwem jedynie wtedy, gdy stan ten ma odpowiednio niską energię wzbudzenia w porównaniu do energii wzbudzenia jądra emitującego. W przypadku niektórych rozważanych przez nas jąder tak nie jest i dlatego podejrzewamy, że dla tych stanów początkowych wystąpi silne stłumienie rozpadu alfa, a w konsekwencji stan izomeryczny będzie miał długi czas życia. Praca polskich fizyków ukazała się w czasopiśmie Physical Review C i została zaprezentowana na cyklu tegorocznych letnich konferencji fizyki jądrowej. Analizowaliśmy egzotyczne stany w najcięższych jądrach o parzystych liczbach protonów i neutronów – opowiada prof. Janusz Skalski (NCBJ). Opisaliśmy mechanizm wzbronienia i podaliśmy kandydatów na długo żyjące stany jądrowe. Przeprowadzone przez nas obliczenia i oszacowania wskazują, że długożyciowe stany izomeryczne o strukturze jednoczesnego wzbudzenia dwóch par – protonowej i neutronowej, powinny występować w czterech izotopach darmsztadtu. Nie spodziewamy się wystąpienia takich izomerycznych długo żyjących konfiguracji w izotopach pierwiastków o liczbach atomowych Z=106, 108 i 112. „Przewidywane przez nas wzbronienia rozpadu alfa stanów dwuprotonowych są duże dla właściwie wszystkich jąder darmsztadtu” – uzupełnia dr Piotr Jachimowicz (Uniwersytet Zielonogórski). Oszacowane w pracy czasy życia tych izomerów to setki, a nawet tysiące milisekund czyli o trzy do pięciu rzędów wielkości więcej niż czasy życia ich stanów podstawowych. Przedstawiony wynik to jak na razie tylko przewidywania teoretyczne. Naukowcy liczą jednak na to, że w niedługim czasie uda się ich przewidywanie sprawdzić eksperymentalnie. Jest całkiem prawdopodobne, że podobne stany były już wytworzone w prowadzonych w przeszłości eksperymentach, ale nikt ich nie zauważył, bo nastawiano się w tych pomiarach na czasy życia znacznie krótsze – wyjaśnia prof. Kowal. Obecnie nie powinno być większych problemów z wykonaniem odpowiednich pomiarów. Kilka laboratoriów na świecie dysponuje odpowiednimi możliwościami. Być może takie doświadczenia będzie można za kilka lat przeprowadzić także w Warszawie, jeśli zostanie zrealizowany projekt zakupienia nowego cyklotronu dla Środowiskowego Laboratorium Ciężkich Jonów na Uniwersytecie Warszawskim. Jeśli nasze przewidywania co do stabilności izomerów zostaną potwierdzone, to otworzą się zupełnie nowe możliwości dla badań chemii pierwiastków superciężkich. « powrót do artykułu
  16. Projekt PolFEL polskiego lasera na swobodnych elektronach przygotowany przez konsorcjum ośmiu jednostek naukowych uzyska finansowanie z Programu Operacyjnego Inteligentny Rozwój. Decyzja o przeznaczeniu na ten cel kwoty ponad 118 mln. zł dotarła do NCBJ, gdzie powstać ma nowe urządzenie badawcze. Polski projekt będzie wspierany naukowo i technicznie m.in. dzięki współpracy NCBJ z twórcami najpotężniejszego tego typu urządzenia na świecie pracującego od roku w Hamburgu. Lasery na swobodnych elektronach, których już kilkadziesiąt powstało na świecie, pozwalają badać z niedostępną innymi metodami precyzją materiały, molekuły chemiczne, cząsteczki biologiczne i dynamikę procesów, w których one uczestniczą. Wyniki badań prowadzonych przy użyciu tych urządzeń mogą mieć rewolucyjne znaczenie dla medycyny, chemii czy elektroniki. Mamy ambitny plan by zbudować PolFEL w ciągu najbliższych czterech lat - wyjaśnia dr Paweł Krawczyk (NCBJ), który kieruje projektem. W konstrukcji naszego lasera na swobodnych elektronach można wydzielić cztery zasadnicze elementy. Pierwszy z nich to źródło elektronów wyposażone w nadprzewodzącą fotokatodę. Kolejne, to cztery nadprzewodzące kriomoduły przyspieszające elektrony do energii osiągającej maksymalnie 180 MeV. Na drodze wiązek rozpędzonych elektronów zostaną umieszczone dwa undulatory, w których elektrony będą poruszać się slalomem w niejednorodnym, specjalnie ukształtowanym polu magnetycznym. W czasie wymuszonego ruchu oscylacyjnego nastąpi akcja laserowa i elektrony będą emitować fotony układające się w niezwykle krótkie, lecz intensywne impulsy spójnego promieniowania elektromagnetycznego, czyli światła. Na końcu układu znajdą się trzy stanowiska eksperymentalne, do których będą wyprowadzone wiązki fotonów i jedno wykorzystujące wiązkę elektronów. PolFEL będzie mógł wytwarzać światło o długości fali powyżej 100 nanometrów, a więc obejmującej część zakresu ultrafioletu. Badacze będą mieli do dyspozycji także promieniowanie o większej długości fali, w tym promieniowanie terahercowe i podczerwone. Planujemy, by PolFEL działał nie tylko w trybie impulsowym – tak jak wszystkie dotychczas istniejące lasery na swobodnych elektronach – ale również w trybie fali ciągłej, w którym pulsy promieniowania generowane są ze stałą częstością” – dodaje dr Krawczyk. „Pozwoli to na badanie niektórych rzadkich procesów, umykających dotychczas stosowanym metodom. ,PolFEL powstanie w przebudowanej, historycznej hali pierwszego zbudowanego w Świerku akceleratora protonów Andrzej. Obok niej wzniesiona zostanie nowa hala mieszcząca stanowiska badawcze. Do hali Andrzeja dobudowane zostaną pomieszczenia nowego laboratorium fotokatod nadprzewodzących. Realizacja przedsięwzięcia będzie możliwa dzięki ogromnemu doświadczeniu zdobytemu przez polskich naukowców i inżynierów podczas budowy lasera XFEL w Hamburgu. NCBJ jest współudziałowcem międzynarodowej spółki będącej jego właścicielem, a w budowie lasera obok NCBJ uczestniczyły także inne polskie instytucje w tym IFJ PAN i Wrocławski Park Technologiczny. Owocne partnerstwo NCBJ z laboratorium w Niemczech jest nadal podtrzymywane. 25 czerwca został podpisany aneks do umowy o współpracy pomiędzy NCBJ a European XFEL GmbH. Dotychczasowa umowa przewidywała współpracę przy przetwarzaniu danych zbieranych przez eksperymenty prowadzone w Hamburgu. W aneksie rozszerzono pole współpracy w dziedzinie przetwarzania danych oraz dodano wspólne prace nad technologiami wykorzystywanymi w laserach na swobodnych elektronach, a także zaplanowano udział NCBJ w przygotowywaniu koncepcji wykorzystania dwóch z pięciu tuneli wyprowadzających wiązki cząstek z akceleratora XFEL. Konsorcjum XFEL jest zainteresowane między innymi prowadzonymi u nas od kilku lat pracami nad ołowianymi fotokatodami nadprzewodzącymi - wyjaśnia dyrektor NCBJ, prof. Krzysztof Kurek. Opracowywane fotokatody mają umożliwić pracę laserów na swobodnych elektronach w trybie fali ciągłej lub w trybie długich impulsów. Takie katody chcemy zastosować także w laserze, który zostanie zbudowany w Świerku. Naukowcy z NCBJ zgłaszają również koncepcję wykorzystania nowatorskiej metody uzyskiwania monoenergetycznych wiązek fotonów gamma w jednym z kanałów XFELa. Fotony takie powstawałyby w wyniku zderzenia elektronów pochodzących z akceleratora lasera z wiązką fotonów emitowaną przez tradycyjny laser. Ta koncepcja ma być realizowana również w projekcie PolFEL. Laboratorium PolFEL, które powstanie w ośrodku jądrowym NCBJ w Świerku, będą współtworzyć gospodarze oraz specjaliści z Wojskowej Akademii Technicznej, Politechniki Warszawskiej, Politechniki Łódzkiej, Politechniki Wrocławskiej, Uniwersytetu Zielonogórskiego, Uniwersytetu w Białymstoku i Uniwersytetu Jagiellońskiego. Polskich naukowców będą wspierać partnerzy NCBJ - m.in. laboratoria DESY, STFC Lab Daresbury, a także European XFEL GmbH i firmy RI Research Instruments GmbH i Kubara Lamina S.A. Większość środków będzie pochodziła z Programu Operacyjnego Inteligentny Rozwój ustanowionego przez Unię Europejską. Jednostką wdrażającą Program pośredniczącą w procesie finansowania przedsięwzięcia jest Ośrodek Przetwarzania Informacji (OPI) - Państwowy Instytut Badawczy. Akcelerator lasera PolFEL będzie działał w trybach fali ciągłej (cw) i długiego impulsu (lp). Elektrony będą rozpędzane przez cztery kriomoduły, mieszczące w 8 wnękach typu TESLA SRF. Wiązki o energii 120 MeV i 160 MeV w trybie cw i lp zostaną skierowane do undulatora VUV, podczas gdy niższe wiązki energii będą napędzać undulator THz. Wygenerowane promieniowanie w zakresie od 0,3 mm do 150 nm dla pierwszej harmonicznej (50 nm dla trzeciej harmonicznej) zostanie dostarczone do eksperymentów przeprowadzanych w dedykowanej sali eksperymentalnej. Oczekiwana energia impulsu będzie na poziomie 100 μJ dla VUV i dziesiątek mikrodżuli dla promieniowania THz. Maksymalna częstotliwość błysków fotonowych w wiązce wyniesie 100 kHz. Wiązka elektronów po przejściu przez undulator VUV będzie wtórnie wykorzystywana do generowania neutronów lub będzie używana do rozpraszania wstecznego Comptona. Część czasu pracy urządzenia zostanie poświęcona badaniom nad rozwojem technologii FEL i nowym komponentom akceleratora we współpracy ze STFC Daresbury, E-XFEL i DESY.Budowa rozpocznie się w styczniu 2019 r. i powinna zakończyć się w 2022 r. « powrót do artykułu
×
×
  • Dodaj nową pozycję...