Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Jowisz' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 9 wyników

  1. Co prawda misja Europa Clipper wystartuje dopiero w przyszłym roku, ale NASA już zbiera dane osób, które chcą wysłać swoje nazwisko na orbitę Jowisza. Projekt nazwano Message in a bottle, gdyż głównym celem misji jest zbadanie Europy, pokrytego oceanem księżyca, w którego wodach może istnieć życie. Europa to szósty największy księżyc Układu Słonecznego, szósty najbliższy swojej planecie ze wszystkich 95 księżyców Jowisza i ma najbardziej gładką powierzchnię ze wszystkich ciał stałych w Układzie Słonecznym. Start misji planowany jest na 10 października 2024 roku, a w kwietniu 2030 roku pojazd po raz pierwszy spotka się z Europą. Celem misji będzie zbadanie pokrywy lodowej i oceanu pod nią położonego, ich składu chemicznego oraz opisanie powierzchni lodu oraz wykrycie miejsc niedawnej aktywności geologicznej. Europa Clipper nie zostanie wprowadzony na orbitę Europy. Pojazd będzie okrążał Jowisza i w ciągu 3,5 roku przeleci koło księżyca 44 razy, zbliżając się do niego na odległość od 2700 do 25 kilometrów. Za każdym razem obejrzy inny fragment księżyca, przeprowadzając globalne badanie topograficzne, w tym mierząc grubość pokrywy lodowej. Na pokładzie tej niezwykłej misji znajdą się nazwiska wielu mieszkańców Ziemi, wśród nich może być nazwisko każdgo z nas. W chwili pisania tej informacji do NASA napłynęło już 251 900 nazwisk z całego świata, w tym 65 737 z USA, 36 076 z Indii i 32 032 z Iranu. Swoje nazwiska chce też wysłać 2095 osób z Polski oraz 10 osób z Gabonu, 3 z Madagaskaru czy 2 z Sahary Zachodniej. « powrót do artykułu
  2. Gwiazdy mogą przechwytywać masywne planety wielkości Jowisza, wynika z modelu stworzonego przez naukowców z University of Sheffield. Mechanizm kradzieży wyjaśnia, skąd na orbitach gwiazd typu OB wzięły się odkryte w ubiegłym roku planety nazwane Bestiami (BEAST). Zgodnie bowiem z obecnie obowiązującymi teoriami, takie planety nie powinny istnieć. We wszechświecie istnieje wiele niezwykłych układów planetarnych. Z jednej strony mamy układy takie jak TRAPPIST-1, gdzie kilka niewielkich skalistych planet upakowanych jest na ciasnych orbitach wokół gwiazdy, z drugiej zaś znamy planety wielkości Jowisza, które krążą na orbitach odległych o setki jednostek astronomicznych od gwiazd. Wyjaśnienie formowania się takich układów planetarnych to poważne wyzwanie dla astronomii. W 2021 roku podczas projektu badawczego o nazwie B-star Exoplanet Abundance Study (BEAST) zauważono dwie planety wielkości Jowisza obiegające gwiazdy typu OB. Do tego typu należą gorące gwiazdy o masie co najmniej 2,4 razy większej od masy Słońca. Obecnie obowiązujące teorie mówią, że promieniowanie z gwiazd OB jest tak intensywne, że odparowują one otaczający je dysk akrecyjny, co uniemożliwia formowanie się planet. Tymczasem, jak wspomnieliśmy, znaleziono dwie planety wokół takich gwiazd. A jakby tego było mało jedna z nich znajduje się gigantycznej odległości 556 jednostek astronomicznych od gwiazdy. Do ponad 10-krotnie więcej niż odległość pomiędzy Plutonem a Słońcem. Richard Parker i Emma Daffern-Powell z University of Sheffield postanowili sprawdzić, skąd gwiazdy OB mogą mieć planety. Stworzyli model komputerowy, który miał zbadać hipotezę mówiącą, że gwiazdy OB rodzą się w miejscach dość dużego zagęszczenia gwiazd, a następnie bardzo szybko się stamtąd oddalają. Model wykazał, że w takim scenariuszu do przechwycenia planety przez gwiazdę OB może dochodzić 1 raz na 10 milionów lat. Ponadto, biorąc pod uwagę kształty i rozmiary orbit Bestii, gwiazdy OB z większym prawdopodobieństwem przejmą planety swobodne – takie, które zostały wyrzucone z orbity wokół gwiazdy macierzystej – niż planety znajdujące się na orbitach. Wykonane w Sheffield analizy wspierają więc hipotezę, że planety znajdujące na na orbitach odległych o ponad 100 j.a. nie krążą wokół gwiazd macierzystych. « powrót do artykułu
  3. Sonda Juno przysłała pierwsze dwa zdjęcia Ganimedesa, księżyca Jowisza. To pierwsze od dwóch dekad tak dokładne fotografie tego obiektu. Na niezwykle szczegółowych obrazach widać kratery, ciemne i jasne miejsca oraz długie struktury, najprawdopodobniej związane z aktywnością tektoniczną. Juno podleciał do tego olbrzyma bliżej, niż jakikolwiek inny pojazd w ciągu ostatniego pokolenia. Mini trochę czasu, zanim wyciągniemy z fotografii jakiekolwiek naukowe informacje. Tymczasem możemy skupić się na podziwianiu tego cuda, mówi główny naukowiec misji Juno, Scott Bolton z Southwest Research Institute w San Antonio. Juno przeleciał w pobliżu Ganimedesa w poniedziałek i za pomocą JunoCam wykonał fotografie z odległości 1038 kilometrów. Na razie na Ziemię dotarły zdjęci wykonane przy użyciu zielonego filtra. Gdy otrzymamy zdjęcia z filtrów niebieskiego i czerwonego, naukowcy z NASA będą mogli złożyć kolorowy portret Ganimedesa. Rozdzielczość fotografii wynosi 1 km/piksel. Warto też wspomnieć, że Stellar Reference Unit, kamera nawigacyjna, która utrzymuje Juno na właściwym kursie, zrobiła też zdjęcia ciemnej strony Ganimedesa, tej przeciwnej do Słońca. Widzimy na nich księżyc oświetlony światłem odbitym od Jowisza. Rozdzielczość zdjęcia to 600–900 metrów na piksel. Warunki, w jakich wykonaliśmy zdjęcie ciemnej strony Ganimedesa były idealne dla Stellar Reference Unit. Mamy więc zupełnie inną część powierzchni niż ta sfotografowana w pełnym słońcu przez JunoCam, mówi Heidi Becker z JPL. W najbliższych dniach na Ziemię powinny trafić kolejne zdjęcia z przelotu obok Ganimedesa. Naukowcy spodziewają się, że misja Juno dostarczy m.n. informacji na temat składu, jonosfery, magnetosfery i pokryw lodowych Ganimedesa oraz pomiary promieniowania. Dane te przydadzą się przy organizacji kolejnych misji do Jowisza. Misja Juno, zwana „czołgiem” przez swoje wyjątkowe „opancerzenie”, została wystrzelona w sierpniu 2011 roku. Na orbicie Jowisza znalazła się pięć lat później. « powrót do artykułu
  4. Już dzisiaj ok. godziny po zachodzie Słońca będzie można oglądać zjawisko, które mogło być Gwiazdą Betlejemską. Mowa tutaj o Wielkiej Koniunkcji, czyli zbliżeniu Jowisza i Saturna, największych planet Układu Słonecznego. Tegoroczna Wielka Koniunkcja będzie najwspanialszym takim zjawiskiem od 800 lat. Do Wielkiej Koniunkcji, czyli takiego ustawienia Jowisza i Saturna, że z naszego punktu widzenia planety wydają się niezwykle blisko, dochodzi regularnie co 20 lat. Co więc będzie takiego niezwykłego w tegorocznej koniunkcji? Otóż po raz pierwszy od niemal 400 lat planety będą tak blisko siebie, a po raz pierwszy od niemal 800 lat tak bliska koniunkcja będzie miała miejsce w nocy, zatem będziemy mogli ją obserwować. Podczas tegorocznej Wielkiej Koniunkcji Jowisz i Saturn będzie dzieliło zaledwie 1/10 stopnia. Jeśli pogoda pozwoli, to obie planety z łatwością powinniśmy zobaczyć wkrótce po zachodzie Słońca patrząc na południowy-zachód. Planety będzie można zobaczyć gołym okiem, a wystarczy lornetka lub mały teleskop, by ujrzeć też cztery duże księżyce Jowisza. W tym roku mamy wyjątkowe szczęście, gdyż Wielka Koniunkcja przypadnie na najdłuższą noc w roku. Do tego planety będą wyjątkowo blisko siebie. Ostatni raz tak blisko były w 1623 roku, jednak do największego zbliżenia doszło za dnia. Ostatni ludzie mogli oglądać nocą tak duże zbliżenie obu planet w 1226 roku. Dyrektor Obserwatorium Watykańskiego, fizyk i astronom, jezuita Guy Consolmagno, mówi, że jednym z możliwych wyjaśnień fenomenu Gwiazdy Betlejemskiej jest właśnie bardzo jasna Wielka Koniunkcja. Jeśli nawet pogoda uniemożliwi dzisiaj obserwowanie koniunkcji, to Jowisz z Saturnem będą wspólnie wędrowały jeszcze przez około tydzień. Kolejna okazja do obserwacji równie bliskiej Wielkiej Koniunkcji będzie w marcu 2080 roku. « powrót do artykułu
  5. Wysięgniki stworzone na potrzeby misji JUICE, jednej z dwóch największych misji realizowanych przez Europejską Agencję Kosmiczną, trafią za kilka dni do Niemiec, gdzie przejdą ostatnie testy magnetyczne – poinformowała w czwartek Astronika, polska firma, która je zbudowała. JUpiter ICy moons Explorer (JUICE) to pierwsza duża misja Europejskiej Agencji Kosmicznej (ESA), realizowana w ramach programu Cosmic Vision (Kosmiczna Wizja) na lata 2015-2025; jej łączny koszt sięga niemal 900 mln euro. Sonda będzie badała atmosferę największej planety Układu Słonecznego - Jowisza oraz jego księżyców: Europy, Kallisto i Ganimedesa. Sonda misji JUICE będzie wyposażona w różne instrumenty badawcze. Polska firma Astronika przygotowuje m.in. wysięgniki, na których końcach zamontowane będą sondy do pomiarów plazmy (Langmuir Probe – Plasma Wave Instrument - LP-PWI). W czwartek, w komunikacie prasowym przesłanym PAP Astronika poinformowała, że wykonane przez nią instrumenty zostaną w najbliższych dniach przetransportowane do Niemiec, gdzie przejdą ostatnie testy magnetyczne. Wcześniej instrumenty stworzone przez Astronikę przeszły szereg innych testów. Po ostatnich próbach w Niemczech zostaną przetransportowane do siedziby głównego integratora satelity – Airbus Defence and Space w niemieckim Friedrichshafen, gdzie pod koniec 2020 zostaną na stałe przyłączone do satelity badawczego, który w 2022 roku wyleci w kierunku Jowisza. Głównym zadaniem wysięgników będzie rozłożenie się na odległość 3 metrów od satelity badawczego i ustawienie czujników dokładnie pod kątem 135 st., aby umożliwić im badanie plazmy znajdującej się w magnetosferze Jowisza – czytamy w informacji przesłanej PAP. Jak twierdzi Łukasz Wiśniewski, członek zarządu Astroniki i manager projektu, stworzenie instrumentów wymagało od zespołu projektowego nieszablonowego podejścia i opracowania innowacji mających sprostać kosmicznym wyzwaniom. Stworzone na potrzeby misji JUICE urządzenia są niezwykle lekkie, ważą poniżej 1,3 kilograma. Musiały zostać zaprojektowane w taki sposób, żeby wytrzymać duże obciążenia, którym zostaną poddane, a także, aby podczas otwierania nie zniszczyły same siebie – mówi Wiśniewski cytowany w komunikacie. Dodał, że wysięgniki są wytrzymałe na ekstremalne temperatury. W czasie swojej podróży urządzenia stworzone przez polską firmę będą musiały wytrzymać zarówno temperaturę około 200 st. C w okolicach Wenus, jak i nawet -200 st. C, kiedy sonda znajdzie się w cieniu Jowisza. Jak wynika z informacji przesłanej PAP, polscy inżynierowie stworzyli pięć egzemplarzy lotnych instrumentów LP-PWI. Cztery z nich zostaną finalnie przyłączone do satelity i wyruszą w podróż w kosmos, a jeden służy jako egzemplarz zapasowy. Urządzenia zostały od początku zaprojektowane i wyprodukowane przez Polaków z wykorzystaniem szeregu innowacyjnych technologii – podkreślono. Jak informuje Astronika, oprócz urządzeń LP-PWI firma opracowała na potrzeby misji JUICE także drugi rodzaj mechanizmu - system anten pod nazwą RWI – Radio Wave Instrument. Mechanizm ten obecnie znajduje się w fazie testów, jednak docelowo również stanie się częścią sondy badawczej JUICE. Obydwa urządzenia zostały stworzone jako część projektów realizowanych we współpracy z Instytutem Fizyki Plazmy w Uppsali, Centrum Badań Kosmicznych Polskiej Akademii Nauk oraz japońskim Tohoko University. Start misji JUICE zaplanowany jest na połowę 2022 roku. Termin jest sztywno ustalony ze względu na korzystne, wzajemne ułożenie w tym czasie Ziemi, Wenus i Marsa. Sonda będzie bowiem korzystała z asyst grawitacyjnych tych planet. Po przebyciu 600 milionów kilometrów, próbnik znajdzie się na orbicie Jowisza w 2029 r., gdzie będzie prowadzić obserwacje przez co najmniej trzy lata. « powrót do artykułu
  6. Przechwytywanie aerodynamiczne (aerocapture) to wciąż opracowywana metoda umieszczania pojazdów na orbicie innych planet i księżyców. Technika ta pozwoliłaby umieszczać na orbitach znacznie większe ładunki niż obecnie. To zaś oznacza olbrzymie oszczędności, gdyż zamiast dwóch lub trzech misji naukowych badających np. Jowisza, można by zorganizować jedną. Ten jeden pojazd mógłby bowiem zabrać na pokład znacznie więcej instrumentów naukowych niż obecnie. Umieszczenie satelity na orbicie innej planety to niełatwe zadanie. Pędzący z olbrzymią prędkością pojazd trzeba bowiem wyhamować do odpowiedniej prędkości i umieścić go na orbicie. Najlepiej kołowej. Manewry takie wymagają zużycia olbrzymich ilości paliwa. A im pojazd cięższy, tym więcej paliwa potrzebuje. To poważny czynnik ograniczający masę sond, które obecnie wysyłamy, by badały Układ Słoneczny. Przechwytywanie aerodynamiczne to pomysł, który polega na chwilowym wejściu pojazdu w atmosferę planety. W wyniku oddziaływania z atmosferą pojazd zwalnia, a gdy osiągnie odpowiednią prędkość, opuszcza atmosferę i trafia na orbitę planety. Tego typu manewr wymagałby znacznie mniej paliwa niż obecnie używane techniki spowalniania sond kosmicznych. Już wcześniejsze wyliczenia dla ośmiu potencjalnych misji planetarnych, w których dokonano bezpośredniego porównania pomiędzy przechwytywaniem aerodynamicznym a innymi zaawansowanymi technikami, takimi jak hamowanie atmosferyczne, wykorzystanie energii chemicznej lub słonecznej elektrycznej do spowolnienia pojazdu, wykazały jak olbrzymie korzyści niesie ze sobą nowa technika. Porównanie wykazało, że przechwytywanie atmosferyczne umożliwia umieszczenie pojazdu na orbicie eliptycznej wokół Neptuna i na orbitach kołowych Jowisza i Saturna. Ponadto w przypadku pięciu innych misji pozwala na umieszczenie na orbicie ładunku o znacznie większej masie bez zwiększania kosztów misji. I tak pojazd na orbicie kołowej wokół Wenus mógłby mieć o 79% większą masę, niż gdy do wyhamowania użyje się innych technik. Jeśli byśmy chcieli umieścić ten pojazd na orbicie eliptycznej, to jego masa mogłaby być o 43% większa. Dla orbity kołowej Marsa możemy zwiększyć masę pojazdu o 15%, dla orbity kołowej wokół Tytana jego masa może być większa o 280%, a jeśli chcielibyśmy wysłać sondę na orbitę eliptyczną Urana, to może on mieć masę o 218% większa, niż w przypadku innych technik. Dotychczasowe badania wykazały też, że na przykład wykorzystanie przechwytywania atmosferycznego dla misji na Neptuna wymaga budowy pojazdu o doskonałości aerodynamicznej między 0,6 a 0,8. Obecnie stosowane nosy pojazdów wchodzących w atmosferę innych planet mają doskonałość aerodynamiczną rzędu około 0,25. Badania sprzed kilkunastu lat dowiodły, że w takim przypadku wykorzystanie przechwytywania atmosferycznego wymagałoby stosowania olbrzymich osłon termicznych na niemal całym pojeździe, a i tak pojazd uległby zniszczeniu. Najnowsze osłony termiczne również nie zdałyby egzaminu. Zespół Roberta Mosesa z Langley Research Center informuje, że właśnie rozwiązał zarówno problem doskonałości aerodynamicznej jak i osłon termicznych. Naukowcy proponują umieszczenie w pojeździe magnesów. Pole magnetyczne tych, znajdujących się blisko czubka nosa pojazdu znacząco odsunie miejsce powstawania fali uderzeniowej, znacząco zmniejszając przepływ ciepła, dzięki czemu nie trzeba będzie stosować olbrzymich osłon termicznych. Z kolei magnesy umieszczone na bokach nosa zwiększą siłę nośną, a przez to i doskonałość aerodynamiczną. Moses twierdzi, że taki system można wykorzystać nie tylko do umieszczania pojazdów na orbicie, ale również i w pojazdach, które mają lądować. Dzięki temu zaś misja załogowa mogłaby dotrzeć do Marsa w ciągu 39 dni, a nie – jak się obecnie prognozuje – w ciągu 100 lub więcej dni. « powrót do artykułu
  7. Po raz pierwszy udało się zmierzyć prędkość wiatrów wiejących na powierzchni brązowego karła. Dokonali tego astronomowie, którzy wykorzystali Karl G. Jansky Very Large Array (VLA) oraz Teleskop Kosmiczny Spitzera. Opierając się na tym, co wiemy o wielkich planetach, takich jak Jowisz czy Saturn, naukowcy pod kierunkiem Katelyn Allers z Bucknell University zdali sobie sprawę z faktu, że prawdopodobnie uda się zmierzyć prędkość wiatru na powierzchni brązowego karła, wykorzystując w tym celu VLA i Spitzera. Gdy doszliśmy do takiego wniosku, zdziwiliśmy się, że nikt dotychczas nie przeprowadził takich badań, mówi Allers. Naukowcy wzięli na cel brązowego karła 2MASS J10475385+2124234. Ma on średnicę mniej więcej Jowisza, ale jest 40-krotnie bardziej masywny. Obiekt znajduje się w odległości około 34 lat świetlnych od Ziemi. Zauważyliśmy, że okres obrotowy Jowisza obserwowany za pomocą radioteleskopów jest inny niż okres obrotowy obserwowany w świetle widzialnym i w podczerwieni, mówi Allers. Jak wyjaśnia uczona, dzieje się tak, gdyż fale radiowe wchodzą w interakcje z polem magnetycznym planety, natomiast emisja w podczerwieni pochodzi z górnych warstw atmosfery. Wnętrze planety, jej źródło pola magnetycznego, obraca się wolniej niż atmosfera. A różnica wynika z prędkości wiatrów. Stwierdziliśmy, że takie samo zjawisko powinniśmy zaobserwować w przypadku brązowych karłów. Postanowiliśmy więc przyjrzeć się okresowi obrotowemu czerwonego karła zarówno za pomocą radioteleskopu, jak i w podczerwieni, powiedziała Johanna Vos z Amerykańskiego Muzeum Historii Naturalnej. Obserwacje rzeczywiście wykazały, że atmosfera brązowego karła obrana się szybciej niż jego wnętrze. A różnica jest znacznie większa, niż w przypadku Jowisza. O ile bowiem prędkość wiatru wiejącego na Jowiszu wynosi około 370 km/h, to dla brązowego karła obliczono ją na około 2300 km/h. Obliczenia te zgodne są z teorią i symulacjami, przewidującymi wyższe prędkości wiatru na brązowych karłach, mówi Allers. Technika wykorzystana przez zespół Allers może zostać użyta do badania prędkości wiatrów na planetach pozasłonecznych. « powrót do artykułu
  8. Na podobnej do Jowisza egzoplanecie WASP-76b panują jedne z najbardziej ekstremalnych warunków atmosferycznych. Z tamtejszego nieba pada deszcz... płynnego żelaza. To jeden z najbardziej ekstremalnych klimatów, na jakie kiedykolwiek się natknęliśmy, mówi David Ehrenreich z Uniwersytetu w Genewie. WASP-76b znajduje się w odległości około 390 lat świetlnych. To gazowy olbrzym podobny do Jowisza, jednak o znacznie ciaśniejszej orbicie. Obiega on swoją gwiazdę w czasie krótszym niż 2 ziemskie dni. Co więcej pomiędzy planetą a gwiazdą zachodzi obrót synchroniczny, co oznacza, że jedna strona planety jest zawsze zwrócona w kierunku gwiazdy. Przez to po stronie dziennej planety panuje temperatura dochodząca do 2400 stopni Celsjusza, o około 1000 stopni więcej niż po stronie nocnej. Przez to ta półkula planety, która jest skierowana w stronę Ziemi, jest zbyt ciemna, by ją bezpośrednio obserwować. Jednak niewielka ilość światła z gwiazd w tle przechodzi przez atmosferę WASP-76b. Dzięki temu naukowcy mogli przeanalizować skład atmosfery i wykryli w niej żelazo w formie gazowej. Znajduje się je też w atmosferach innych supergorących Jowiszów. Jednak w przypadku WASP-76b widmo żelaza jest nierównomiernie rozłożone. Sygnał jest obecny na granicy pomiędzy stroną dzienną a nocną, ale nie nocną a dzienną. Naukowcy sądzą, że gdy obecne w atmosferze żelazo przepłynie na nocną stronę planety, dochodzi do kondensacji chmur i opadów płynnego żelaza. To, czy podobne zjawisko zachodzi na innych ultragorących Jowiszach, zależy od prędkości wiatru i różnicy temperatury pomiędzy stroną dzienną a nocną. « powrót do artykułu
  9. Scott S. Sheppard i jego koledzy z Carnegie Institution for Science odkryli 20 nowych księżyców Saturna. Z liczbą 82 znanych księżyców Saturn wyprzedził Jowisza i jego 79 księżyców. Każdy z nowo odkrytych księżyców ma około 5 kilometrów średnicy. Siedemnaście z nich obiega planetę w kierunku przeciwnym do kierunku jej ruchu obrotowego (ruch wsteczny). Kierunek ruchu trzech pozostałych jest zgodny z tym, jak wiruje Saturn (ruch prosty). Dwa z tych trzech księżyców znajdują się bliżej planety i pełen obieg wokół niej zajmuje im około 2 lat. Trzeci z księżyców poruszających się ruchem prostym oraz księżyce poruszające się ruchem wstecznym są dalej od Saturna i potrzebują ponad trzech lat na przebycie całej orbity. Badanie orbit tych księżyców może zdradzić nam ich pochodzenie oraz informacje o warunkach panujących w otoczeniu Saturna w czasie jego formowania się, mówi Sheppard. Wydaje się, że zewnętrzne księżyce Saturna są zorganizowane w trzy grupy w zależności od nachylenia ich orbity względem planety. Dwa z nowo odkrytych księżyców poruszających się ruchem prostym pasują do grupy inuickiej. W jej skład wchodzą księżyce, których orbity są nachylone o około 46 stopni względem planety. Nadawane są im nazwy z mitologii Inuitów. Niewykluczone, że wszystkie one powstały z jednego księżyca, który w przeszłości się rozpadł. W kolei nowo odkryte księżyce o ruchu wstecznym wykazują podobieństwa do grupy nordyckiej. To duża bardzo zróżnicowana grupa, której nadawane są nazwy z mitologii nordyckiej. Jedynym wyjątkiem jest tutaj Febe, postać z mitologii greckiej. Księżyc ten został odkryty w 1899 roku, na długo przed innymi, a do roku 2000 był najdalej położonym od Saturna znanym nam księżycem tej planety. Od dzisiaj tytuł ten należy do jednego z nowo odkrytych księżyców z grupy nordyckiej. Również grupa nordycka może być pozostałością jednego księżyca. Podobne grupy księżyców zewnętrznych widzimy też wokół Jowisza. Wskazuje to, że dochodziło do potężnych zderzeń albo pomiędzy samymi księżycami, albo z księżycami i zewnętrznymi obiektami, jak asteroidy czy komety, mówi Sheppard. Trzeci z nowych księżyców poruszających się ruchem prostym ma orbitę nachyloną pod kątem 36 stopni, co czyni go podobnym do grupy galijskiej. Jednak, jako że jego orbita znajduje się znacznie dalej niż orbita jakiegokolwiek innego księżyca o ruchu prostym, nie można wykluczyć, że albo jest zewnętrznym obiektem przechwyconym przez Saturna, albo nie ma nic wspólnego z innymi księżycami o ruchu prostym. Obecność tak licznych niewielkich księżyców sporo mówi o warunkach w chwili ich powstawania. Jeśli bowiem wokół Saturna znajdowałoby się dużo pyłu i gazu w chwili, gdy rozpadały się jego duże księżyce, to z czasem małe księżyce zostałyby na tyle spowolnione przez tarcie, że opadłyby na powierzchnię planety. Fakt, że te małe księżyce obiegają Saturna po tym, jak rozpadły się księżyce, od których pochodzą, wskazuje, iż do kolizji doszło gdy proces formowania się planety był w większości ukończony i dysk protoplanetarny nie wpływał na księżyce. W ubiegłym roku Sheppard odkrył 12 nowych księżyców Jowisza, a niedawno informowaliśmy o nadaniu imion pięciu z nim. « powrót do artykułu
×
×
  • Dodaj nową pozycję...