Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Droga Mleczna' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 24 wyników

  1. Od 20 lat naukowcy obserwują w pobliżu Sagittariusa A* – centralnej czarnej dziury Drogi Mlecznej – tajemniczy szybko ewoluujący obiekt X7. Specjaliści zastanawiali się, czym on jest. Czy został wyciągnięty z większej pobliskiej struktury, czy jego niezwykły kształt to skutek oddziaływania wiatrów gwiazdowych, a może ukształtował go strumień cząstek z czarnej dziury? X7 ma masę 50-krotnie większa od masy Ziemi, a pełen obieg wokół czarnej dziury zajmie mu 170 lat. Po analizie danych z 20 lat astronomowie z UCLA Galactic Center Group oraz Keck Observatory uważają, że X7 może być chmurą pyłu i gazu wyrzuconą podczas zderzenia dwóch gwiazd. Z czasem chmura została rozciągnięta i jest powoli rozrywana przez siły pływowe czarnej dziury. Autorzy badań sądzą, że w ciągu najbliższych dekad dojdzie do rozpadu X7, a szczątki mogą zostać wciągnięte przez Sgr A*. Żaden obiekt w tym regionie nie podlega tak ekstremalnej ewolucji. Rozpoczęło się od kształtu przypominającego kometę i dlatego sądzono, że obiekt został ukształtowany przez wiatry gwiazdowe lub strumień cząstek z czarnej dziury. Jednak analiza danych pokazała, że obiekt stał się bardziej rozciągnięty. Coś musiało ustawić tę chmurę na takim konkretnym kursie i z tą orientacją, mówi Anna Ciurlo, główna autorka badań. Na podstawie trajektorii obiektu naukowcy obliczyli, że około 2036 roku chmura znajdzie się najbliżej czarnej dziury. Wówczas prawdopodobnie zacznie być przez nią wciągana i zniknie. Przewidujemy, że siły pływowe rozerwą X7 zanim w pełni obiegnie ona czarną dziurę, mówi współautor badań, profesor Mark Morris z UCLA. Niektóre cechy X7 są podobne do cech innych obiektów znajdujących się w pobliżu Sagittariusa A*. Te tak zwane obiekty G wyglądają jak chmury gazu, ale zachowują się jak gwiazdy. Jednak X7 podlega znacznie szybszej, bardziej dramatycznej ewolucji niż obiekty G. Znacznie bardziej przyspiesza też w kierunku czarnej dziury. Obecnie prędkość X7 wynosi około 1130 km/s. Badacze przypuszczają, że obiekt powstał z gazu i pyłu wyrzuconego podczas zderzenia dwóch gwiazd. Powstała w wyniku tego zderzenia gwiazda ukryta jest za powłoką pyłu oraz gazu i może odpowiadać opisowi obiektu G. A wyrzucony gaz utworzył X7, mówi Ciurlo. Uczona dodaje, że do połączeń gwiazd dochodzi często, szczególnie w pobliżu czarnych dziur. Ze szczegółami badań można zapoznać się na łamach The Astrophysical Journal. « powrót do artykułu
  2. Niedawne badania podważyły przekonanie, jakoby ziemskie kontynenty uformowały się wyłącznie w wyniku procesów zachodzących wewnątrz naszej planety. Teraz dowiadujemy się o odkryciu „rytmu produkcji” skorupy ziemskiej. Badania minerałów ujawniły, że co mniej więcej 200 milionów lat dochodzi do wzmożenia zmian zachodzących w skorupie ziemskiej, a okres ten jest zbieżny z przejściem Układu Słonecznego przez ramiona Drogi Mlecznej. Przed kilkoma tygodniami informowaliśmy, że zdaniem naukowców z australijskiego Curtin University ziemskie kontynentu uformowały się w wyniku gigantycznych uderzeń meteorytów. Teraz dowiadujemy się, że do zwiększonego bombardowania dochodzi co około 200 milionów lat. "Układ Słoneczny przemieszcza się pomiędzy spiralnymi ramionami Drogi Mlecznej co około 200 milionów lat. Badając wiek i sygnatury izotopowe minerałów z Kratonu Pilbara w Zachodniej Australii i Kratonu Północnoatlantyckiego na Grenlandii zauważyliśmy podobny rytm tworzenia się skorupy ziemskiej, który zbiega się z okresem, w jakim Układ Słoneczny przechodzi przez obszary o największym zagęszczeniu gwiazd", mówi profesor Chris Kirkland z Curtin University. Układ Słoneczny krąży wokół centrum Drogi Mlecznej. Okres obiegu wynosi około 230 milionów lat i nazywany jest rokiem galaktycznym. Łatwo więc wyliczyć, że gdy ostatni raz Słońce znajdowało się w tym samym miejscu galaktyki co obecnie, po Ziemi chodziły pierwsze dinozaury. Raz na jakiś czas – mniej więcej do 200 milionów lat – Układ Słoneczny trafia na bardziej gęste obszary galaktyki. Wtedy oddziaływanie grawitacyjne znajdujących się w pobliżu gwiazd może destabilizować Obłok Oorta i kierować znajdujące się tam planetoidy w stronę Słońca. A część z nich trafi w Ziemię. Obłok Oorta to hipotetyczna – bo jej istnienia wciąż nie udowodniono – pozostałość po formowaniu się Układu Słonecznego. Ma on składać się m.in. z pyłu i planetoid. Astronomowie sądzą, że wewnętrzne krawędzie Obłoku znajdują się w odległości od 2 do 5 tysięcy jednostek astronomicznych od Słońca, a krawędzie zewnętrzne położone są w odległości od 10 do 100 tysięcy j.a. Przypomnijmy, że 1 j.a. to średnia odległość pomiędzy Słońcem a Ziemią, a najdalej wysłany przez człowieka pojazd, sonda Voyager 1, znajduje się w odległości zaledwie 157,5 j.a. od Ziemi. Zwiększenie częstotliwości uderzeń komet w Ziemię mogło prowadzić do spotęgowania procesów topnienia powierzchni planety i zapoczątkować formowanie się kontynentów, mówi Kirkland. Powiązanie tworzenia się kontynentów, na których obecnie żyjemy, z podróżą Układu Słonecznego przez Drogę Mleczną rzuca całkowicie nowe światło na historię tworzenia się planety i jej miejsce w przestrzeni kosmicznej, dodaje. « powrót do artykułu
  3. W 2010 roku świat astronomii obiegła sensacyjna wiadomość o odkryciu dwóch olbrzymich bąbli znajdujących się nad i pod centrum Drogi Mlecznej. Struktury zarejestrowane przez Fermi Gamma-ray Space Telescope i nazwane Bąblami Fermiego, mają wysokość po 25 000 lat świetlnych i prawdopodobnie liczą sobie zaledwie kilka milionów lat. Grupa amerykańskich naukowców opublikowała właśnie wyniki badań, z których wynika, że bąble – przynajmniej częściowo – pochodzą spoza naszej galaktyki. Spektroskopowe obserwacje bąbli Fermiego w zakresach fal radiowych, ultrafioletowych i optycznych pozwoliły nam na wykrycie licznych chmur gazu, znajdujących się prawdopodobnie wewnątrz bąbli. Chmury te nazywamy w tej pracy chmurami wysokich prędkości w bąblach Fermiego (FB HVC). Chociaż możliwe jest modelowanie kinematyki tych chmur z wykorzystaniem wiatru galaktycznego płynącego z centrum galaktyki, pochodzenie chmur jest nieznane, gdyż dotychczas mieliśmy niewiele informacji na temat ich zawartości metali, czytamy na łamach Nature Astronomy. Naukowcy wykazali, bazując na badaniach 12 FB HVC, że ich metaliczność wynosi od <20% do ok. 320% metaliczności słonecznej. To zaś każe poddać w wątpliwość przyjęte założenie, że wszystkie FB HVC pochodzą z centrum galaktyki. Uważamy, że FB HVC pochodzą zarówno z dysku, jak i z halo Drogi Mlecznej. A skoro tak, to część z tych chmur może mieć właściwości medium międzygalaktycznego, w które wchodzą bąble Fermiego, co w znaczący sposób zmienia naszą wiedzę o FB HVC, stwierdzają autorzy badań. W tym miejscu przypomnieć trzeba, że astronomowie nazywają metalami wszystkie pierwiastki cięższe od helu. Zatem miarą metaliczności określa się koncentrację pierwiastków innych niż wodór i hel względem ich koncentracji w Słońcu. Dlatego też naukowcy przyjrzeli się metaliczności chmur gazu w bąblach Fermiego. Jeśli jej poziom jest taki, jak otoczenia, można wnioskować, że chmury powstały z lokalnej materii. Jeśli jednak metaliczność nie pasuje do domniemanego źródła materii, trzeba wyjaśnić, skąd chmury pochodzą. Z badań wynika zaś, że przynajmniej część materii znajdującej się w bąblach Fermiego pochodzi z bardziej odległych miejsc niż centrum Drogi Mlecznej. Być może nawet z galaktycznego halo, chmury gazów otaczających galaktykę. Możliwości jest jednak wiele, a na ostateczne rozstrzygnięcie tej zagadki przyjdzie nam czekać wiele lat. « powrót do artykułu
  4. Europejska Agencja Kosmiczna opublikowała najdokładniejszą mapę Drogi Mlecznej. Jej tworzenie to główny cel misji sondy Gaia, która od 9 lat pracuje w przestrzeni kosmicznej. Sonda krąży wokół punktu libracyjnego L2, tego samego, w pobliżu którego znajduje się Teleskop Webba. Udostępniony właśnie 3. zestaw danych z Gai zawiera nowe oraz poprawione informacje o niemal 2 miliardach gwiazd w naszej galaktyce. Znajdziemy tam nowe informacje o składzie chemicznym gwiazd, ich temperaturze, kolorze, masie, wieku i prędkości radialnej, czyli prędkości ich zbliżania się lub oddalania od sondy. Nowy katalog zawiera też informacje o masie i ewolucji 800 tys. gwiazd podwójnych, 156 tys. asteroid w Układzie Słonecznych, dane o 10 milionach gwiazd zmiennych oraz o milionach galaktyk i kwazarów poza Drogą Mleczną. Jednak tym, co najbardziej zaskoczyło specjalistów jest zaobserwowanie przez Gaię trzęsień gwiazd. To niewielkie ruchy na powierzchni gwiazd, które zmieniają ich kształt. Gaia nie była projektowana do prowadzenia takich obserwacji, stąd zaskoczenie naukowców. To zresztą nie pierwsza niespodzianka. Gaia już wcześniej zarejestrowała pulsacje radialne gwiazd, podczas których zmieniały one swoją objętość, zachowując przy tym kształt. Teraz jednak mamy do czynienia z pulsacjami nieradiacyjnymi, które przypominają wielkie tsunami i prowadzą do zmiany kształtu gwiazd. Takie zjawiska są trudniejsze do zarejestrowania. Mimo to Gai udało się zaobserwować je w przypadku tysięcy gwiazd. Co interesujące, te silne nieradialne trzęsienia gwiazd zarejestrowano na gwiazdach, które – zgodnie z obecnie obowiązującymi teoriami – nie powinny doświadczać takich zjawisk. Gaja otwiera skarbnicę wiedzy dla astrosejsmologii masywnych gwiazd, stwierdził Conny Aerts z Uniwersytetu Katolickiego w Leuven. Skład gwiazd może nam wiele powiedzieć o miejscu, w którym powstały, i ich późniejszej wędrówce. Dzięki temu zaś możemy poznać historię Drogi Mlecznej. Najnowszy zestaw danych z Gai to największa mapa chemiczna Drogi Mlecznej przedstawiona w formie trójwymiarowej. Pokazuje ona zarówno bezpośrednie sąsiedztwo Układu Słonecznego jak i niewielkie galaktyki otaczające naszą. Podczas Wielkiego Wybuchu powstały tylko hel i wodór. Wszystkie cięższe pierwiastki – zwane przez astronomów „metalami” – powstały z czasem wewnątrz gwiazd. Gdy gwiazdy te umierały, uwalniały metale do gazu i pyłu w przestrzeni międzygwiezdnej. Z materii tej powstawały zaś kolejne gwiazdy. Tworzenie się i umieranie gwiazd prowadzi do powstania środowiska bardziej bogatego w metale. Zatem skład chemiczny gwiazd to rodzaj DNA, które zdradza wiele informacji o ich pochodzeniu. Gaia dostarcza nam informacji zarówno o gwiazdach ubogich w metale, jak i takich jak Słonce, które powstały ze materiału wzbogaconego w metale przez wcześniejsze pokolenia gwiazd. Dzięki temu wiemy, że gwiazdy bliższe centrum Drogi Mlecznej i jej płaszczyźnie zawierają więcej metali niż gwiazdy bardziej odległe. Nasza galaktyka to piękna mieszanina gwiazd. Ta różnorodność jest niezwykle ważna, gdyż opowiada nam historię tworzenia się Drogi Mlecznej. Pokazuje procesy migracji wewnątrz galaktyki oraz akrecji materiału z innych galaktyk. Pokazuje też, że nasze Słońce i my wraz z nim, należymy do ciągle zmieniającego się systemu stworzonego dzięki łączeniu się gwiazd i gazu o różnym pochodzeniu, mówi Alejandra Recio-Blanco z Observatoire de la Côte d’Azur.   « powrót do artykułu
  5. Astronomowie pracujący przy Event Horizon Telescope (EHT, Teleskop Horyzontu Zdarzeń) pokazali pierwszy obraz Sagittariusa A*, czyli supermasywnej czarnej dziury znajdującej się w centrum Drogi Mlecznej. Co prawda nie jesteśmy w stanie dostrzec samej czarnej dziury, ale możemy zobrazować rozgrzany świecący gaz krążący wokół niej. EHT zarejestrował światło zakrzywione przez potężną grawitację Sgr A*, która jest 4 000 000 razy bardziej masywna od Słońca. Teleskop Horyzontu Zdarzeń to projekt naukowy, w którym uczestniczą radioteleskopy rozsiane po cały świecie. Celem projektu jest obserwacja Sgr A* i M87*, co ma pozwolić na weryfikację OTW, zrozumienie procesu akrecji oraz powstawania dżetów wokół czarnych dziur. Byliśmy zaskoczeni tym, jak dobrze rozmiary dysku otaczającego czarną dziurę zgadza się z Ogólną Teorią Względności Einsteina, mówi Geoffrey Bower z EHT. Te bezprecedensowe obserwacje znakomicie uzupełniają naszą wiedzę o tym, co dzieje się w centrum naszej galaktyki i dają nam wgląd w interakcje pomiędzy masywnymi czarnymi dziurami, a otoczeniem. Przed trzema laty EHT pokazał nam pierwszy w historii obraz czarnej dziury. Zobrazował wówczas M87*, znajdującą się w centrum galaktyki Messier 87. Teraz widzimy, że Sgr A* jest bardzo podobna do M87*, mimo tego, że jest od niej ponad tysiąc razy mniejsza i mniej masywna. Mamy dwa całkowicie różne typy galaktyk i dwie czarne dziury o zupełnie innych masach. Ale blisko krawędzi dziury te wyglądają zadziwiająco podobnie, stwierdza Sera Makroff z Uniwersytetu w Amsterdamie. Uzyskanie obrazu Sgr A* było znacznie trudniejsze niż M87*. Gaz w pobliżu obu tych czarnych dziur porusza się z taką samą prędkością bliską prędkości światła. Jednak o ile obiegnięcie M87* zajmuje gazowi dni lub tygodnie, to w przypadku SgrA* są to zaledwie minuty. A to oznacza, że jasność gazu i jej wzorzec szybko się zmieniają. Próba sfotografowania takiego obiektu przypomina próbę uzyskania ostrego zdjęcia szczeniaka próbującego schwytać własny ogon, wyjaśnia Chi-kwan Chan z University of Arizona. Naukowcy musieli więc opracować zaawansowane narzędzia, które brałyby pod uwagę ruch gazu wokół Sgr A*. O ile zatem M87* była łatwiejszym, bardziej stabilnym obiektem do zobrazowania, w przypadku którego niemal wszystkie zdjęcia wyglądały tak samo, to Sgr A* na każdym z ujęć wyglądała inaczej. Potrzeba było współpracy 300 specjalistów z 80 instytucji na całym świecie, by uzyskać pierwszy uśredniony obraz czarnej dziury w centrum Drogi Mlecznej. « powrót do artykułu
  6. Naukowcy skupieni wokół projektu COSMIC-DANCE poinformowali o odkryciu od 70 do 170 nieznanych dotychczas planet swobodnych (FFP – free-floating planet), czyli takich, które nie są powiązane z żadną gwiazdą i samotnie wędrują przez przestrzeń kosmiczną. Odkrycia dokonali w jednym z najbliższych obszarów gwiazdotwórczych, asocjacji Skorpiona-Centaura. Nie znamy natury planet swobodnych, nie wiemy, dlaczego nie są powiązane grawitacyjnie z żadną gwiazdą. Być może powstają podobnie jak gwiazdy, w wyniku kolapsu grawitacyjnego niewielkich chmur gazu. A być może formują się podobnie jak inne planety w dysku protoplanetarnym krążącym wokół gwiazd, i potem w wyniku oddziaływania jakichś sił – na przykład sąsiednich planet – zostają wyrzucone ze swojego układu planetarnego. Żeby rozwiązać tajemnicę planet swobodnych potrzebujemy dużej homogenicznej próbki takich planet. Specjaliści z COSMIC-DANCE postanowili poszukać FFP na obszarze nieboskłonu obejmującym asocjację Skorpiona-Centaura. Asocjacje gwiazd to otwarte gromady, w których gwiazdy nie są ze sobą grawitacyjnie powiązane. Znalezienie planet swobodnych w gromadach gwiazd jest bardzo trudne. Potrzebna są bardzo czułe instrumenty. Gwiazdy są dość jasne i łatwe do zauważenia. Planety zaś są tysiące razy ciemniejsze, a dodatkową trudnością jest odróżnienie planeto od gwiazd i galaktyk w tle, mówi Núria Miret Roig, która wraz z zespołem zajmowała się poszukiwaniami planet. Naukowcy połączyli dwie techniki. Przeanalizowali publicznie dostępne bazy fotografii astronomicznych oraz bazy danych, w których zamieszczono informacje o ruchu, kolorze i jasności dziesiątków milionów źródeł światła. Dane takie zostały zebrane za pomocą najlepszych dostępnych teleskopów pracujących w podczerwieni i świetle widzialnym. Dzięki wykorzystaniu ponad 80 000 obrazów i około 100 terabajtów danych zbieranych przez 20 lat członkom COSMIC-DANCE udało się zidentyfikować do 170 możliwych planet swobodnych. Okazało się, że wszystkie one znajdują się w asocjacji Skorpiona-Centaura. To, jak dotąd, największa grupa planet swobodnych zaobserwowanych bezpośrednio w pojedynczej asocjacji. Niemal podwoiliśmy liczbę znanych FFP. Ich liczba zdecydowanie przekracza liczbę planet swobodnych jaką powinniśmy zaobserwować, gdyby planety takie powstawały w wyniku kolapsu małych chmur molekularnych. To zaś wskazuje, że musi istnieć inny mechanizm ich powstawania. Na podstawie dostępnej nam wiedzy o dynamice układów planetarnych stwierdzamy, że ważnym mechanizmem powstawania planet swobodnych jest ich wyrzucanie z orbit ich gwiazd, stwierdzają naukowcy. Jeśli zagęszczenie planet swobodnych w innych regionach gwiazdotwórczych jest podobne jak w asocjacji Skorpiona-Centaura, to w całej Drodze Mlecznej mogą istnieć miliardy planet wielkości Jowisza, które nie są powiązane z gwiazdami. Jeszcze więcej może być FFP wielkości Ziemi, gdyż w układach planetarnych występują one częściej.   « powrót do artykułu
  7. W jednym z ramion Drogi Mlecznej odkryto nieznaną wcześniej strukturę. Okazało się, że z Ramienia Strzelca wystaje „drzazga” utworzona przez długą na 3000 lat świetlnych grupę młodych gwiazd i chmur gazu, w których tworzą się gwiazdy. To pierwsza w naszej galaktyce duża struktura o orientacji tak różnej od orientacji samego ramienia. Astronomowie wiedzą mniej więcej jak wyglądają i jakie rozmiary mają poszczególne ramiona Drogi Mlecznej. Jednak wielu rzeczy nie wiemy. Nie jesteśmy w stanie obserwować całej galaktyki, gdyż znajdujemy się wewnątrz niej. Autorzy najnowszych badań postanowili bliżej przyjrzeć się pobliskim obszarom Ramienia Strzelca. Wykorzystali przy tym dane z Teleskopu Kosmicznego Spitzera, zebrane, zanim został odesłany na emeryturę w styczniu 2020 roku. Skupiali się na poszukiwaniu młodych gwiazd ukrytych w chmurach gazu i pyłu, w których się narodziły. Spitzer był w stanie obserwować takie obiekty, gdyż działał w podczerwieni. Dotychczas sądzono, że młode gwiazdy i mgławice ściśle trzymają się kształtu ramion galaktycznych, w których się znajdują. Uczeni z California Institute of Technology (Caltech) połączyli dane ze Spitzera z najnowszymi informacjami uzyskanymi przez europejską misję Gaia, która precyzyjnie mierzy odległości od gwiazd. W ten sposób zauważyli, że długa cienka struktura powiązana z Ramieniem Strzelca złożona jest z młodych gwiazd, które poruszają się z niemal tą samą prędkością i w tym samym kierunku. Kluczową cechą charakterystyczną ramion galaktyki spiralnej jest to, na ile ściśle są owinięte wokół centrum galaktyki. Większość modeli Drogi Mlecznej sugeruje, że Ramię Strzelca tworzy spiralę, której kąt nachylania wynosi około 12 stopni. Jednak kąt nachylenia struktury, którą obserwowaliśmy, wynosi niemal 80 stopni, mówi główny autor badań, Michael Kuhn. Podobne struktury, zwane czasem piórami lub ostrogami, są często znajdowane w ramionach innych galaktyk spiralnych. Dotychczas naukowcy zastanawiali się, czy ramiona Drogi Mlecznej również posiadają takie struktury, czy też są gładkie. W zaobserwowanej strukturze znajdują się cztery mgławice znane ze swojego piękna: Mgławica Orła ze słynnmi Filarami Stowrzenia, Mgławica Omega, Mgławica Trójlistna Koniczyna oraz Mgławica Laguna. W latach 50. naukowcy wykonali pomiaru odległości do niektórych gwiazd w tych mgławicach i z nich wywnioskowali o istnieniu Ramienia Strzelca, co było jednym z pierwszych dowodów na to, że Droga Mleczna jest galaktyką spiralną. Pomiary odległości to jedne z najtrudniejszych zadań w astronomii. Dopiero najnowsze bezpośrednie pomiary wykonane przez Gaię ujawniły geometrię opisanej przez nas struktury, mówi współautor badań Alberto Krone-Martins. Dzięki połączeniu danych z Gai i Spitzera uzyskaliśmy szczegółową trójwymiarową mapę. Teraz widzimy, że region ten jest bardziej złożony niż się wydawało, dodaje Kuhn. Astronomowie wciąż w pełni nie rozumieją, w jaki sposób tworzą się spiralne ramiona galaktyk. Gwiazdy w nowo zaobserwowanej strukturze prawdopodobnie powstały w podobnym czasie, w podobnym regionie i wpływały na nie siły działające wewnątrz galaktyki, w tym i takie, związane z obrotem galaktyki. Widzimy tutaj, jak wiele rzeczy nie wiemy o strukturze Drogi Mlecznej. To pokazuje nam, że musimy przyglądać się szczegółom, jeśli chcemy poznać większy obraz. Badana tutaj struktura to malutki fragment Drogi Mlecznej, ale może nam wiele powiedzieć o galaktyce jako całości, dodaje Robert Benjami z University of Wisconsin-Whitewater. « powrót do artykułu
  8. Przed ponad 10 laty poinformowaliśmy o odkryciu tajemniczych olbrzymich bąbli o wysokości około 25 000 lat świetlnych znajdujących się nad i pod centrum Drogi Mlecznej. Z czasem zyskały one miano Bąbli Fermiego. Teraz okazuje się, że nad nimi znajdują się jeszcze większe bąble, których wysokość sięga 45 000 lat świetlnych. W latach 50. astronomowie po raz pierwszy zauważyli, że nad płaszczyzną Drogi Mlecznej, na jej północnej stronie, wisi łuk emitujący promieniowanie radiowe. Przez kolejne dekady naukowcy sprzeczali się, czym jest ten „North Polar Spur”. Jedni widzieli w nim resztki gwiazdy, która eksplodowała, zdaniem innych była to pozostałość po jakiejś większej eksplozji. Tego typu kwestie są trudne do rozstrzygnięcia, gdyż spoglądając w przestrzeń kosmiczną nie widzimy głębi. Mamy 2-wymiarową mapę 3-wymiarowego wszechświata, stwierdza jeden z ekspertów. Większość astronomów sądziła, że North Polar Spur należy do bezpośredniego sąsiedztwa naszej galaktyki. Niektóre badania wskazywały, że łączy się on z pobliskimi chmurami gazu. Jeszcze inni specjaliści sprawdzali, jak zaburza on światło gwiazd w tle i dochodzili do wniosku, że to pozostałości supernowej. W 1977 roku Yoshiaki Sofue, astronom z Uniwersytetu Tokijskiego, na podstawie przeprowadzonych symulacji uznał, że to co widzimy, to jedynie część większej gigantycznej struktury, pary bąbli znajdujących się po obu stronach centrum galaktyki. Struktury takie miały, zdaniem Sofuego, rozdciągać się na dziesiątki tysięcy lat i być falami uderzeniowymi po wielkim wydarzeniu, do którego doszło przed milionami lat. Jeśli jednak Sofue ma racje, to dlaczego nie widzimy podobnej struktury na południu? Większość specjalistów pozostała nieprzekonana i pomysł Japończyka został niszową hipotezą. Wszystko uległo zmianie, gdy w 2010 roku teleskop kosmiczny Fermiego zaobserwował dwa bąble emitujące promieniowanie gamma i rozciągające się po obu stronach płaszczyzny naszej galaktyki, nad i pod jej centrum. Bąble były zbyt małe, by North Polar Spur mógł być ich częścią. Jeśli jednak wiemy, że istnieje jedna para bąbli, to może istnieje też i druga? Sytuacja uległa gwałtownej zmianie, mówi Jun Kataoka, współpracownik Sofuego z Uniwersytetu Waseda. Kolejne badania tylko dodały wagi twierdzeniom japońskiego badacza. W połowie 2019 roku wystrzelono niemiecko-rosyjską misję Spektr-RG, która orbituje wokół punktu L2. W jej skład wchodzą rosyjski teleskop ART-XC, który rejestruje wysokoenergetyczne promieniowanie rentgenowskie w zakresie 5–30 keV oraz niemiecki eROSITA, obserwujący to samo promieniowanie w zakresie 0,2–10 keV. W połowie bieżącego roku opublikowano pierwszą wstępną mapę obserwacji eROSITA. Widać na niej emitujące promieniowanie X bąble o wysokości 45 000 lat świetlnych każdy. Promieniowanie są emitowane przez gaz o temperaturze 3–4 milionów kelwinów, który rozszerza się w tempie 300–400 km/s. Co ważne, widoczny jest i bąbel północny i południowy. A pozycja bąbla północnego idealnie pasuje do pozycji North Polar Spur. Jednak naukowcy wciąż nie dokonali pełnej interpretacji North Polar Spur. Nie można wykluczyć, że pozostałości po supernowej znajdują się dokładnie przed nowo odkrytym bąblem północnym. We wrześniu 2020 roku ukazały się badania, których autorzy poinformowali, że coś złożonego z pyłu wisi 450 lat świetlnych nad centrum galaktyki. W kategoriach kosmicznych jest to bezpośrednie sąsiedztwo, wręcz rzut kamieniem. Jednak to, co zaobserwował eROSITA wskazuje, że przed około 15–20 milionami lat w centrum Drogi Mlecznej doszło do wielkiej eksplozji. Co to jednak mogło być? Na podstawie obliczeń energii, potrzebnej by powstały tak wielkie i gorące bąble, stwierdzono, że możliwe są dwa scenariusze. Pierwszy zakłada, że nagle pojawiły się dziesiątki tysięcy nowych gwiazd, które szybko zakończyły swoje życie spektakularnymi eksplozjami. Zdaniem wielu specjalistów jest to jednak mało prawdopodobne, bo w obserwowanych bąblach znajduje się niewiele metali, czyli cięższych pierwiastków. Metaliczność jest bardzo niska, więc nie sądzę, by przyczyną była aktywność gwiazd, mówi Kataoka. Alternatywny scenariusz dotyczy supermasywnej czarnej dziury w centrum galaktyki. Nie można wykluczyć, że w jej pobliże zawędrowała wielka chmura gazu, której część została do dziury wciągnięta, a część odrzucona. W ten sposób powstały nowo odkryte bąble i, być może, bąble Fermiego. « powrót do artykułu
  9. Ziemia jest bliżej supermasywnej centralnej czarnej dziury – Sagittariusa A* – naszej galaktyki i porusza się szybciej niż dotychczas sądzono. Tak wynika z nowej mapy sporządzonej na podstawie ponad 15-letnich badań prowadzonych przez japoński projekt astronomiczny VERA. VERA (VLBI Exploration of Radio Astrometry) wystartował w 2000 roku. Głównym zadaniem projektu jest określenie struktury przestrzennej i prędkości obiektów w Drodze Mlecznej. Naukowcy wykorzystują technikę interferometrii, która pozwala połączyć dane z różnych radioteleskopów znajdujących się w Japonii i uzyskać obraz o takiej rozdzielczości, jak z jednego radioteleskopu o średnicy 2300 kilometrów. Uzyskano w ten sposób rozdzielczość wynoszącą 10 mikrosekund kątowych. To rozdzielczość wystarczająca, by – przynajmniej teoretycznie – dostrzec z Ziemi 2-złotówkę leżącą na powierzchni Księżyca. Jako, że Ziemia znajduje się wewnątrz Drogi Mlecznej, nie możemy badać naszej galaktyki z zewnątrz. Żeby zrozumieć strukturę Drogi Mlecznej musimy posłużyć się astrometrią, dokładnymi pomiarami pozycji i ruchu obiektów w naszej galaktyce. Dzięki temu jesteśmy w stanie odtworzyć jej trójwymiarową strukturę.  Właśnie opublikowano First VERA Astrometry Catalog, w którym znajdują się dokładne dane dotyczące 99 obiektów Drogi Mlecznej. Dzięki temu dowiedzieliśmy się właśnie, że Ziemia porusza się wokół centrum Drogi Mlecznej z prędkością 227 km/s, czyli o 7 km/s szybciej, niż sądziliśmy. Jest też o 2000 lat świetlnych bliżej Sagittariusa A*. Od centralnej czarnej dziury dzieli nas zatem 25 800 lat świetlnych, a nie 27 700 lat świetlnych. Teraz VERA obserwuje kolejne obiekty, szczególnie te znajdujące się blisko czarnej dziury. Projekt VERA przystąpił też do programu EAVN (East Asian VLBI Network), w ramach którego współpracują ze sobą radioteleskopy w Japonii, Korei Południowej i Chin. Dzięki zwiększeniu liczby urządzeń oraz odległości pomiędzy nimi EAVN osiągnie większą rozdzielczość niż VERA i dostarczy jeszcze bardziej dokładnych danych. « powrót do artykułu
  10. W naszej galaktyce mogą znajdować się miliardy planet swobodnych, takich, które nie są związane grawitacyjnie z żadną gwiazdą i samodzielnie przemierzają przestrzeń kosmiczną. Polscy naukowcy z zespołu OGLE poinformowali właśnie o odkryciu najmniejszej znanej nam planety swobodnej. OGLE (Optical Gravitational Lensing Experiment) ma na celu obserwację zjawisk mikrosoczewkowania grawitacyjnego. Prowadzony jest on przez naukowców z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego (OAUW), którzy wykorzystują polski teleskop znajdujący się w Las Campanas w Chile. To nie pierwsze znaczące osiągnięcie polskich naukowców. z OAUW. Przed kilku laty przeprowadziliśmy wywiad z profesorem Grzegorzem Pietrzyńskim, którego zespół dokonał najbardziej precyzyjnych pomiarów odległości do Wielkiego Obłoku Magellana. Większość znanych nam planet pozasłonecznych odkryto dzięki obserwacji ich przejść na tle gwiazdy macierzystej. Gdy taka planeta znajdzie się między swoją gwiazdą a Ziemią, widzimy spadek jasności gwiazdy, której część została przesłonięta przez planetę. Jednak tej metody nie możemy wykorzystać do wykrywania planet swobodnych. Nie krążą one przecież wokół gwiazd. Można je za to obserwować za pomocą zjawiska mikrosoczewkowania grawitacyjnego. Jak wiemy z ogólnej teorii względności, światło ulega zakrzywieniu w pobliżu masywnych obiektów. Grawitacja takich obiektów działa jak soczewka skupiająca i wzmacniająca światło odległych gwiazd. Jeśli zatem pomiędzy Ziemią odległą gwiazdą znajdzie się masywny obiekt – jak np. planeta – to jego grawitacja może spowodować, że światło ulegnie zakrzywieniu i skupieniu, a obserwator na Ziemi zobaczy pojaśnienie źródła światła. Jako, że mikrosoczewkowanie grawitacyjne nie zależy od jasności soczewki, jest świetnym sposobem na wykrywanie obiektów, które nie emitują światła, jak np. planety. Zjawisko mikrosoczewkowania jest jednak zależne od masy soczewki. Jeśli soczewką jest gwiazda, to wywołane przez nią zjawisko mikrosoczewkowania będzie trwało kilkanaście dni. W przypadku planet o masie Jowisza trwa ono 1-2 dni, a w przypadku planet podobnych do Ziemi – jedynie kilka godzin. Polscy naukowcy z OGLE donoszą o zaobserwowaniu najkrócej trwającego znanego nam zjawiska mikrosoczewkowania. Zjawisko OGLE-2016-BLG-1928 trwało zaledwie 41,5 minuty. Jako, że naukowcy nie znali odległości soczewki od Ziemi, nie mogli zbyt precyzyjnie określić jej masy, ale zdobyte dane wystarczyły, by stwierdzić, że soczewką był obiekt o masie mniejszej od Ziemi, za to trzykrotnie większej od masy Marsa. Najprawdopodobniej znajduje się on w odległości kilkunastu tysięcy lat świetlnych od nas. Wszystko wskazuje na to, że obiektem tym jest samotna planeta. Gdyby bowiem krążyła ona wokół gwiazdy, to gwiazda ta zostałaby zauważona. Zdaniem polskich naukowców mamy tutaj do czynienia z najmniejszą znaną nam planetą swobodną, która opuściła swój układ planetarny zaraz po jego uformowaniu się. Najprawdopodobniej została z niego wyrzucona w wyniku oddziaływania z innymi planetami. Szczegóły badań zostały przedstawione na łamach Astrphysical Journal Letters w artykule A terrestrial-mass rogue planet candidate detected in the shortest-timescale microlensing event. « powrót do artykułu
  11. Supermasywna czarna dziura w centrum Drogi Mlecznej – Sagittarius A* – obraca się wolniej niż się spodziewano. Jej obrót jest wolniejszy, a prawdopodobnie znacznie wolniejszy, niż 10% prędkości światła. To niezwykle powoli jak na obracającą się czarną o masie 4,15 miliona razy większej od masy Słońca. Prędkość obrotowa czarnej dziury jest ważna z dwóch powodów. Po pierwsze horyzont zdarzeń czarnej dziury, czyli miejsce spoza którego nic nie może się wydostać, jest coraz większy i większy w miarę, jak czarna dziura pochłania coraz więcej materii. Jednak im szybciej dziura się obraca, tym bardziej kurczy się jej horyzont zdarzeń. To zaś powoduje, że szybko obracające się czarne dziury mają mniejszy horyzont zdarzeń niż wolno obracające się czarne dziury o tej samej masie. Po drugie, tempo obrotu czarnej dziury odgrywa rolę w pojawianiu się dżetów z obu stron czarnej dziury. Większość galaktyk podobnych do Drogi Mlecznej posiada supermasywne czarna dziury, a wielu z nich towarzyszą potężne dżety. Jednak Droga Mleczna nie posiada dżetów. Już samo to sugeruje, że SgrA* nie obraca się zbyt szybko. Specjaliści sądzą bowiem, że dżet to materia z dysku akrecyjnego, która znajduje się zaraz poza horyzontem zdarzeń i która została przyspieszona w wyniku szybkiego obrotu czarnej dziury. Brak dżetu może sugerować, że albo takiej materii w dysku akrecyjnym SgrA* jest bardzo mało, albo dziura obraca się wolno, albo też mają miejsce obie te sytuacje. Autorzy najnowszych badań postanowili zmierzyć obrót Sagittariusa A*. Wykorzystali w tym celu gwiazdy znajdujące się w bezpośrednim otoczeniu czarnej dziury. Stwierdzili, że wszystkie te gwiazdy znajdują się na dwóch płaszczyznach. Gdyby narysować ich orbity i przyjrzeć im się z boku, okaże się, że tworzą one kształt X. Z obliczeń wynika, że gdyby SgrA* obracała się szybciej niż 10% prędkości światła, to gwiazdy te zostałyby wyrzucone z takich orbit. Orbity te są najprawdopodobniej równie stare co same gwiazdy. Powstały one w momencie narodzin tych gwiazd. Gdyby czarna dziura wirowała bardzo szybko, już byśmy takich orbit nie obserwowali. Wszystko, co w przestrzeni kosmicznej obraca się bardzo szybko wywiera wpływ na obiektu znajdujące się na orbitach. Z czasem oddziaływanie takiego szybko obracającego się obiektu powoduje, że orbity mniejszych obiektów wokół niego coraz bardziej do płaszczyzny obrotu masywnego obiektu. Jeśli zaś masywny obiekt obraca się powoli, słabiej oddziałuje na obiekty na jego orbitach, dzięki czemu mogą one utrzymać swoje pierwotne orbity. Więcej na temat badań można przeczytać na łamach Astrophysical Journal Letters. « powrót do artykułu
  12. Chińsko-amerykański zespół naukowy donosi o prawdopodobnym odkryciu pierwszej planety poza Drogą Mleczną. Dotychczas udało się odkryć wiele planet pozasłonecznych i kandydatów na planety, jednak wszystkie te obiekty znajdują się w Drodze Mlecznej. Dotychczas jednak nie zidentyfikowano planety, która mogłaby leżeć w innej galaktyce. Chińczycy i Amerykanie sądzą, że właśnie mogli znaleźć taką planetę. Obiekt M51-ULS-1b znajduje się w galaktyce Messier 51 (M51, Galaktyka Wir). Znajduje się ona w odległości około 23 milionów lat świetlnych od Ziemi. Można ją zobaczyć z pobliżu ostatniej gwiazdy dyszla Wielkiego Wozu, jednak do obserwacji potrzebny jest teleskop. Zaobserwowanie planety położonej tak daleko byłoby niezwykle trudne lub nawet niemożliwe za pomocą współczesnych technik badawczych. Jednak naukowcom z pomocą przyszła nietypowa konfiguracja układu, w której znajduje się M51-ULS-1b. Prawdopodobna planeta krąży bowiem wokół układu podwójnego. W jego centrum znajduje się czarna dziura lub gwiazda neutronowa, która właśnie „pożera” swojego towarzysza. W wyniku tego procesu pojawia się silne promieniowanie rentgenowskie, które zwróciło uwagę badaczy. Ponadto źródło tego promieniowania jest bardzo małe. Na tyle małe, że przechodzący na jego tle obiekt, czasowo blokuje promieniowanie. I właśnie takie zjawisko udało się zarejestrować naukowcom z Chin i USA – możliwy tranzyt planetarny trwający około 3 godzin. Dotychczas odkrywcy wykluczyli, by to inna gwiazda blokowała promieniowanie rentgenowskie. Obserwowany układ podwójny jest na to zbyt młody. Stwierdzili też, że promieniowanie nie jest blokowane przez materiał wciągany do źródła emisji, gdyż charakterystyki światła nie odpowiadają takiemu wydarzeniu. Ostateczne potwierdzenie istnienia planety poza Drogą Mleczną będzie wymagało dalszych badań. Jeśli jednak rzeczywiście mamy do czynienia z planetą to, zdaniem odkrywców, ma ona wielkość Saturna. Więcej o odkryciu można przeczytać w serwisie arXiv. « powrót do artykułu
  13. Polsko-niemiecki zespół naukowy zaobserwował niedawno grupę gwiazd najbliższych czarnej dziurze w Drodze Mlecznej i stwierdził, że znajduje się wśród nich najszybsza znana nam gwiazda.  Niektóre z badanych gwiazd znajdują się wewnątrz orbity gwiazdy S2, która jeszcze do niedawna była uważana za najbliższą czarnej dziurze w Drodze Mlecznej. Czarna dziura znajdująca się w centrum naszej galaktyki nosi nazwę Sagittarius A* (Sgr A*), dlatego też pobliskim jej gwiazdom nadano nazwy od S4711 do S4715. Gwiazdy te badał Michał Zajączek z Centrum Fizyki Teoretycznej w Warszawie we współpracy z naukowcami z Uniwersytetu w Kolonii i Instytutu Radioastronomii im. Maxa Plancka. Z grupy tej najbardziej interesujące okazały się S4711 oraz S4714. Badania wykazały, że S4711 ma masę 2,2 mas Słońca i okrąża czarną dziurę w ciągu zaledwie 7,6 roku i zbliża się do niej na odległość zaledwie 143,7 (± 18,8) jednostek astronomicznych. Jest więc gwiazdą o najkrótszym okresie orbitalnym i najmniejszej średniej odległości do Sgr A*. Z kolei S4714 jest najszybszą znaną nam gwiazdą. Co prawda okrąża ona czarną dziurę w ciągu 12 lat, jednak jej orbita jest eliptyczna, dzięki czemu przez dłuższy czas jest poddawana większemu oddziaływaniu ze strony Sgr A*. Z przeprowadzonych badań wynika, że S4714 zbliża się do Sgr A* na odległość zaledwie 12,6 j.a. (± 9,3 j.a.). W takiej odległości osiąga gigantyczną prędkość 23 928 km/s (± 8840 km/s), co stanowi aż 8% prędkości światła. Szczegóły badań opublikowano w artykule S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbitS4711 on a 7.6 year orbit around Sgr A*. « powrót do artykułu
  14. Dziwny biały karzeł podróżujący przez Drogę Mleczną może być pozostałością po „częściowej supernowej”, twierdzą autorzy badań opublikowanych niedawno na łamach Monthly Notices of the Royal Astronomical Society. Gwiazda mknąca przez naszą galaktykę z prędkością 900 000 km/h od lat stanowi zagadkę dla naukowców. Wkrótce po jej odkryciu w 2015 roku zauważono, że ma ona niezwykłą atmosferę. Wewnętrzna struktura białych karłów jest zwykle zbudowana z warstw. Jądra tych gwiazd składają się przeważnie z węgla oraz tlenu i są otoczone warstwą helu, a następnie warstwą wodoru. Astronomowie obserwujące białe karły zwykle widzą sam wodór, sam hel lub mieszaninę helu i węgla. Tymczasem naukowcy badający białego karła SDSS J1240+6710, znajdującego się 1430 lat świetlnych od Ziemi stwierdzili ze zdumieniem, że jego atmosfera to zadziwiająca mieszanina tlenu, neonu, magnezu i krzemu. Gdy autorzy najnowszych badań, korzystając z Teleskopu Hubble'a, przyjrzeli się gwieździe bliżej, stwierdzili, że w jej atmosferze znajduje się też węgiel, sód i glin. Nigdy wcześniej nie stwierdzono takiego składu atmosfery białego karła. Co więcej SD J1240+6710 jest też wyjątkowo mało masywny. Ma on zaledwie około 40% masy Słońca. Gdy odkryliśmy, że ten wyjątkowy biały karzeł ma małą masę i porusza się bardzo szybko, zaczęliśmy się zastanawiać, co się z nim stało w przeszłości, mówi główny autor badań, Boris Gansicke. Uczeni doszli do wniosku, że wszystkie niezwykłe właściwości gwiazdy można wyjaśnić „częściową supernową”. Supernowe to najpotężniejsze eksplozje gwiazd. Może do nich dojść, gdy biały karzeł pobierze zbyt wiele masy od towarzyszącej jej gwiazdy. Cała ta dodatkowa masa ściska jądro białego karła, co prowadzi do wzrostu ciśnienia i temperatury. W końcu zostaje zapoczątkowana termonuklearna reakcja łańcuchowa, w wyniku której dochodzi do wybuchu, a ten rozrywa białego karła na strzępy. Naukowcy zauważają, że pierwiastki obecne w atmosferze SDSS J1240+6710 mogą pochodzić z początku reakcji termojądrowej. Jednak zastanawiający jest tutaj brak pierwiastków takich jak żelazo, chrom, mangan czy nikiel. Te cięższe pierwiastki powstają z lżejszych. Ich brak sugeruje, że nasz biały karzeł przebył tylko część drogi do stania się supernową. Nie osiągnął temperatury i ciśnienie potrzebnego do wyprodukowania cięższych pierwiastków. To właśnie czyni tego karła wyjątkowym. Rozpoczęła się tam reakcja termojądrowa, ale zatrzymała się ona zanim powstały pierwiastki z grupy żelaza. To był krótki „epizod supernowej”, trwał kilka godzin, stwierdza Gansicke. Z badań wynika, że SDSS J1240+6710 był małą gwiazdą w porównaniu do białych karłów, które zamieniają się w supernową. Jako taki mógł co najwyżej skończyć jako słaba supernowa typu Iax. Dawniej astronomowie sądzili, że termojądrowa supernowa niszczy białego karła w całości. Jednak w ciągu ostatnich 10-15 lat dowiedzieliśmy się, że możliwe jest powstanie częściowej supernowej, po której pozostaje spalony biały karzeł. Eksplozja nie jest w tym przypadku na tyle silna, by zniszczyć gwiazdę, dodaje uczony. Eksplozja taka odrzuciła SDSS J1240+6710 od jej towarzysza, powodując, że przemierza on przestrzeń kosmiczną z prędkością, z jaką krążył wokół towarzyszącej jej gwiazdy. Taki scenariusz wyjaśnia zarówno masę, skład jak i prędkość badanego białego karła. Na podstawie masy i temperatury uczeni szacują, że do częściowej supernowej doszło przed około 40 milionami lat. Nie wiemy, jak wyglądał towarzysz SDSS J1240+6710, ale prawdopodobnie był on podobny do badanego karła. « powrót do artykułu
  15. Trójwymiarowa mapa wszechświata ujawniła istnienie jednej z największych znanych człowiekowi struktur. Ściana Bieguna Południowego, bo tak nazwano tę strukturę, składa się z setek tysięcy galaktyk i rozciąga na odległość 1,4 miliarda lat świetlnych. Wcześniej tego giganta nie zauważono, gdyż jego większa część znajduje się za jasno świecącą Drogą Mleczną. Ściana Bieguna Południowego rozmiarami dorównuje Wielkiej Ścianie Sloan, szóstej największej strukturze wszechświata. Astronomowie od dawna wiedzą, że galaktyki nie są rozrzucone przypadkowo, ale tworzą wielką kosmiczną sieć. Składa się ona ze zbiorów galakty i wielkich struktur gazowych pomiędzy nimi, a wszystko to poprzedzielane jest pustką kosmosu. Kosmografia zajmuje się mapowaniem tej struktury. Już wcześniej kosmografowie zauważyli inne gigantyczne struktury wszechświata. W 2014 roku Daniel Pomarede z Uniwersytetu Paris-Saclay poinformował o istnieniu supergromady Laniakei. To wielka gromada galaktyk, do której należy też Droga Mleczna. Laniakea ma szerokość 520 milionów lat świetlnych. Teraz Pomarede i jego zespół przyjrzeli się obszarowi znanemu jako strefa unikania. To ten fragment południowej części wszechświata, który jest przed naszymi oczami przesłonięty Drogą Mleczną. Jasne światło naszej galaktyki przesłania to, co poza nim. Naukowcy śledzili zarówno przesunięcie galaktyk ku czerwieni, jak i ich ruch względem siebie oraz oddziaływania grawitacyjne. Następnie dzięki specjalnym algorytmom uczeni byli w stanie określić, jak wygląda rozkład materii w strefie unikania i wokół niej. Analiza wykazała istnienie olbrzymiej struktury z centrum na południowym nieboskłonie, której jedno wielkie ramię rozciąga się w kierunku Gwiazdozbioru Wieloryba, a drugie w kierunku Gwiazdozbioru Ptaka Rajskiego. Ściana Bieguna Południowego trafi więc do czołówki największych struktur we wszechświecie. Na czele tej listy znajduje się gigantyczna Wielka Ściana Herkulesa-Korony Północy, której rozpiętość sięga 10 miliardów lat świetlnych. W 2015 roku informowaliśmy o odkryciu Gigantycznego Pierścienia Rozbłysków Gamma. Rozciąga się on na 5,6 miliarda lat świetlnych. Pokonał więc ówczesną rekordzistkę, czyli Olbrzymią Wielką Grupę Kwazarów o szerokości 4 miliardów lat świetlnych. Strukturami większymi od Ściany Bieguna Południowego są jeszcze Wielka Grupa Kwazarów U1.11 (2,5 miliarda lat świetlnych) oraz Wielka Grupa Kwazarów Clowesa-Campusano (2 miliardy lat świetlnych). « powrót do artykułu
  16. Co jakiś czas przez Drogę Mleczną przechodzi galaktyka karłowata SagDEG (Sagittarius Dwarf Elliptical Galaxy). To drugi najbliższy satelita naszej galaktyki, a jego przejście przez dysk Drogi Mlecznej powoduje silne zaburzenia i wywołuje gwałtowne tworzenie się gwiazd. Niewykluczone, że istnienie Układu Słonecznego zawdzięczamy właśnie jednemu z takich przejść. Tomas Ruiz-Lara i Carme Gallart z Wydziału Astrofizyki Universidad de La Laguna w Hiszpanii, Edouard J. Bernadr z Universite Cote d'Azur oraz Santi Cassisi z Wydziału Fizyki Uniwersytetu w Pizie, przeprowadzili analizy formowania się gwiazd w promieniu około 2 kpc (ok. 6600 lat świetlnych) od Słońca. Odkryli trzy bardzo dobrze wyodrębnione okresy formowania się gwiazd, do których doszło 5,7, 1,9 oraz 1,0 miliarda lat temu. Każdy z epizodów był mniej intensywny od poprzedniego. Łączenie się galaktyk jest uznawane za jeden z głównych czynników powstawania nowych gwiazd. Obecnie obowiązujące teorie kosmologiczne mówią, że takie właśnie łączenie się masywnych galaktyk odgrywają kluczową rolę w ich powstawaniu. Tak też było z Drogą Mleczną. Jednak nie mamy żadnych dowodów, by w późniejszym okresie istnienia naszej galaktyki doszło do takiego wydarzenia. Jednocześnie wiemy o istnieniu w galaktycznym halo strumieni łączących Drogę Mleczną z SagDEG, co wskazuje, że w ciągu ostatnich kilku miliardów lat doszło do bliskiego spotkania obu galaktyk. Naukowcy przeprowadzili więc symulację ruchu SagDEG, w której uwzględnili pozycję kątową, odległości i prędkość strumieni pływowych z SagDEG. Na tej podstawie stwierdzili, że przed 6,5, 4,5, 2,75, 1 oraz 0,1 miliarda lat temu musiało dojść do bliskiego spotkania obu galaktyk. Gdy uściślili jeszcze swoje pomiary stwierdzili, że pewne cechy charakterystyczne dysku Drogi Mlecznej da się wyjaśnić, jeśli masa SagDEG wynoxi około 2,5x1010 masy Słońca i jeśli przeszła ona blisko Drogi Mlecznej przed 2,2 oraz 1,1 miliarda lat temu. Kolejne obserwacje o obliczenia wykazały, że dysk naszej galaktyki został poważnie zaburzony 300-900 milionów lat temu, co w wysokim stopni zgadza się z proponowanymi przejściami przezeń SagDEG. Bliskie spotkania obu galaktyk znajdują potwierdzenie nie tylko w Drodze Mlecznej. Badanie populacji gwiazd w SagDEG również wskazuje na pojawianie się tam gwiazd, których czas narodzin oraz skład chemiczny potwierdzają fakt spotkań. Ścisła korelacja pomiędzy zawartością gwiazd w SagDEG oraz w Drodze Mlecznej dodatkowo potwierdza hipotezę o związku pomiędzy okresami tworzenia się gwiazd w Drodze Mlecznej a jej interakcją z SagDEG. Uzyskaliśmy szczegółowe informacje na temat historii formowania się gwiazd na obszarze 2kpc lokalnego wszechświata. Odkryliśmy, że mamy do czynienia z epizodami zwiększonego tempa formowania się gwiazd, do których dochodziło około 5,7, 1,9 i 1,0 miliarda lat temu. Wszystkie dowody wskazują, że przyczyną pojawiania się takich epizodów są nawracające interakcje pomiędzy Drogą Mleczną a SagDEG. Odkrycie to wskazuje, że galaktyki o niskiej masie nie tylko wpływają na dynamikę dysku Drogi Mlecznej, ale są również w stanie zapoczątkować duże epizody formowania się gwiazd, czytamy w pracy opublikowanej na łamach Nature. « powrót do artykułu
  17. Australijscy astronomowie odkryli niezwykle rzadki typ galaktyki sprzed 11 miliardów lat. Opisali ją jako kosmiczny pierścień ognia. Galaktyka o masie podobnej do masy Drogi Mlecznej jest okrągła z dziurą w środku. Jej odkrycie może zmienić nasze poglądy na formowanie się i ewolucję najwcześniejszych galaktyk. To dziwaczny obiekt, jakiego wcześniej nie widzieliśmy. Wygląda jednocześnie dziwnie i znajomo, mówi doktor Tiantian Yuan z ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions. Galaktyka R5519 znajduje się w odległości 11 miliardów lat świetlnych od Układu Słonecznego. Obecna wewnątrz niej pusta przestrzeń jest kolosalna. Jej średnica wynosi 2 miliardy jednostek astronomicznych. Jest 3 miliony razy większa niż średnica supermasywnej czarnej dziury w galaktyce Messier 87, która w ubiegłym roku stała się pierwszą bezpośrednio zobrazowaną czarną dziurą. Jak mówi doktor Yuan, tempo powstawania gwiazd w R5519 jest 50-krotnie szybsze niż w Drodze Mlecznej. Większość jej aktywności ma miejsce w pierścieniu, więc to naprawdę pierścień ognia, dodaje. Dotychczas zdobyte dowody wskazują, że jest to typ galaktyki znanej jako kolizyjna galaktyka pierścieniowa. To pierwszy tego typu obiekt odkryty we wczesnym wszechświecie. Obecnie znamy dwa typy galaktyk pierścieniowych. Jeden z nich, bardziej rozpowszechniony, powstaje w wyniku procesów wewnętrznych. Drugi, jak sama nazwa wskazuje, powstaje w wyniku zderzeń z innymi galaktykami. W naszym najbliższym otoczeniu galaktyki kolizyjne są 1000-krotnie rzadsze niż galaktyki pierścieniowe powstałe w wyniku procesów wewnętrznych. Najnowsze odkrycie pokazuje, że zawsze były one czymś wyjątkowym. Dzięki niemu będziemy mogli zrozumieć, jak powstają galaktyki spiralne, takie jak Droga Mleczna Do pojawienia się kolizyjnej galaktyki pierścieniowej konieczna jest obecność cienkiego dysku w galaktyce, w którą uderzyła inna galaktyka. Takie cienkie dyski to niezbędny element galaktyk spiralnych. Zanim one powstają galaktyki takie są nieuporządkowane, nie można ich nazwać galaktykami spiralnymi. Tutaj mamy kolizyjną galaktykę pierścieniową przed 11 miliardów lat. Dla porównania, dysk Drogi Mlecznej zaczął formować się 9 miliardów lat temu. Dzięki odkryciu R5519 widzimy, że proces formowania się dysków galaktyk spiralnych pojawił się wcześniej, niż dotychczas sądziliśmy, mówi drugi za autorów badań, profesor Kenneth Freeman z Australian National University. Do zapoznania się ze szczegółami zapraszamy na łamy Nature. « powrót do artykułu
  18. Chiński astronom odkrył najszybciej obracającą się gwiazdę w Drodze Mlecznej. Li Guangwei wykorzystał Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) znajdujący się w Xinglong w prowincji Hebei. Za pomocą tego urządzenia odkrył, że szybkość ruchu obrotowego gwiazdy LAMOST J040643.69+542347.8 wynosi około 540 km/s. To o około 100 km/s szybciej niż dotychczasowy rekordzistka HD 191423. Dla porównania, prędkość obrotowa gwiazd podobnych do Słońca wynosi na równiku mniej niż 25 km/s. Analizując spektrum gwiazdy uczony doszedł do wniosku, że to masywny obiekt o wysokiej temperaturze. Gwiazda ma obły kształt, gdyż duża prędkość obrotowa mocno zniekształca ją na równiku. Powoduje to, że jej średnica na równiku jest większa, niż średnica mierzona do biegunów. Przez to grawitacja na biegunach jest wyższa niż na równiku. Wyższa jest tam też temperatura gwiazdy. LAMOST J040643.69+542347.8 znajduje się w odległości około 30 000 lat świetlnych od Ziemi i ucieka z prędkością około 120 km/s od miejsca swoich narodzin, co sugeruje, że była częścią układu podwójnego. Najprawdopodobniej przechwytywała materiał od swojego towarzysza, co napędziło jej ruch obrotowy, a gdy jej towarzysz zakończył życie w postaci supernowej, badana gwiazda została gwałtownie wyrzucona siłą eksplozji. « powrót do artykułu
  19. Międzynarodowy zespół astronomów poinformował o odkryciu najszybciej poruszającej się gwiazdy w Drodze Mlecznej. Jej prędkość względem centrum naszej galaktyki wynosi ponad 6 000 000 km/h. Przed około 5 milionami lat ta hiperprędkościowa gwiazda znajdowała się w centrum Drogi Mlecznej. Została stamtąd wyrzucona przez czarną dziurę. Gwiazda ma prędkość, która pozwala jej opuścić Galaktykę. Gwiazda S5-HVS1 jest dwukrotnie bardziej masywna od Słońca i dostarcza pierwszych mocnych dowodów na poparcie liczącej sobie 30 lat teorii mówiącej, że czarne dziury mogą przyspieszyć gwiazdy do hiperprędkości pozwalających an opuszczenie naszej galaktyki, mówi główny autor badań, profesor Daniel Zucker. Centrum Galaktyki to wir składający się z obiektów krążących wokół czarnej dziury i w nią wpadających. Wydaje się, że tworzą się tam też gwiazdy. To dziwaczne miejsce, które trudno badać, gdyż pomiędzy nim a nami znajduje się dużo pyłu. Może je obserwować w podczerwieni i w zakresie fal radiowych, ale już niekoniecznie w świetle widzialnym, dodaje uczony. Teraz odkryliśmy gwiazdę, która prawdopodobnie w tym miejscu się uformowała i z niego uciekła. Obecnie znajduje się w odległości 29 000 lat świetlnych od Ziemi. To wystarczająco blisko, byśmy mogli ją dość szczegółowo badać. Gwiazda wydaje się zwyczajna. Powinna nam sporo powiedzieć o gwiazdach powstających w pobliżu centrum Galaktyki i o warunkach tam panujących. S5-HSV1 należy do ciągu głównego gwiazd, podobnie jak Słońce i większość innych gwiazd. Liczy sobie około 500 milionów lat, czyli jest w połowie życia. Przez 495 milionów lat stanowiła część układu podwójnego. W pewnym momencie znalazł się on zbyt blisko Saggitariusa A*, czarnej dziury w środku Drogi Mlecznej. Zgodnie z obowiązującymi teoriami, czarna dziura musiała przechwycić jedną z gwiazd, którą w końcu wchłonęła, a S5-HSV1 została wystrzelona z prędkością 1800 km/s. Pierwszą gwiazdę hiperprędkościową odkryto w 2005 roku. Do dzisiaj poznaliśmy zaledwie kilkadziesiąt takich obiektów, a przed kilku laty donosiliśmy o odkryciu nowej klasy gwiazd hiperprędkościowych, odkryciu pierwszego hiperprędkościowego układu podwójnego i o tajemniczej hiperprędkościowej gwieździe LAMOST-HVS. S5-HVS1 w końcu opuści Drogę Mleczną. Nie nastąpi to jednak zbyt szybko przebycie 1 roku świetlnego zajmuje jej bowiem 180 lat.   « powrót do artykułu
  20. Czarna dziura, która znajduje się w centrum naszej galaktyki, w ciągu zaledwie dwóch godzin zwiększyła swoją jasność 75-krotnie. Naukowcy sądzą, że Sagittarius A* była jeszcze jaśniejsza, nim zaczęli się jej przyglądać. Jeszcze nigdy w historii 20-letnich obserwacji nie zanotowano tak dużej jasności tej czarnej dziury. To jednocześnie największa zaobserwowana zmiana. Obserwacji dokonał Tuan Do z Keck Observatory. Początkowo sądził, że wyjątkowo jasny punkt, który pojawił się na odczytach to pobliska gwiazda S0-2, jednak szybko zdał sobie sprawę, że to co obserwuje, to rosnąca jasność czarnej dziury. To było dziwne. Nigdy wcześniej nie widziałem tak jasnej czarnej dziury. Może wpada w nią więcej gazu, przez co staje się bardziej jasna niż kiedyś?, zastanawia się uczony. W ubiegłym roku gwiazda S0-2 wędrowała w pobliżu Sagittariusa A*, co mogło zaburzyć gaz znajdujący się w okolicy i spowodowało, że więcej go trafia do dziury, a być może zwiększanie jasności jest związane z tajemniczą chmurą gazu i pyłu zwaną G2, którą zaobserwowano w 2014 roku. Już wówczas spodziewano się zwiększenia aktywności i fajerwerków, ale nic takiego nie nastąpiło. Astronomowie byli wówczas rozczarowani. Być może, jak mówi Do, coś opóźniło tę chmurę. Sagittarius A* ma wkrótce zostać zobrazowana przez Event Horizon Telescope. W kwietniu wykonał on pierwsze w historii ludzkości zdjęcie czarnej dziury. Była to M87. Gdy w końcu zobaczymy dokładniejszy obraz centralnej dziury Drogi Mlecznej będziemy mogli o niej więcej powiedzieć. Oczywiście obserwowane światło, które zwiększyło jasność, nie pochodzi z samej czarnej dziury, a z towarzyszącego jej dysku akrecyjnego. To dysk materii krążącej wokół czarnej dziury, który jest podgrzewany wskutek jej oddziaływania i zaczyna emitować promieniowanie elektromagnetyczne. To właśnie nagłe zwiększenie jego jasności zaobserwował Do. « powrót do artykułu
  21. Gdy Galileusz skierował swój pierwszy teleskop w kierunku Drogi Mlecznej, dostrzegł, że składa się ona z niezliczonej liczby gwiazd. Od tego czasu badania historii i własności Galaktyki pochłaniały wiele pokoleń naukowców. W najnowszym numerze amerykańskiego tygodnika Science zespół polskich astronomów z Obserwatorium Astronomicznego UW, pracujący w ramach projektu The Optical Gravitational Lensing Experiment (OGLE), prezentuje unikalną, trójwymiarową mapę Drogi Mlecznej. Mapa przedstawia precyzyjny obraz naszej Galaktyki i dostarcza wielu nowych informacji dotyczących budowy i historii systemu gwiazdowego, w którym mieszkamy. Od XVII wieku astronomowie zdawali sobie sprawę, że Ziemia, Słońce i inne planety z Układu Słonecznego wraz z miliardami gwiazd widocznych przez teleskopy tworzą naszą Galaktykę. Światło tych gwiazd, obserwowane z dala od świateł cywilizacji, zlewa się, przybierając kształt rozlanego na niebie mleka, tworząc Drogą Mleczną. Opisanie rzeczywistego kształtu oraz budowy i struktury Galaktyki na podstawie obserwacji pochodzących z jej wnętrza nie jest zadaniem łatwym. Astronomowie wyobrażają sobie Galaktykę jako typową galaktykę spiralną z tzw. poprzeczką, składającą się z centralnego zgrubienia zawierającego owalną poprzeczkę otoczonego płaskim dyskiem zbudowanym z gazu, pyłu i gwiazd. Dysk składa się z czterech ramion spiralnych, a jego średnica wynosi około 120 tys. lat świetlnych. Układ Słoneczny znajduje się wewnątrz dysku w odległości około 27 tys. lat świetnych od centrum Galaktyki. Dlatego gwiazdy dysku oglądane z tego miejsca wyglądają na niebie jak cienka, blada poświata – pas Drogi Mlecznej. Aktualna wiedza dotycząca budowy Galaktyki opiera się m. in. na zliczeniach gwiazd, radiowych badaniach rozmieszczenia cząsteczek gazu w Galaktyce, a także analizie obrazów innych galaktyk, które widzimy z zewnątrz. Jednak zawsze dotąd odległości do badanych obiektów mających opisać budowę Galaktyki wyznaczane były pośrednio oraz były mocno zależne od przyjętych modeli. Najdokładniejszą metodą poznania struktury Galaktyki byłoby więc wyznaczenie precyzyjnych odległości do dużej grupy gwiazd o podobnych własnościach, dzięki czemu zobaczylibyśmy bezpośrednio ich rozmieszczenie w Galaktyce w trzech wymiarach. Obiektami idealnymi do mapowania Drogi Mlecznej są stosunkowo młode (młodsze niż 250 mln lat) gwiazdy zwane cefeidami klasycznymi. Są to pulsujące nadolbrzymy, których jasność zmienia się w bardzo regularny sposób z okresem od kilkunastu godzin do kilkudziesięciu dni. Na podstawie okresu pulsacji możemy wyznaczyć jasność rzeczywistą cefeidy i porównując ją z jasnością obserwowaną gwiazdy obliczamy precyzyjnie jej odległość – objaśnia dr Dorota Skowron, liderka zespołu przygotowującego mapę Galaktyki, pierwsza autorka pracy. Pewnym utrudnieniem w uzyskaniu dokładnych wyników jest pochłanianie światła na drodze od gwiazdy do obserwatora ziemskiego, ale astronomowie radzą sobie z tym problemem przez wykonywanie obserwacji w zakresie promieniowania podczerwonego, gdzie pochłanianie jest bardzo małe. Odległości do cefeid można wyznaczyć z dokładnością lepszą niż 5% – dodaje. Unikatowa mapa Drogi Mlecznej Najnowsza mapa Galaktyki zespołu OGLE prezentowana w czasopiśmie Science powstała na podstawie danych dotyczących ponad 2400 cefeid. Większość z nich to nowo odkryte obiekty dzięki obserwacjom prowadzonym w ramach projektu OGLE, w Obserwatorium Las Campanas w Chile. Projekt OGLE to jeden z największych na świecie przeglądów fotometrycznych nieba, obserwuje regularnie ponad dwa miliardy gwiazd. Kolekcje różnorodnych typów gwiazd zmiennych, w tym cefeid z Galaktyki i sąsiednich Obłoków Magellana, należą do największych we współczesnej astrofizyce i są podstawą do różnorodnych badań Wszechświata – wyjaśnia kierownik projektu OGLE, prof. Andrzej Udalski. Skonstruowana na podstawie analizowanych cefeid mapa pokazuje rzeczywiste rozmieszczenie młodej populacji gwiazdowej w Galaktyce. Jest to pierwsza trójwymiarowa mapa stworzona na podstawie bezpośrednich odległości wyznaczonych do poszczególnych obiektów. Precyzyjnie wyznaczone odległości cefeid wypełniających dysk galaktyczny, aż po jego krańce, umożliwiają dokładną analizę budowy dysku galaktycznego. Słońce znajduje się około 50 lat świetlnych powyżej płaszczyzny dysku. Mapa pokazuje, że dysk galaktyczny jest płaski do odległości 25 tys. lat świetlnych od centrum Galaktyki, a w dalszych odległościach ulega zakrzywieniu (disk warp). Zakrzywienie dysku podejrzewano już wiele lat temu, ale dopiero teraz po raz pierwszy możemy użyć indywidualnych obiektów do badania jego kształtu w trzech wymiarach – wyjaśnia Przemek Mróz, doktorant UW, badający parametry dysku Galaktyki. Gwiazdy w zewnętrznych częściach dysku Drogi Mlecznej mogą być przesunięte nawet o 4,5 tys. lat świetlnych od płaszczyzny dysku wyznaczonej w centralnych rejonach Galaktyki. Zakrzywienie dysku może być spowodowane oddziaływaniami z innymi galaktykami, wpływem gazu międzygalaktycznego lub tzw. ciemnej materii. Dysk galaktyczny nie ma stałej grubości. Rozszerzanie dysku (disk flaring) zostało w przypadku młodej populacji gwiazd Galaktyki po raz pierwszy tak dokładnie scharakteryzowane. Grubość dysku galaktycznego wynosi około 500 lat świetlnych w odległości Słońca i osiąga ponad 3 tys. na samych krańcach dysku. Wyznaczenie precyzyjnych odległości do tak licznej próbki cefeid w połączeniu z pomiarami ich prędkości z satelity Gaia umożliwiły również skonstruowanie dokładnej krzywej rotacji Galaktyki – zależności prędkości orbitalnej gwiazd wokół centrum Galaktyki od ich odległości od środka. Nasza krzywa rotacji Galaktyki sięga daleko poza zakres dotychczasowych badań i potwierdza stałą prędkość orbitalną gwiazd, praktycznie aż do granic dysku – dodaje Przemek Mróz. Taki jej kształt jest jednym z podstawowych argumentów na rzecz istnienia tzw. ciemnej materii w Galaktyce. Wiek cefeid skorelowany jest z ich okresem pulsacji. Na tej podstawie można wykonać tomografię wieku cefeid z Galaktyki. Okazuje się, że szereg wyraźnych struktur widocznych na mapie ma podobny wiek. Cefeidy młodsze znajdują się bliżej centrum Galaktyki, a najstarsze na jej krańcach. Zbliżony wiek struktur wskazuje, że musiały one powstać w podobnym momencie w przeszłości, w jednym z ramion spiralnych Galaktyki. Ich dzisiejsze rozmieszczenie w dysku i częściowe rozmycie jest wynikiem różnej prędkości rotacji w Galaktyce ramion spiralnych (gazowych struktur, w których młode gwiazdy, m.in. cefeidy, powstają) oraz rotacji gwiazd – zauważa dr Jan Skowron, współautor pracy w tygodniku Science. Aby przetestować tę hipotezę, skonstruowany został prosty model powstawania poszczególnych struktur. W ramiona spiralne Galaktyki wstawiono epizody formowania się gwiazd w różnych momentach w przeszłości i powstającym gwiazdom przypisano typowe ruchy własne oraz prędkość rotacji. Sprawdzano jak powstające miliony lat temu we fragmentach ramion spiralnych cefeidy będą usytuowane w dzisiejszej Galaktyce. Symulowane i obserwowane struktury w Galaktyce są uderzająco podobne. Możemy więc stwierdzić, że nasz model historii dysku galaktycznego jest możliwy i jest w stanie objaśnić dzisiejsze struktury jakie w nim widzimy – podsumowuje wyniki modelowania dr Jan Skowron.   « powrót do artykułu
  22. Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną. Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury. LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h). Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki. Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego. Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca. Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS. Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur. Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki. « powrót do artykułu
  23. Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej. Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości. Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań. Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves. Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai. « powrót do artykułu
  24. Naukowcy pracujący pod kierunkiem specjalistów z Columbia University odkryli, że wokół Saggitariusa A* (Sgr A*), masywnej czarnej dziury w centrum Drogi Mlecznej, krąży 12 mniejszych czarnych dziur. To pierwszy dowód na prawdziwość pochodzącej sprzed dziesięcioleci hipotezy dotyczącej budowy centrum naszej galaktyki. Wszystko czego chcielibyśmy dowiedzieć się o interakcji pomiędzy wielkimi czarnymi dziurami, a małymi czarnymi dziurami, możemy dowiedzieć się badając ten obszar, mówi główny autor badań, astrofizyk Chick Hailey. Droga Mleczna to jedyna galaktyka, gdzie możemy badać wpływ supermasywnych czarnych dziur na małe czarne dziury. W innych galaktykach nie możemy dostrzec takich interakcji. Naukowcy od ponad 20 lat szukają dowodów na wsparcie hipotezy o tysiącach czarnych dziur krążących wokół supermasywnych czarnych dziur w centrach dużych galaktyk. W całej naszej galaktyce, która liczy sobie 100 000 lat świetlnych średnicy, istnieje zaledwie około 50 czarnych dziur. A w tym regionie, o szerokości 6 lat świetlnych, może być ich 10 do 20 tysięcy i nikt nie był w stanie ich znaleźć. Brakowało więc wiarygodnych dowodów na ich istnienie, dodaje Hailey. Sgr A* jest otoczona pyłem i gazem, które tworzą idealne środowisko powstawania masywnych gwiazd, które po śmierci stają się czarnymi dziurami. Ponadto supermasywny Sgr A* może przyciągać czarne dziury, które powstały poza tym pyłem i gazem. Astronomowie sądzą, że większość krążących wokół Saggitariusa A* czarnych dziur to samotne obiekty. Jednak niektóre z nich mogły przechwycić pobliską gwiazdę i stworzyć układ podwójny. Zagęszczenie samotnych czarnych dziur i układów podwójnych powinno wzrastać w miarę zbliżania się do Sgr A*. W przeszłości poszukiwano dowodów na istnienie układów podwójnych czarna dziura - gwiazda próbując zanotować rozbłysk promieniowania rentgenowskiego, do którego dochodzi podczas łączenia się czarnej dziury z gwiazdą. To oczywisty sposób na poszukiwanie czarnych dziur, jednak centrum naszej galaktyki jest tak bardzo od nas oddalone, że odpowiednio silny rozbłysk zdarza się raz na 100-1000 lat, mówi Hailey. Jego zespół zdał sobie sprawę, że żeby wykryć wspomniane układy podwójne trzeba szukać słabszego ale stabilnego promieniowania rentgenowskiego, które pojawia się po wstępnym rozbłysku. Izolowane samotne czarne dziury są po prostu czarne. Nie wysyłają żadnych sygnałów. Więc poszukiwanie w centrum Galaktyki takich dziur nie jest zbyt rozsądne. Gdy jednak czarna dziura tworzy układ podwójny z gwiazdą, ma miejsce stała emisja promieniowania rentgenowskiego, którą można wykryć. Jeśli znajdziemy czarną dziurę powiązaną z gwiazdą o małej masie i wiemy, jaki odsetek czarnych dziur wiąże się z takimi gwiazdami, możemy obliczyć populację izolowanych czarnych dziur, wyjaśnia Hailey. Uczeni przejrzeli historyczne dane z Chandra X-ray Observatory i w promieniu 3 lat świetlnych od Sgr A* znaleźli 12 układów czarna dziura-gwiazda. Po analizie właściwości i rozłożenie w przestrzeni tych układów podwójnych i ekstrapolacji swoich wyników na całe otoczenie Sgr A* stwierdzili, że musi się tam znajdować 300-500 układów podwójnych i około 10 000 izolowanych czarnych dziur. Odkrycie ma bardzo duże znaczenie np. dla badań nad falami grawitacyjnymi. Znając liczbę czarnych dziur w centrum galaktyki można będzie obliczyć, jak wiele fal grawitacyjnych będzie emitowane. « powrót do artykułu
×
×
  • Dodaj nową pozycję...