Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'woda' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 137 wyników

  1. Potężny laser rentgenowski został wykorzystany do podgrzania wody od temperatury pokojowej do 100 000 stopni Celsjusza w czasie krótszym niż 1/10 pikosekundy. W czasie eksperymentu powstał egzotyczny stan wody, a naukowcy mają nadzieję wykorzystać go do badań nad właściwościami życiodajnego płynu. Badanie tego typu będą miały też praktyczne przełożenie na techniki badania próbek biologicznych i innych materiałów za pomocą laserów z promieniowaniem X. Badania zostały przeprowadzone przez zespół Carla Calemana z DESY (Niemiecki Synchrotron Elektronowy) oraz szwedzkiego Uniwersytetu w Uppsali, który wykorzystał amerykański laser Linac Coherent Light Source (LCLS) ze SLAC National Accelerator Laboratory. Podczas eksperymentów w stronę strumienia wody wystrzeliwano ultrakrótkie intensywne promienie. To nie jest zwykły sposób podgrzewania wody. Normalnie, gdy podgrzewasz wodę jej molekuły trzęsą się coraz silniej i silniej, mówi Caleman. Z molekularnego punktu widzenia ciepło to ruch molekuł. Im wyższa temperatura tym szybszy ruch molekuł. Nasz sposób podgrzewania jest całkowicie różny. Intensywne promieniowanie X wyrzuca elektrony z molekuł wody i w ten sposób zaburza ich równowagę elektryczną. Więc nagle atomy odczuwają silny odrzut i zaczyna się gwałtownie poruszać, wyjaśnia uczony. W czasie krótszym niż 75 femtosekund (0,000000000000075 sekundy) woda przechodzi przemianę fazową z cieczy w plazmę, czy rodzaj elektrycznie naładowanego gazu. Jednak podczas tego przejścia woda wciąż ma gęstość ciekłej wody, gdyż jej atomy nie miały czasu, by się od siebie odsunąć, mówi współautor badań, Olof Jonsson z Uniwersytetu w Uppsali. Powstaje egzotyczny stan materii, który nie występuje na Ziemi. Ma on podobne cechy jak część plazmy w Słońcu czy w gazowym olbrzymie Jowiszu, ale ma mniejszą gęstość. Jednocześnie jest cieplejsza niż jądro Ziemi. Woda to dziwny płyn i gdyby nie to, że ma niezwykłe właściwości, wiele rzeczy na Ziemi nie byłoby takie, jakimi je znamy. Dotyczy to szczególnie życia, podkreśla Jonsson. Woda różni się od innych płynów gęstością, pojemnością cieplną czy przewodnictwem cieplnym. W przyszłości ten rozpowszechniony na Ziemi i jednocześnie tak niezwykły płyn będzie przedmiotem badań w planowym przez DESY Centrum Wiedzy o Wodzie. Najnowsze badania wykazały, że po uderzeniu bardzo silnym impulsem promieniowania przez 25 femtosekund w wodzie niemal nie zachodziły żadne zmiany strukturalne. Ale już po 75 femtosekundach zmiany takie były ewidentne. Naukowcy zauważają, że badania te pokazują, iż badanie za pomocą silnych laserów rentgenowskich wszystkiego, co nie jest kryształem, wiąże się ze zniszczeniem próbki. Trzeba brać to pod uwagę przy rozwijaniu technik obrazowania za pomocą laserów X pojedynczych molekuł i innych niewielkich próbek, dodaje Nicusor Timneanu z Uniwersytetu w Uppsali. « powrót do artykułu
  2. KopalniaWiedzy.pl

    Napędzanie Słońcem

    Najbardziej obfitym i najłatwiej dostępnym źródłem odnawialnej energii jest Słońce. Jednak dotychczas, by wykorzystać jego potencjał, konieczne jest wykonanie wielu kroków pośrednich, które w efekcie pozwolą np. napędzać maszynę dzięki energii pozyskanej z naszej gwiazdy. Naukowcy z Uniwersytetu Kalifornijskiego w Berkeley stworzyli proste, wodne maszyny napędzane bezpośrednio przez Słońce. Teoretycznie można je skalować tak, by otrzymać pompy generujące energię. "Słoneczne maszyny" działają dzięki zjawisku napięcia powierzchniowego. Molekuły wody silnie na siebie oddziałują i, jak się okazało, można to oddziaływanie wykorzystać do poruszania obiektów po powierzchni wody. Urządzenia z Berkeley to kawałki przezroczystego plastiku, którego najdłuższa krawędź ma około centymetra. Pokryto je paskami ułożonych wertykalnie węglowych nanorurek. Jeśli teraz na taką maszynę pada światło Słońca, nanorurki się podgrzewają i ogrzewają wodę wokół. To zmniejsza napięcie powierzchniowe z jednej strony kawałka plastiku, który w efekcie jest odpychany od miejsca o niższym napięciu. Prace nad poruszanymi światłem słonecznym maszynami prowadzili Alex Zettl, profesor fizyki materii skondensowanej oraz profesor chemii i inżynierii chemicznej Jean M. J. Frechet. Profesor Zettl mówi, że warto je kontynuować, gdyż siły napięcia powierzchniowego są bardzo duże, a więc być może uda się je wykorzystać. Uczeni zademonstrowali dwie maszyny. Pierwsza z nich to łódka z nanorurkami przylepionymi z tyłu. Po oświetleniu nanorurek płynęła ona do przodu. Maksymalne prędkość łódki o długości 1 cm wynosiła 8 centymetrów na sekundę. Druga z maszyn to prosty wirnik. Do każdego z jego czterech skrzydeł przymocowano z jednej strony nanorurki. Po wystawieniu na działanie światła słonecznego kręcił się on z prędkością około 70 obrotów na minutę. Zettl i Frechet rozpoczęli swoje eksperymenty od małych obiektów, ponieważ poruszanie ich po wodzie stanowi poważne wyzwanie. W tej skali występujące turbulencje stanowią poważną przeszkodę. Ponadto w nanoskali napięcie powierzchniowe działa silniej niż grawitacja. Obaj uczeni mają nadzieję, że ich prace przyczynią się do powstanie przydatnych w medycynie miniaturowych urządzeń napędzanych laserem i korzystających z napięcia powierzchniowego płynów ustrojowych. Chcieliby też stworzyć nanowirniki do generatorów energii elektrycznej. Planują również wybudowanie dużej łodzi, która, po umieszczeniu z tyłu soczewek i nanorurek, byłaby napędzana Słońcem. Dean Alhorn, pracujący w NASA nad napędzanym słońcem satelitą NanoSail-D chwali prace swoich kolegów. Zauważa jednak, że muszą jeszcze dowieść, iż siła Słońca i napięcia powierzchniowego jest na tyle duża, by np. pokonać fale na otwartym akwenie.
  3. KopalniaWiedzy.pl

    MIT rewolucjonizuje produkcję energii

    Naukowcy z MIT-u (Massachusetts Institute of Technology) poinformowali o dokonaniu przełomowego odkrycia, które w niedalekiej przyszłości zamieni światło słoneczne z marginalnego w główne źródło czystej energii. Akademicy opracowali bowiem tanią prostą metodę przechowywania energii. Dotychczas z energii słońca można było korzystać tylko w dzień, gdyż jej przechowywanie jest bardzo drogie i mało efektywne. Wykorzystanie energii słonecznej zawsze miało poważne ograniczenia. Teraz myślimy o Słońcu jako o niewyczerpanym źródle energii, z którego już wkrótce będziemy mogli korzystać - mówi profesor Daniel Nocera, jeden z głównych autorów studium. To wielkie odkrycie o olbrzymim znaczeniu dla przyszłości ludzkości - mówi Barber. Nie można go przecenić, gdyż umożliwia opracowanie technologii, które zmniejszą naszą zależność od paliw kopalnych, a jednocześnie pomogą w walce ze zmianami klimatycznymi - dodaje. Obecnie używane przemysłowe procesy elektrolizy, dzięki którym przeprowadza się rozkład wody na tlen i wodór, mają spore wady w porównaniu z technologią Nocery. Wykorzystywane są w nich bowiem bardzo drogie elektrody, a cały proces przebiega w silnie zasadowym środowisku. Sam Nocera mówi, że prace jego zespołu to dopiero początek. Jego zdaniem naukowcy wykorzystają nową technologię i w ciągu 10 lat rozpocznie się rewolucja, której skutkiem będzie ograniczenie scentralizowanych systemów produkcji i dystrybucji energii. Każdy właściciel domu będzie mógł korzystać za dnia z energii słońca, której nadmiar zostanie wykorzystany do przeprowadzenia elektrolizy wody, dzięki czemu zapewni sobie energię wówczas, gdy słońce nie świeci.
  4. KopalniaWiedzy.pl

    Odwierty pod lodowcem

    Francuscy inżynierowie wiercą dren o średnicy 22 cm, za pomocą którego zostanie odpompowana woda spod lodowca Tete-Rousse na górze Mont Blanc. Szacuje się, że w ukrytym jeziorze znajduje się ok. 65 tys. metrów sześciennych wody. Trzeba ją odprowadzić, by zapobiec powodzi w pobliskiej dolinie Saint-Gervais. Na zbiornik natrafiono podczas przeprowadzanej w zeszłym miesiącu rutynowej kontroli. Do powodzi w dolinie Saint-Gervais w Wysokiej Sabaudii, którą uważa się za raj dla miłośników pięknych krajobrazów i narciarzy, doszło już w 1892 roku. Zginęło wtedy 175 osób. Ponieważ obecnie malownicze okolice są chętnie odwiedzane przez turystów, a w dodatku mieszka tu ok. 3000 osób, zagrożenie należy traktować poważnie. W niedostępnym dla oczu jeziorze jest tyle wody, że dolina zginęłaby w odmętach w ciągu zaledwie 15 minut. Ucierpiałoby na tym 900 rodzin. Nic więc dziwnego, że już w lipcu na miejscu zainstalowano system alarmowy. Nicolas Karr z Biura Lasów Państwowych wyjaśnia, że operacja jest trudna, a zarazem delikatna. By dotrzeć do zbiornika, eksperci muszą się najpierw przedostać przez lód o grubości 40-50 m. Wszystko odbywa się na wysokości 3200 m n.p.m. Nie ma dróg, a do rejonu robót można dotrzeć wyłącznie helikopterem. Co więcej, często schodzą tu lawiny. Inżynierowie powinni skończyć przed połową października, ponieważ nie ma pewności, czy później pogoda dopisze. Nie wiadomo, czemu doszło do utworzenia ukrytego zbiornika. Być może wszystkiemu winne są podwyższone temperatury, niewykluczone jednak, że stało się dokładnie na odwrót i wyjątkowo chłodny okres wiosną czy wczesnym latem doprowadził do zablokowania naturalnych dróg odpływu. Ekipa zamierza usunąć z kieszeni 1/3 wody. Nikt nie wie, co się wtedy stanie, dlatego miejscowych wtajemniczono ostatnio w plany ewakuacyjne.
  5. Jak monitorować zwierzęta żyjące w jakimś akwenie wodnym? Można je wyławiać, określać prawdopodobną wielkość stada/populacji czy zliczać (także w nowocześniejszy sposób, np. znakując obrożami z GPS-em), ale najnowsze badania zespołu z Muzeum Historii Naturalnej w Kopenhadze demonstrują, że wystarczy nabrać kieliszek wody. Okazuje się, że w próbce o pojemności ok. 20 ml znajdują się ślady DNA wszystkich zwierząt zamieszkujących jezioro czy staw. Metoda okazała się tak skuteczna nie tylko w określaniu, jakie istoty zamieszkują wody, ale także ile ich jest, że Duńczycy przypuszczają, że w ten sposób będzie się kiedyś zliczać ryby. "W próbce wody znaleźliśmy DNA tak odmiennych zwierząt, jak wydra i ważka. Wykazaliśmy, że metoda wykrywania materiału genetycznego działa w szerokim spektrum rzadkich gatunków zamieszkujących wody słodkie - wszystkie one zostawiają w środowisku ślady DNA, które można wykryć nawet w niewielkiej ilości wody z habitatu" - opowiada doktorant Philip Francis Thomsen. Zespół z Kopenhagi badał faunę 100 jezior i strumieni europejskich. Posłużono się zarówno zliczaniem, jak i techniką bazującą na DNA. Okazało się, że 2. z metod jest skuteczna nawet w przypadku bardzo rozrzedzonej i nielicznej populacji. Poza tym udowodniono, że ilość DNA w środowisku koreluje z zagęszczeniem osobników, czyli można w ten sposób określić wielkość populacji.
  6. KopalniaWiedzy.pl

    Woda płynie pod górę

    Naukowcom z Instytutu Optyki University of Rochester udało się zmusić wodę by krążyła w pionie, wspinając się po krzemowej powierzchni bez pomocy pomp i innych urządzeń mechanicznych. Ich odkrycia mogą w przyszłości posłużyć do produkcji nowych systemów chłodzenia układów scalonych. Chunlei Guo i Anatoliy Vorobyev, o których pracy informowaliśmy w ubiegłym roku, wykorzystali wyjątkowo krótkie, silne impulsy lasera do stworzenia odpowiednich żłobień na powierzchni krzemu. To właśnie one powodują, że woda pnie się w górę. Przy wielkościach liczonych w skali nano molekuły krzemu oddziałują na molekuły wody silniej, niż inne molekuły wody. To pozwala na przepływ. Stworzenie za pomocą lasera odpowiednich kanałów na powierzchni umożliwia sterowanie tym przepływem. Molekuły wody poruszają się w górę, gdyż każda z nich "chce" zetknąć się z krzemem. Ruch odbywa się z prędkością 3,5 centymetra na sekundę.
  7. KopalniaWiedzy.pl

    Vivace - nowy sposób na energię z wody

    Tradycyjne techniki wykorzystywanie płynącej wody do produkcji energii elektrycznej - np. turbiny - wymagają, by woda płynęła z prędkością co najmniej 9,2 kilometra na godzinę. Profesor Michael Bernitsas z University of Michigan informuje o stworzeniu technologii, która umożliwia uzyskanie energii z wody, poruszającej się z prędkością zaledwie 1,8 km/h. Vivace (Vortex Induced Vibrations for Aquatic Clean Energy) umożliwia produkowanie czystej energii w cenie zaledwie 5,5 centa za kilowatogodzinę. Technologia korzysta ze zjawiska, które widzimy, obserwując, obiekty zacumowane w płynącej się wodzie. Poruszają się one wówczas w górę i w dół. Ruchy te, wywoływane wirami - korzystają z nich też ryby poruszające się pod prąd strumienia - są proporcjonalne do prędkości przepływu wody. Bernitsas użył zespołu cylindrów, które ustawił poziomo wpoprzek prądu. Cylindry były poruszane przez wodę w górę i w dół, wykonywały więc pracę, którą można zamienić na energię elektryczną. Profesora zainspirowało wcześniej wykonywane zlecenie. Opracował on bowiem technologię, która miała tłumić wywołane przepływem wody, ruchy morskich platform wiertniczych. Zdałem sobie sprawę, że jeśli udałoby się zwiększyć te ruchy, zamiast je tłumić, moglibyśmy pozyskać energię - mówi naukowiec. Opracował więc technikę, która aż o 540% zwiększyła częstotliwość ruchów góra-dół. W warunkach naturalnych zakotwiczony obiekt zanurzony w wodzie będzie wykonywał oscylacyjne ruchy, których sinusoida nie przekracza zbytnio jego własnej wysokości. Tymczasem w systemie Bernitsasa wysokość sinusoidy ruchów pojedynczego cylindra wynosi 270% jego własnej wysokości, a sinusoida systemu połączonych cylindrów to 5,7 wysokości cylindra. Tworząc Vivace naukowiec opierał się na modelu z przyrody, a konkretnie na rybach, które płyną pod prąd strumienia, mimo iż ich własne mięśnie są zbyt słabe, by prąd ten pokonać. Zwierzęta wykorzystują bowiem tworzące się w wodzie wiry. Wyginając ciało, doprowadzają do powstania wirów, które pchają je do przodu. Wygięcie ciała w przeciwnym kierunku, prowadzi do powstania kolejnych, pchających wirów. W ten sposób, dzięki naprzemiennym ruchom, ryby uzyskują z wody dodatkową siłę, która pomaga im w przezwyciężeniu silnego prądu. Próbna instalacja składa się z cylindrów umieszczonych w pionowych prowadnicach. Poruszające się w górę i dół cylindry napędzają generator energii. Jak możemy dowiedzieć się z witryny firmy Vortex Hydro Energy, która powstała w celu skomercjalizowania wynalazku, Vivace na wiele zalet. Przede wszystkim wymaga 50-krotnie mniejszej powierzchni niż elektrownie pływowe. Ponadto całość instalacji jest umieszczona pod wodą, dzięki czemu nie zakłóca to żeglugi. W porównaniu z tradycyjnymi zaporami na rzekach, Vivace znacznie mniej ingeruje w ekosystem. Prototypowa instalacja jest obecnie badana w Marine Hydrodynamic Laboratory na University of Michigan. Prace finansują Departament Energii oraz Office Naval Research.
  8. Naukowcy z Queensland University of Technology (QUT) odkryli, że rośliny odgrywają ważną rolę w jonizacji powietrza. Doktorzy Rohan Jayaratne i Xuan Ling przeprowadzili eksperymenty w 6 miejscach wokół Brisbane. Stwierdzili, że stężenie anionów i kationów w powietrzu było na terenach gęsto zadrzewionych 2-krotnie wyższe niż na otwartych obszarach porośniętych trawą, np. parkach. Jayaratne wyjaśnia, że w atmosferze znajdują się śladowe ilości gazu radonu, który w czasie rozpadu emituje promieniowanie alfa o małej przenikliwości, ale o dużej zdolności jonizującej. Za powstawanie jonów odpowiada też promieniowanie kosmiczne. Radon to produkt rozpadu radu, który naturalnie występuje w skałach i minerałach. Ponieważ rad występuje w skałach, a radon jest rozpuszczalny w wodzie, w wodach gruntowych występuje szczególnie dużo tego pierwiastka. Drzewa działają jak pompy radonu. Najpierw za pomocą korzeni pobierają wodę z Rn, a potem przeprowadzają transpirację [czynne parowanie wody z nadziemnych części roślin]. Szczególnie dobrymi pompami radonu są drzewa z głębokim systemem korzeniowym, np. eukaliptusy. Australijczycy wyliczyli, że w lesie eukaliptusowym, gdy wskaźnik transpiracji jest najwyższy, drzewa odpowiadają za 37% radonu w powietrzu. Naukowcy przypominają, że cząstki naładowane z większym prawdopodobieństwem odkładają się w płucach niż cząsteczki nienaładowane. Nie sądzimy, że jony są niebezpieczne - zagrożenie stwarzają zanieczyszczenia. Jeśli w powietrzu nie ma groźnych cząsteczek, które mogłyby się przyłączyć do jonów, nie ma ryzyka utraty zdrowia.
  9. KopalniaWiedzy.pl

    Wodny świat

    W Układzie Słonecznym występują trzy rodzaje planet: gazowe giganty (Jowisz i Saturn), skaliste obiekty typu ziemskiego (Merkury, Wenus, Ziemia i Mars) oraz pokryte lodem duże planety jak Uran i Neptun. W innych miejscach przestrzeni kosmicznej znaleziono też kilka innych typów planet. Teraz dołączył do nich nowy rodzaj. W 2009 roku odkryto planetę oznaczoną jako GJ1214b. Najnowsze analizy przeprowadzone przez astronomów z Harvard-Smithsonian Center for Astrophysics wykazały, że jest to planeta pokryta w większości wodą, która posiada grubą atmosferę, składającą się głownie z pary wodnej. GJ1214b jest inna od wszystkich znanych planet. Znaczną część jej masy stanowi woda - mówi Zachory Berta. GJ1214b ma średnicę o 2,7 raza większą od średnicy Ziemi i jest około 7-krotnie cięższa od naszej planety. Krąży wokół czerwonego karła, którego obiega w ciągu zaledwie 38 godzin. Temperatura na jej powierzchni wynosi prawdopodobnie 232 stopnie Celsjusza. GJ1214b znajduje się w odległości 40 lat świetlnych od Ziemi, w kierunku gwiazdozbioru Wężownika. Naukowcy przypuszczają, że wysoka temperatura i ciśnienie powodują, że na planecie występują egzotyczne stany materii, takie jak „gorący lód“ czy „nadpłynna woda“. Teoretycy spekulują, że GJ1214b powstała w większej odległości od swojej gwiazdy, jednak z czasem przybliżyła się do niej. W międzyczasie przeszła przez ‚strefę zamieszkania“. Nie wiadomo, jak długo w niej krążyła.
  10. KopalniaWiedzy.pl

    Nurkowanie na bezdechu

    Amerykańscy naukowcy oznakowali kałamarnice Humboldta (Dosidicus gigas). Dzięki temu mogli śledzić ich poczynania w środowiskach niemal pozbawionych tlenu. Jak tłumaczy Julia Stewart z Uniwersytetu Stanforda, głowonogi nurkują w ciągu dnia i spędzają w wodach ubogich w tlen wiele godzin, wracając w pobliże powierzchni dopiero na noc. Byliśmy świadkami ich imponujących zanurzeń na głębokość 1,5 km. Zwierzęta przepływały przez obszary z bardzo niską zawartością tlenu. Tagi odnotowywały temperaturę i głębokość. Po prawie miesiącu odpadały od ciała kałamarnicy i dryfowały na powierzchni. Gdy znajdowały się w zasięgu satelity, przekazywały zapisane informacje. Naukowcy ze Stacji Morskiej Hopkinsa, która należy do Uniwersytetu Stanforda, prowadzili badania w obrębie Prądu Kalifornijskiego. Na głębokości ponad 500 m znajduje się tam pas wody o niskiej zawartości tlenu, dlatego zastanawiano się, jak D. gigas sobie z tym radzą. To niesamowite. Zwierzę, które wydawałoby się, potrzebuje dużo tlenu, pływa tam z podobną prędkością jak w wysoce natlenowanych wodach. Wydaje się, że w warunkach niedoboru tlenu potrafi w jakiś sposób przyhamować metabolizm, ale to wcale nie oznacza, że jest letargiczne. Pływa wtedy całkiem żwawo. Ustalono, że w wodach powierzchniowych kałamarnice Humboldta osiągają prędkość 3 m/s, a na największych głębokościach 1-2 m/s. Spowolnienie nie jest więc tak duże, jak można by się spodziewać.
  11. Dwa-trzy metry pod powierzchnią pustyni Atakama, która należy do najsuchszych obszarów na świecie, tętni życie. Występujące tam archeony i bakterie muszą sobie radzić bez dostępu do tlenu i światła słonecznego, ale wody i pokarmu im tam nie brakuje. Bakteryjna oaza została odkryta przez naukowców z hiszpańskiego Centrum Astrobiologii i chilijskiego Universidad Católica del Norte. Użyto do tego wykrywacza oznak życia SOLID. Ukuliśmy nazwę oaza mikrobów, ponieważ znaleźliśmy mikroorganizmy rozwijające się w habitatach obfitujących w halit [będący głównie chlorkiem sodu] i inne wysoce higroskopijne materiały, np. anhydryt - wyjaśnia koordynator projektu Victor Parro. Minerały, na których występują bakterie, podlegają rozpływaniu, czyli adsorpcji wody z atmosfery przez ciało stałe, w wyniku której powstaje stężony roztwór ciała stałego. Początkowo w wyniku kondensacji powstaje film wody o grubości zaledwie kilku mikronów. SOLID (od ang. Signs of Life Detector) powstał z myślą o przyszłych misjach badawczych na Marsie. Najważniejszym elementem wykrywacza jest chip (LDChip), w którym znajduje się ok. 450 przeciwciał do identyfikowania DNA, cukrów czy białka. Po pobraniu próbki następuje inkubacja, a na końcu pojawia się obraz, gdzie ewentualne jasne punkty wskazują na obecność określonych związków albo mikroorganizmów. Próbki pobierano do głębokości 5 metrów. Odkrywane organizmy fotografowano pod mikroskopem elektronowym. Ze stanu uśpienia można je było wyrwać, dolewając nieco wody.
  12. Naukowcy uważają, że wiele planet może doświadczać tak olbrzymiego oddziaływania sił pływowych, że cała znajdująca się na nich woda może zostać odparowana. Odkrycie to może pomóc w poszukiwaniu planet, na których istnieje życie. Niewykluczone bowiem, że wiele z nich, mimo iż znajduje się w strefie zamieszkania, zostało pozbawione wody np. przez swoją gwiazdę. Siły pływowe pojawiają się wówczas, gdy na znacznej długości obiektu dochodzi do zmiany grawitacji. Na Ziemię oddziałują w ten sposób Słońce czy Księżyc. Ta strona naszej planety, która jest bliżej oddziałującego nań ciała, jest silniej przyciągana niż strona bardziej odległa. Widocznym objawem istnienia sił pływowych są na Ziemi pływy morskie. Jednak siły, których doświadcza Ziemia są niczym w porównaniu z tymi, jakie mają miejsce w innych miejscach kosmosu. Na przykład siły Jowisza oddziałujące na Europę są około 1000-krotnie większe niż wpływ Księżyca na Ziemię. To powoduje, że Europa wygina się i rozgrzewa. Odległość od gwiazdy macierzystej to bardzo ważny wskaźnik możliwości istnienia życia na planecie. Jeśli jest ona zbyt mała, powierzchnia planety jest tak gorąca, że nie może na niej istnieć woda w stanie ciekłym. Gdy planeta jest daleko od swojej gwiazdy, istniejąca nań woda zamarza. Uczeni od dawna przypuszczają, że to niewielka odległość Wenus od Słońca powoduje, że planeta ta jest sucha. Cała jej woda wyparowała. Jednak teraz naukowcy stwierdzili, że istotna jest nie tylko temperatura. Zbyt potężne siły pływowe mogą pozbawić planetę całej wody rozgrzewając jej powierzchnię. To znacząco zmienia koncepcję strefy zamieszkania. Doszliśmy do wniosku, że jej szerokość należy skorygować o jeszcze jeden czynnik niż tylko ciepło docierające z gwiazdy macierzystej - mówi Rory Barnes, astrobiolog z University of Washington. Jego zdaniem takim systemom planetarnym jak nasz nie grozi pozbawienie wody przez gwiazdę, gdyż siły pływowe gwałtownie zmniejszają się wraz z odległością od gwiazdy. Planeta musiałaby znajdować się tak blisko niej, że i tak straciłaby wodę wskutek gorąca. Jednak taki scenariusz jest prawdopodobny w przypadku systemu planetarnych powstałych wokół białych czy brązowych karłów. Tego typu systemy są szczególnie interesujące dla astronomów, gdyż planety mogą znajdować się bardzo blisko gwiazd, a mimo to nie panuje na nich zbyt wysoka temperatura. Ponadto, z powodu swojej niewielkiej odległości, czas ich obiegu wokół gwiazdy jest krótki, co ułatwia odkrycie takich planet. Rory Barnes uważa, że takie planety mogą być bardzo mylące. Najpierw znajdują się one na tyle blisko swojej gwiazdy macierzyste, że siły pływowe pozbawiają je wody. Później mogą zmienić orbitę na dalszą, przez co nawet nie będziemy przypuszczać, że mogą na nie oddziaływać duże siły pływowe, a jednocześnie orbita ta będzie znajdowała się w strefie zamieszkania. Gdy znajdziemy kandydatkę na zamieszkaną planetę, trzeba brać pod uwagę siły pływowe. Szkoda marnować czasu na badanie wysuszonych planet - mówi Barnes.
  13. KopalniaWiedzy.pl

    Metal i izolator z wody

    W odpowiednich warunkach woda może stać się metalem, a następnie izolatorem, stwierdzili uczeni z Cornell University. W PNAS ukazał się artykuł, w którym Neil Ashcroft, Roald Hoffmann i Andreas Hermann opisują wyniki swoich teoretycznych obliczeń. Wynika z nich, że przy ciśnieniu rzędu 1-5 terapaskali woda tworzy stabilne struktury. Mimo, że ciśnienie takie jest dziesiątki milionów razy większe od ciśnienia ziemskiego, istnienie wody w takim stanie nie jest wykluczone. Wręcz przeciwnie, może ona powszechnie występować nawet w naszym Układzie Słonecznym. Tak olbrzymie ciśnienie może panować wewnątrz Urana. Z wyliczeń uczonych wynika, że powyżej 1 terapaskala poszczególne molekuły wody przestają istnieć, a H2O zostaje ściśnięta tworząc siatkę połączeń tlenu i wodoru, która przyjmuje najróżniejsze kształty. Już wcześniej obliczano, że przy ciśnieniu 1,55 TPa woda staje się metalem i ma najbardziej stabilną strukturę. Naukowcy z Cornell poszli dalej i udało im się wyliczyć, że najbardziej stabilna jest woda przy ciśnieniu wyższym od 4,8 TPa. Wówczas jednak traci ona właściwości metalu i staje się izolatorem. Jak zauważa profesor Ashcroft, najbardziej niezwykłym wnioskiem wypływającym z obliczeń jest odkrycie, że olbrzymie ciśnienie powoduje, iż woda przestaje być ciałem stałym i w pewnym momencie zamienia się w kwantową ciecz. Trudno jest to sobie wyobrazić - topienie lodu pod wpływem podwyższonego ciśnienia - stwierdził naukowiec.
  14. KopalniaWiedzy.pl

    Człowiek zachwiał Amazonią

    Działalność człowieka zaczęła zmieniać cykl obiegu wody i energii w Amazonii. Artykuł opublikowany w najnowszym Nature pokazuje, że istnieje związek pomiędzy wycinką lasów, pożarami a zmianami klimatycznymi, a całość tych zjawisk może wpłynąć na obieg węgla, opady oraz poziom wody w rzekach. Badania prowadzone były pod kierownictwem specjalistów z Woods Hole Research Center przez 13 brazylijskich i amerykańskich uczelni, agend rządowych i organizacji pozarządowych. W ramach programu Large-Scale Biosphere-Atmosphere Experiment in Amazon (LBA) badany jest związek pomiędzy zmianami klimatu, zwiększaniem areałów ziemi uprawnej, wycinką drzew a ryzykiem wystąpienia pożarów. Jednym z bardzo ważnych wskaźników poważnego zachwiania równowagi jest duża liczba wielkich pożarów, które są produktem ubocznym celowego wypalania lasu. Takie pożary występują niezwykle często, co kilka lat, podczas gdy w przeszłości zdarzały się raz na kilkaset lat - mówi Jennifer K. Balch, współautorka badań. W ostatnich dziesięcioleciach aktywność człowieka w basenie Amazonki gwałtownie się zwiększa, a wskutek działalności Homo sapiens zaczyna dochodzić do zachwiania równowagi ekosystemu. Jego zniszczenie może mieć katastrofalne skutki dla całej planety, gdyż z Amazonii pochodzi około 20% światowych zasobów słodkiej wody, a w tamtejszych lasach uwięzione jest około 100 miliardów ton węgla. Tymczasem naukowcy dowodzą, że już w tej chwili można zauważyć zmiany w przepływie rzek, tworzeniu się osadów i przedłużaniu okresu suchego w południowych i wschodnich częściach basenu Amazonki. To czy zmiany takie wystąpią też w innych jego częściach będzie zależało od decyzji, które ludzie podejmą w najbliższych latach oraz od zmian klimatycznych - mówi Eric Davidson z Woods Hole. Badania wykazały też, że Amazonia jest odporna na coroczne zmiany klimatyczne, jednak nie radzi sobie z przedłużającymi się lub szczególnie ciężkimi suszami. Brazylia odniosła już pewne sukcesy w walce o zachowanie Amazonii. Przed ośmioma laty corocznie wycinano niemal 28 000 kilometrów kwadratowych lasu. W 2010 roku liczba ta spadła do 7000 km2. Niestety, w tym samym czasie nie zmniejszyła się liczba wielkich pożarów, które prowadzą do dalszej degradacji lasu.
  15. KopalniaWiedzy.pl

    Najmniejszy silnik Stirlinga

    W Niemczech zbudowano najmniejszy w historii silnik Stirlinga. To wynaleziony na początku XIX wieku silnik, który przetwarza energię cieplną w energię mechaniczną. Specjaliści z Uniwersytetu w Stuttgarcie i Instytutu Systemów Inteligentnych Maksa Plancka tak zmodyfikowali urządzenie, by uzyskać jak najmniejsze wymiary. Oryginalny silnik Stirlinga ma z jednej strony cylinder z gazem połączony ze źródłem ciepła, a z drugiej chłodnicę. Dwa tłoki przepychają gaz pomiędzy ciepłym i zimnym obszarem. W celu zmniejszenia rozmiarów silnika niemieccy uczeni zastąpili zbiornik gazu pojedynczą cząsteczką melaminy, którą zanurzono w wodzie. Całość umieszczono w zbiorniku o wysokości 4 mikrometrów. W roli tłoka wystąpił laser. Im większa była intensywność promienia, tym mniejszą swobodę ruchu miała molekuła. Zachowywała się ona zatem podobnie do molekuł gazu w oryginalnym projekcie. Drugi z laserów w czasie krótszym niż 10 milisekund podgrzewał wodę do temperatury 90 stopni Celsjusza, wywołując ruch melaminy. Wyłączenie lasera powodowało gwałtowne ochładzanie się wody. Pomimo tego, że udało się odtworzyć działanie silnika Stirlinga, mikroskopijne urządzenie jest mniej doskonałe niż pracujące w skali makro. W przeciwieństwie do makroskopowego silnika, który pracuje bardzo płynnie i całkowicie przewidywalny sposób, nasz silnik zacina się - mówi profesor Bechinger. Dzieje się tak dlatego, że molekuły wody bez przerwy uderzają w molekułę melaminy, co powoduje nierównomierne przepływy energii. W dużym silniku generowane jest tyle energii, że kolizje te nie mają znacznie, jednak w świecie mikro zaburzają one pracę urządzenia. Mimo to, naukowcy byli zadziwieni faktem, że średnia wydajność silnika była taka jak oryginału. Naukowcy podkreślają, że ich silnik nigdy nie znajdzie praktycznego zastosowania, jednak mają nadzieję, że badania nad nim posłużą do opracowania bardziej stabilnych źródeł napędu dla mikromaszyn.
  16. Jak monitorować zwierzęta żyjące w jakimś akwenie wodnym? Można je wyławiać, określać prawdopodobną wielkość stada/populacji czy zliczać (także w nowocześniejszy sposób, np. znakując obrożami z GPS-em), ale najnowsze badania zespołu z Muzeum Historii Naturalnej w Kopenhadze demonstrują, że wystarczy nabrać kieliszek wody. Okazuje się, że w próbce o pojemności ok. 20 ml znajdują się ślady DNA wszystkich zwierząt zamieszkujących jezioro czy staw. Metoda okazała się tak skuteczna nie tylko w określaniu, jakie istoty zamieszkują wody, ale także ile ich jest, że Duńczycy przypuszczają, że w ten sposób będzie się kiedyś zliczać ryby. "W próbce wody znaleźliśmy DNA tak odmiennych zwierząt, jak wydra i ważka. Wykazaliśmy, że metoda wykrywania materiału genetycznego działa w szerokim spektrum rzadkich gatunków zamieszkujących wody słodkie - wszystkie one zostawiają w środowisku ślady DNA, które można wykryć nawet w niewielkiej ilości wody z habitatu" - opowiada doktorant Philip Francis Thomsen. Zespół z Kopenhagi badał faunę 100 jezior i strumieni europejskich. Posłużono się zarówno zliczaniem, jak i techniką bazującą na DNA. Okazało się, że 2. z metod jest skuteczna nawet w przypadku bardzo rozrzedzonej i nielicznej populacji. Poza tym udowodniono, że ilość DNA w środowisku koreluje z zagęszczeniem osobników, czyli można w ten sposób określić wielkość populacji.
  17. Grzyby i bakterie mogą zmieniać organizację gleby (porowatość), tak by pochłaniała więcej wody i węgla. Artykuł na ten temat ukazał się właśnie w piśmie Interface. Gdy przyjrzymy się glebie pozbawionej organizmów żywych, struktura jest dość przypadkowa. Życie wprowadza w niej ład i porządek. Bakterie i grzyby wdrażają nieco feng shui i rearanżują cząstki gleby - opowiada prof. Iain Young z Uniwersytetu Nowej Anglii. Nic więc dziwnego, że Australijczyk uznaje glebę za najbardziej złożony biomateriał na Ziemi. Dlaczego? Powodów jest kilka. Po pierwsze, liczba organizmów w garści gleby przewyższa liczbę ludzi, którzy kiedykolwiek zamieszkiwali naszą planetę. Po drugie, życie z gleby definiuje jej funkcje i właściwości. Naukowcy już od jakiegoś czasu wiedzieli, że mikroorganizmy glebowe wydzielają klejopodobną substancję, która wiąże tworzące ją cząstki. Stąd przypuszczenie zespołu Younga, że mikroorganizmy poprawiają porowatość gleby, usprawniając przepływ wody oraz różnych gazów, w tym dwutlenku węgla i tlenu. Studium przebiegało 2-etapowo. Zaczęło się od modelu komputerowego, potem przyszedł czas na właściwy eksperyment. Do porównania porów w wyjałowionej glebie i glebie z mikroorganizmami Australijczycy wykorzystali mikrotomografię rentgenowską. Okazało się, że zwłaszcza grzyby zwiększały porowatość gleby. Porów nie tylko było więcej, stały się też bardziej uporządkowane i połączone. Strzępki grzybów pełniły funkcje stabilizujące, a bakterie wydzielały surfaktanty zmniejszające napięcie powierzchniowe. Dzięki zakrojonej na szeroką skalę współpracy roślinom łatwiej pobierało się z ziemi wodę. W tym roku ukazała się książka Iaina Younga i Karla Ritza pt. Architektura i biologia gleby: życie w wewnętrznej przestrzeni. Prawdziwe kompendium wiedzy dla zainteresowanych tą tematyką.
  18. KopalniaWiedzy.pl

    Słodkie wygięcie

    Naukowcy od lat zastanawiają się, czemu wiele teropodów ze skamieniałości przyjęło charakterystyczną pozycję z silnie wygiętą ku tyłowi głową i podwiniętym do góry ogonem (nazywa się ją pozycją opistotoniczną). Alicia Cutler i zespół z Brigham Young University uważają, że można to wyjaśnić zanurzeniem w słodkiej wodzie. Początkowo Cutler prowadziła eksperymenty ze świeżymi i mrożonymi kurczakami. Ustawiała je na 3 miesiące na piasku i sprawdzała, czy w wyniku wysuszenia ptaki charakterystycznie się wygną. Żaden ze skurczów mięśni do tego nie doprowadził, a rozkład przebiegał w całkowicie przewidywalny sposób. Kiedy jednak 7 kolejnych ptaków włożono do zimnej słodkiej wody, szyja wygięła się w łuk w ciągu zaledwie paru sekund. Pozostawienie ich w zanurzeniu na miesiąc tylko lekko pogłębiło wygięcie. Wyniki Cutler pozostają w sprzeczności z wynikami badań Cynthii Marshall Faux z Museum of the Rockies i Kevina Padiana z Uniwersytetu Kalifornijskiego w Berkeley, którzy umieszczali przepiórki w słonej wodzie, a ponieważ nic się nie działo, stwierdzili, że wygięcie występujące w tak licznych skamieniałościach stanowi skutek drgawek przedśmiertnych. Cutler sądzi jednak, że sprzeczność może być tylko pozorna, bo obiekty należy zanurzać w wodzie słodkiej, nie słonej. Choć dróg do pozycji opistotonicznej jest wiele, zanurzenie w wodzie to najprostsze wyjaśnienie. Podczas wystąpienia na tegorocznej konferencji Stowarzyszenia Paleontologii Kręgowców Cutler wyjaśniła, że u teropodów i innych zwierząt z wygięciem opistotonicznym sklepienie czaszki znajduje się nad kością krzyżową, a ogon zawija się nad czaszką i szyją. To wersja skrajna, przy pośrednich ogon i głowa mogą się ustawiać w pionie. Spośród wcześniejszych wyjaśnień pozycji opistotonicznej poza wysuszeniem warto wymienić zatrucie i uduszenie. Prelegentka podkreślała, że większość "upozowanych" w ten sposób zwierząt znajdowano w środowiskach wodnych (jeziornych bądź rzecznych). Wg Cutler, rezultaty uzyskane przez jej zespół sugerują, że naturalne napięcie mięśni nadosiowych, czyli leżących nad osią długą kręgosłupa, "naciąga" czaszkę i szyję. Ruch ten ułatwia ich niewielka waga, związana z właściwościami kości pneumatycznych.
  19. Badacze z Uniwersytetu Kalifornijskiego w Berkeley wykorzystali plazmę do uzyskania wody, która przez tydzień wykazuje właściwości antybakteryjne. Można nią sterylizować sprzęt medyczny, np. narzędzia chirurgiczne, oraz rany (Journal of Physics D: Applied Physics). Podczas eksperymentów Amerykanie stworzyli w powietrzu plazmę i przez 20 minut oddziaływali nią na wodę destylowaną. Ciecz odstawiano na różne okresy (maksymalnie do tygodnia), a później umieszczano w niej pałeczki okrężnicy (Escherichia coli). Bakterie pozostawiano tam na 15 minut lub 3 godziny. Następnie wyszukiwano wszystkie żywe mikroorganizmy i porównywano z liczbą pałeczek w wodzie, która nie była aktywowana plazmą. Okazało się, że woda pozyskana przed tygodniem po 3-godzinnej ekspozycji doskonale eliminowała patogeny. Naukowcy widzą wiele zastosowań dla przenośnego urządzenia, które zdążyli już wypróbować w laboratorium. Wspominają m.in. o krajach Trzeciego Świata czy sytuacjach kryzysowych po katastrofach naturalnych. Różne grupy badawcze wykazywały wcześniej, że plazma stworzona w pobliżu wody zmienia ją w kwasowy roztwór, zawierający wiele związków bakteriobójczych. Wyniki zainteresowały Kalifornijczyków, którzy postanowili bliżej przyjrzeć się tej kwestii. Wiemy, że po skierowaniu plazmy do wody powstają takie produkty jak nadtlenek wodoru, azotany oraz azotyny i że są one antybakteryjne, zwłaszcza w środowisku kwasowym powstałym pod wpływem plazmy. Stwierdziliśmy jednak, że wymienione związki nie pozwalają w pełni wyjaśnić zaobserwowanego efektu antybakteryjnego, dlatego przyszłe badania muszą się koncentrować na zidentyfikowaniu wszystkich odpowiedzialnych za to produktów - podkreśla prof. David Graves.
  20. Latanie w czasie deszczu nie jest dla ptaków ani przyjemne, ani łatwe. Kolibry wzięły się jednak na pewien sposób. Pozbywają się kropel wody, potrząsając energicznie głową. Gdyby nie przyspieszenie, jakie wtedy osiągają (sięga ono 34 g), stanowiłyby niezłą kopią otrzepującego się psa. Manewr, wykonywany zarówno podczas krótkich chwil odpoczynku, jak i w powietrzu, zajmuje zaledwie 0,1 s. Dzięki niemu ptak usuwa z piór niemal wszystkie krople. To ekstremalna mobilność - głowa kolibra przesuwa się o 180 stopni w 1/10 s lub mniej. Niesamowite! - emocjonuje się jeden z autorów studium, prof. Robert Dudley z Uniwersytetu Kalifornijskiego w Berkeley. W ramach studium Amerykanie zajęli się koliberkiem żarogłowym (Calypte anna), który zamieszkuje lasy mgłowe, gdzie nie brakuje, oczywiście, deszczu. Ponieważ dotąd naukowcy nie wiedzieli, jak może pozostać aktywny w takich warunkach, postanowili to ustalić eksperymentalnie. Na kolibra żerującego przy poidle kierowali strumień wody. Symulowaliśmy 3 różne typy deszczu. Koliberki potrząsały głowami zarówno przy lekkich, jak i umiarkowanych czy silnych opadach. Wygląda na to, że wśród kolibrów jest to powszechne zachowanie - podkreśla dr Victor Ortega-Jimenez (również z Uniwersytetu Kalifornijskiego w Berkeley). Biolodzy porównywali wydajność kinematyczną otrzepywania na żerdzi i w locie. Oceniali m.in. prędkość styczną, przyspieszenie, częstotliwość ruchów głowy, ciała i ogona. Czemu namakanie deszczówką jest tak niebezpieczne? Po pierwsze, grozi wychłodzeniem. Po drugie, sprzyja wzrostowi patogenów. Poza tym w przypadku małych zwierząt, zwłaszcza latających, woda przylegająca do ciała obniża zdolności lokomotoryczne. Dudley dodaje, że choć informacje wzrokowe wydają się niezbędne do kontroli przyspieszenia, a potrząsanie głową zaburza ich dopływ, kolibry zachowują jednak równowagę i nie spadają. Są niekwestionowanymi mistrzami w swojej klasie, a gdyby nie kamera rejestrująca ruch w zwolnionym tempie, nawet byśmy o tym nie wiedzieli.
  21. Naukowcy z brytyjskiego National Physical Laboratory (NPL) opracowali technologię obrazowania, która pozwala stwierdzić przed zerwaniem, czy truskawki są dojrzałe. Dzięki niej będzie można stworzyć robota, który nie tylko wyręczy ludzi przy tej kopciuszkowej czynności, ale i ograniczy ilość odpadów. Wszystko zaczęło się w 2009 r., kiedy naukowcy postanowili pomóc ludziom zbierającym kalafiory, którzy przez gęstwinę liści nie byli w stanie stwierdzić, czy warzywa są już dojrzałe, czy jeszcze nie. Technologię ukończono, spadł jednak popyt na kalafiory i projekt utknął w martwym punkcie. Po jakimś czasie doktor Richard Dudley wpadł na pomysł, by rozszerzyć gamę plonów, w przypadku których można wykorzystać nową metodę obrazowania. Obecnie koncentrujemy się na truskawkach. To owoc łatwy do zmierzenia, ponieważ zawiera dużo wody, a liście są [stosunkowo] suche. [Wato nadmienić, że] obrazowanie mikrofalowe jest szczególnie użyteczne przy określaniu ilości wody. Wybór padł na truskawki, ponieważ są cenionym produktem, a ich zrywanie pochłania bardzo dużo czasu. Straty finansowe powodowane przez zbieranie niedojrzałych owoców bywają bardzo wysokie, nic więc dziwnego, że rolnicy stale poszukują skuteczniejszych metod. Technologia NPL wykorzystuje fale z 4 przedziałów spektrum elektromagnetycznego: fale radiowe, terahercowe, mikrofale i podczerwień. Jak tłumaczą twórcy metody, bezpiecznie penetrują one poszczególne warstwy owocu/warzywa i pozwalają stwierdzić, czy produkt spełnia zadane kryteria dojrzałości. Zanim uzyskano oprogramowanie w dzisiejszej uczącej się postaci, w laboratorium i w terenie przeprowadzano szereg żmudnych pomiarów; w ten sposób powstało tzw. spektrum statystyczne. Na tej podstawie stworzono algorytm, który pozwala podjąć decyzję o stopniu dojrzałości na podstawie pojedynczego wskazania. Brytyjska technologia znajdzie zapewne zastosowanie w wielu gałęziach przemysłu. Już teraz wiadomo, że przyda się przy segregacji odpadów.
  22. Astronomom po raz pierwszy udało się zaobserwować olbrzymią chmurę chłodnej pary wodnej wokół powstającego systemu słonecznego. Jej temperatura jest na tyle niska, że mogą się z niej formować komety. Te z kolei mogłyby dostarczyć wodę na suche planety. Jak informowaliśmy przed dwoma tygodniami, uczeni doszli do wniosku, że to właśnie komety mogły być głównym źródłem wody na Ziemi. Wspomniana chmura pary wodnej została zaobserwowana przez uczonych z University of Michigan. Znajduje się w pobliżu gwiazdy TW Hydrae, odległej od Ziemi o 176 lat świetlnych. Para stanowi część dysku, z którego formuje się system planetarny gwiazdy. Wody jest tysiące razy więcej niż w ziemskich oceanach. Już wcześniej znajdowano gorącą parę wodną w dyskach formujących planety. Dotychczas jednak nie był znany żaden dowód na istnienie olbrzymich ilości chłodnej wody w takich dyskach. Im więcej wody w dysku i im jest ona chłodniejsza, tym większe są szanse, że w przyszłości, gdy planety się uformują, lodowe komety zaopatrzą je w wodę.
  23. Z próbek wody pobranych u wybrzeży Chile wyizolowano Megavirus chilensis. Wynosząc 700 nm, jego średnica 10-20-krotnie przewyższa średnicę przeciętnego wirusa. Wcześniej tytuł rekordzisty należał do mimiwirusa, którego kapsyd ma średnicę dochodzącą do 400 nm. Odkryto go w 1992 r. w przemysłowej wieży chłodniczej w Bradford. M. chilensis najprawdopodobniej zakaża pełzaki. Jest większy od niektórych bakterii. By go zobaczyć, nie potrzeba mikroskopu elektronowego. Wystarczy zwykły mikroskop optyczny - podkreśla prof. Jean-Michel Claverie z Aix-Marseille University. Podobnie jak u mimiwirusa, nad powierzchnię kapsydu M. chilensis wystają włókna. Naukowcy uważają, że za pomocą ich ruchów wirusy wabią pełzaki, które polują na urzęsione bakterie. Gdy zespół Claveriego zainfekował M. chilensis słodkowodne ameby, tworzyły się trojańskie organelle czy, jak mówią Francuzi, komórki wewnątrz komórek. Tu wirusy się namnażały. M. chilensis znaleziono w wodach koło Las Cruces w środkowym Chile. Wcześniej odkrywaliśmy wirusy tylko dlatego, że wywoływały choroby u ludzi, zwierząt lub roślin. Teraz rozpoczynamy coś, co można nazwać wirusologią środowiskową i szukamy wirusów dosłownie wszędzie. Wystarczy pojechać nad jezioro, morze czy ocean, pobrać wodę i przefiltrować ją, a następnie odratować wirusy, hodując je z potencjalnymi gospodarzami.
  24. Jak dowiedzieli się naukowcy badający kometę Hartley 2, woda, którą ona zwiera, jest znacznie bardziej podobna do wody obecnej na Ziemi, niż płyn wchodzący w skład każdej innej zbadanej pod tym kątem komety. Pomiary, wykonane za pomocą teleskopu Herschel wykazały, że woda niesiona przez Hartley 2 zawiera o połowę mniej deuteru niż ta obecna na innych kometach. Ziemia uformowała się jako skalista, sucha planeta. Coś zatem musiało przynieść na nią wodę. Wykonane dotychczas pomiary składu kilku komet wykazały, że znajdując się na nich woda zawiera znacznie więcej deuteru niż ziemski płyn. Deuter zaś jest „odciskiem palca" wody. Z kolei z badań meteorytów wiemy, że skład wody jest w nich bardzo podobny do tego, co mamy na Ziemi. Stąd więc wniosek, iż ziemskie H2O pochodzi z asteroidów. Hartley 2 do pierwsza przeanalizowana pod kątem występowania wody kometa z Pasa Kuiperta. Dotychczas analizowano komety z Obłoku Oorta. Ted Bergin z University of Michigan mówi, że najnowsze badania wskazują, iż komety mogły przyczynić się do pojawienia się wody na Ziemi. Kosmiczne zasoby wody podobnej do występującej w ziemskich oceanach są znacznie większe niż sądziliśmy i obejmują one zasoby obecne na nierozpoznanych jeszcze kometach - stwierdził uczony. Musimy dobrze zastanowić się nad tym, co dzieje się w Układzie Słonecznym i czy możemy wykluczyć komety jako źródło ziemskiej wody - dodał. Zdaniem Jamesa Greenwood z Wesleyan University należy przyjrzeć się modelom dotyczącym budowy wszechświata i uzupełnić je o nowe informacje. Konieczne są też badania kolejnych komet z Pasa Kuiperta. Niewykluczone bowiem, że obiekty te były znaczącym źródłem wody na Ziemi. W przeszłości naukowcy sądzili, że asteroidy i komety to różne klasy obiektów kosmicznych. Teraz nowe wyniki pokazują, że prymitywne asteroidy i komety to rodzeństwo - stwierdził Alessandro Morbidell z Obserwatorium Lazurowego Wybrzeża.
  25. KopalniaWiedzy.pl

    Atmosfera Marsa przesycona wodą

    Dane zgromadzone przez należącą do Europejskiej Agencji Kosmicznej sondę Mars Express wskazują, że w atmosferze Czerwonej Planety znajduje się woda w postaci roztworu przesyconego. Zdumiewające odkrycie pozwoli lepiej zrozumieć obieg wody na Marsie oraz historię atmosfery tej planety. Gdy w atmosferze Ziemi znajduje się zbyt duża ilość wody, dochodzi do jej kondensacji i opadów. Czasami jednak, gdy brak jest jąder kondensacji, para wodna utrzymuje się a atmosferze, mimo iż w występujących warunkach temperatury i ciśnienia powinna opaść. Mówimy wówczas o wystąpieniu roztworu przesyconego, czyli roztworu o wyższym stężeniu od roztworu nasyconego. Dotychczas uważano, że w atmosferze Marsa takie zjawisko nie zachodzi. Dopiero teraz spektrometr SPICAM odkrył wodę w stanie przesyconym w atmosferze planety. SPICAM tworzy pionowy przekrój atmosfery obserwując, w jaki sposób promienie słoneczne przechodzą przez atmosferę podczas wschodów i zachodów Słońca. Badania takie wykazały, że występowanie wody w stanie przesyconym jest bardzo częstym zjawiskiem w atmosferze Marsa. Niejednokrotnie takiej wody było nawet 10-krotnie więcej niż w atmosferze Ziemi. Znajdująca się w atmosferze woda w stanie wysoce przesyconym może posłużyć na przykład do zaopatrzenia w wodę południowej półkuli Marsa. Byłaby to metoda znacznie bardziej efektywna niż inne, opracowane na podstawie dotychczasowych modeli komputerowych - stwierdził Franck Montmessin odpowiedzialny za instrument SPICAM. Odkrycie wskazuje też, że znacznie większe ilości wody niż dotychczas sądzono mogą być transportowane na duże wysokości, na których dochodzi do jej fotodysocjacji. To mogłaby sugerować, że woda przez miliardy lat uciekała z Marsa, dlatego też obecnie znajdujemy jej tak niewiele.
×